¼¼°èÀÇ Ã¶µµ »çÀ̹ö º¸¾È ½ÃÀå
Railway Cybersecurity
»óǰÄÚµå : 1595025
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,260,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,780,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ã¶µµ »çÀ̹ö º¸¾È ½ÃÀåÀº 2030³â±îÁö 162¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 94¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Ã¶µµ »çÀ̹ö º¸¾È ½ÃÀåÀº 2023-2030³â¿¡ CAGR 8.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 162¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¼Ö·ç¼Ç ÄÄÆ÷³ÍÆ®´Â CAGR 7.6%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 90¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 8.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 26¾ï ´Þ·¯, Áß±¹Àº CAGR 7.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Ã¶µµ »çÀ̹ö º¸¾È ½ÃÀåÀº 2023³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGR 7.4%¸¦ °ßÀÎÇÏ´Â ÇüÅ·Î, 2030³â±îÁö 25¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.4%¿Í 6.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

öµµ »çÀ̹ö º¸¾È : ÁøÈ­ÇÏ´Â À§ÇùÀ¸·ÎºÎÅÍ ÃֽŠöµµ ½Ã½ºÅÛÀ» º¸È£

Çö´ë öµµ ½Ã½ºÅÛ¿¡ »çÀ̹ö º¸¾ÈÀÌ ÇʼöÀûÀÎ ÀÌÀ¯

öµµ »çÀ̹ö º¸¾ÈÀº Çö´ë öµµ ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ÄÄÆ÷³ÍÆ®·Î, µðÁöÅÐÈ­ ¹× ÀÚµ¿È­µÇ´Â öµµ ³×Æ®¿öÅ©ÀÇ ¾ÈÀü, ½Å·Ú¼º ¹× È¿À²¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÚµ¿ ¿­Â÷ Á¦¾î, »ç¹°ÀÎÅͳÝ(IoT) Àåºñ, Áß¾Ó ÁýÁᫎ Á¦¾î ½Ã½ºÅÛ µî ÷´Ü ±â¼úÀÇ µµÀÔÀ¸·Î öµµ´Â µ¥ÀÌÅÍ ±³È¯°ú ½Ç½Ã°£ Åë½Å¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â º¹ÀâÇÑ »óÈ£ ¿¬°á ³×Æ®¿öÅ©·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½ºÄÉÁÙ¸µ °³¼±, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿îÇà È¿À²¼º Çâ»ó µî ¸¹Àº ÀÌÁ¡À» °¡Á®¿ÔÁö¸¸, »çÀ̹ö ¹üÁËÀÚµéÀÌ ¾Ç¿ëÇÒ ¼ö ÀÖ´Â Ãë¾àÁ¡µµ ÇÔ²² °¡Á®¿Ô½À´Ï´Ù. »çÀ̹ö º¸¾È Ä§ÇØ´Â ¼­ºñ½º Áß´Ü, ¾ÈÀü¼º ÀúÇÏ, µ¥ÀÌÅÍ µµ³­, ÀáÀçÀûÀÎ ¹°¸®Àû ÇÇÇØ·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, µðÁöÅÐ ¹× ¹°¸®Àû öµµ ÀÚ»êÀ» ¸ðµÎ º¸È£ÇÏ´Â °­·ÂÇÑ »çÀ̹ö º¸¾È Á¶Ä¡ÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

öµµÀÇ »çÀ̹ö º¸¾ÈÀº ¿îÇà Áß´ÜÀ» ¹æÁöÇÒ »Ó¸¸ ¾Æ´Ï¶ó ½Â°´ÀÇ ¾ÈÀüÀ» Áö۴µ¥µµ ÇʼöÀûÀÔ´Ï´Ù. °ø°ÝÀڴ öµµ ½ÅÈ£¸¦ Á¶ÀÛÇϰųª ¿­Â÷ Á¦¾î ½Ã½ºÅÛ¿¡ ¹«´ÜÀ¸·Î Á¢±ÙÇϰųª Áß¿äÇÑ ¾ÈÀü ±â´ÉÀ» ºñȰ¼ºÈ­ÇÏ¿© Àç¾ÓÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. »çÀ̹ö º¸¾È »ç°íÀÇ ¿µÇâÀº ¿µÇâÀ» ¹Þ´Â öµµ »ç¾÷ÀÚ¿¡°Ô¸¸ ±¹ÇѵÇÁö ¾Ê°í, ¸·´ëÇÑ °æÁ¦Àû ¼Õ½Ç, °ø°ø¾ÈÀü À§Çè, ÆòÆÇ ¼Õ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ öµµ »ç¾÷ÀÚ´Â »çÀü ¿¹¹æ°ú ´ëÀÀ °èȹÀ» ¸ðµÎ Æ÷ÇÔÇÏ´Â Á¾ÇÕÀûÀÎ »çÀ̹ö º¸¾È Àü·«À» ¼ö¸³ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. öµµ°¡ Àü ¼¼°è ¹°·ù ¹× ´ëÁß ±³Åë¿¡¼­ Â÷ÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» °í·ÁÇÒ ¶§, ¾ÈÀüÇϰí ź·ÂÀûÀΠöµµ ½Ã½ºÅÛÀ» º¸ÀåÇϱâ À§Çؼ­´Â öµµ »çÀ̹ö º¸¾ÈÀ» °­È­ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

öµµ ½Ã½ºÅÛÀÇ ÁÖ¿ä Ãë¾àÁ¡Àº ¹«¾ùÀΰ¡?

öµµ ½Ã½ºÅÛÀº ¿î¿µ±â¼ú(OT)°ú Á¤º¸±â¼ú(IT) ÀÎÇÁ¶ó¿¡ ´ëÇÑ »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÕ´Ï´Ù. ¿î¿µ ±â¼úÀº ½ÅÈ£ ½Ã½ºÅÛ, ¿­Â÷ Á¦¾î ½Ã½ºÅÛ, ÀÎÇÁ¶ó °ü¸®¿¡ »ç¿ëµÇ´Â SCADA(Supervisory Control and Data Acquisition) ½Ã½ºÅÛ µî ¹°¸®Àû Àåºñ¿Í ÇÁ·Î¼¼½º¸¦ Á¦¾îÇÏ°í ¸ð´ÏÅ͸µÇÏ´Â Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î¸¦ ¸»ÇÕ´Ï´Ù. ´ëºÎºÐÀÇ ·¹°Å½Ã öµµ ½Ã½ºÅÛÀº ¿ø·¡ »çÀ̹ö º¸¾ÈÀ» ¿°µÎ¿¡ µÎ°í ¼³°èµÇÁö ¾Ê¾Ò±â ¶§¹®¿¡ OT´Â °ø°Ý¿¡ ¸Å¿ì Ãë¾àÇÕ´Ï´Ù. öµµ ½Ã½ºÅÛÀÌ µðÁöÅзΠ¾÷±×·¹À̵åµÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ±â´É È®ÀåÀÌ Á¦´ë·Î º¸È£µÇÁö ¾ÊÀ¸¸é Á¡Á¡ ´õ ¸¹Àº »çÀ̹ö À§Çù¿¡ ³ëÃâµÉ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Á¦¾î ½Ã½ºÅÛÀÇ ÀÎÁõÀÌ ¾àÇϸé Áß¿äÇÑ ÀÛ¾÷¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º°¡ °¡´ÉÇÏ¿© °ø°ÝÀÚ°¡ ¿­Â÷ ¿îÇàÀ» ¹æÇØÇϰųª ±Ëµµ ½ÅÈ£¸¦ Á¶ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ, Åë½Å ³×Æ®¿öÅ©, IoT ±â±â¸¦ Æ÷ÇÔÇÑ Á¤º¸±â¼ú ÀÎÇÁ¶óµµ Ãë¾àÇÑ ºÐ¾ßÀÔ´Ï´Ù. ¿¹Áöº¸Àü ¹× ½Â°´ Á¤º¸ ½Ã½ºÅÛ¿¡ »ç¿ëµÇ´Â ¼¾¼­¿Í °°Àº IoT Àåºñ´Â ÃæºÐÇÑ º¸¾È Á¶Ä¡ ¾øÀÌ ³×Æ®¿öÅ©¿¡ ÅëÇյǴ °æ¿ì°¡ ¸¹¾Æ °ø°ÝÀÚÀÇ ÀáÀçÀûÀΠħÀÔ °æ·Î°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. Åë½Å ³×Æ®¿öÅ©´Â ¿­Â÷, °üÁ¦¼¾ÅÍ, À¯Áöº¸¼ö ÆÀ °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ ±³È¯¿¡ ÇʼöÀûÀÌÁö¸¸, °¡·Îä±â, ¾Ç¼ºÄÚµå, ¼­ºñ½º °ÅºÎ(DoS) °ø°Ý¿¡ Ãë¾àÇÕ´Ï´Ù. ¶ÇÇÑ ÇǽÌ, ·£¼¶¿þ¾î, ³»ºÎÀÚ À§ÇùÀº IT ¿µ¿ªÀÇ »çÀ̹ö º¸¾È À§ÇèÀ¸·Î ±â¹Ð µ¥ÀÌÅ͸¦ À§Çè¿¡ ºü¶ß¸®°í ¾÷¹«¸¦ ÁߴܽÃų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£ ¿¬°üµÈ Ãë¾àÁ¡À¸·Î ÀÎÇØ öµµ ÀÎÇÁ¶óÀÇ ¸ðµç Ãø¸éÀ» º¸È£ÇÏ´Â °èÃþÈ­µÈ »çÀ̹ö º¸¾È Á¢±Ù ¹æ½ÄÀ» µµÀÔÇØ¾ß ÇÕ´Ï´Ù.

öµµÀÇ »çÀ̹ö º¸¾ÈÀ» °­È­Çϱâ À§ÇØ ¾î¶² Àü·«À» »ç¿ëÇϰí Àִ°¡?

»çÀ̹ö º¸¾ÈÀ» °­È­Çϱâ À§ÇØ Ã¶µµ »ç¾÷ÀÚ´Â ³×Æ®¿öÅ© ¼¼ºÐÈ­, ħÀÔ °¨Áö, ¾Ïȣȭ, ´Ù´Ü°è ÀÎÁõ(MFA) µî ´Ù¾çÇÑ Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ¼¼ºÐÈ­´Â ³×Æ®¿öÅ©¸¦ ´õ ÀÛ°í °Ý¸®µÈ ¼½¼ÇÀ¸·Î ºÐÇÒÇÏ¿© ħÀÔÀÌ ¹ß»ýÇßÀ» ¶§ °ø°ÝÀÚ°¡ ¿©·¯ ½Ã½ºÅÛ¿¡ ¾×¼¼½ºÇÒ ¼ö ¾øµµ·Ï Á¦ÇÑÇÕ´Ï´Ù. ħÀÔ °¨Áö ½Ã½ºÅÛ(IDS)°ú ħÀÔ ¹æÁö ½Ã½ºÅÛ(IPS)Àº ³×Æ®¿öÅ© Æ®·¡ÇÈÀ» ¸ð´ÏÅ͸µÇÏ¿© Àǽɽº·¯¿î ¿òÁ÷ÀÓÀ» °¨ÁöÇϰí ÀáÀçÀûÀÎ À§Çù¿¡ ½Ç½Ã°£À¸·Î ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

ƯÈ÷ ¿­Â÷¿Í °üÁ¦¼¾ÅÍ °£ÀÇ ¹«¼±Åë½Å¿¡¼­´Â µµÃ»À̳ª ¹«´Ü µ¥ÀÌÅÍ ¾×¼¼½º¸¦ ¹æÁöÇϱâ À§ÇØ Àü¼Û ÁßÀÎ µ¥ÀÌÅ͸¦ º¸È£ÇÏ´Â ¾Ïȣȭ°¡ ÇʼöÀûÀÔ´Ï´Ù. ¾Ïȣȭ¿Í ´õºÒ¾î ´Ù´Ü°è ÀÎÁõ(MFA)À» »ç¿ëÇÏ¿© Áß¿ä ½Ã½ºÅÛ¿¡ ´ëÇÑ Á¢±ÙÀ» º¸È£Çϰí, ±ÇÇÑÀÌ ¾ø´Â »ç¶÷ÀÌ Á¦¾î ½Ã½ºÅÛ¿¡ ħÀÔÇÒ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ Ãë¾àÁ¡ÀÌ ¾Ç¿ëµÇ±â Àü¿¡ Ãë¾àÁ¡À» ½Äº°ÇÏ°í ´ëÀÀÇϱâ À§ÇØ Á¤±âÀûÀÎ º¸¾È °¨»ç ¹× ħÅõ Å×½ºÆ®°¡ Ç¥ÁØÀ¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ·¯½º ¹é½Å ¼ÒÇÁÆ®¿þ¾î, ¹æÈ­º®, ¾×¼¼½º Á¦¾î¿Í °°Àº ¿£µåÆ÷ÀÎÆ® º¸¾È ´ëÃ¥Àº öµµ ³×Æ®¿öÅ©·Î ¿¬°áµÈ IoT Àåºñ ¹× ±âŸ Ãë¾àÇÑ ¿£µåÆ÷ÀÎÆ®¸¦ º¸È£ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àº ÇÔ²² ÀÛµ¿ÇÏ¿© ÃֽŠöµµ ½Ã½ºÅÛÀÇ º¹ÀâÇÑ »çÀ̹ö º¸¾È À§ÇèÀ» ¿ÏÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ´ÙÃþÀûÀÎ ¹æ¾î ½Ã½ºÅÛÀ» ±¸ÃàÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

öµµ »çÀ̹ö º¸¾È ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

öµµ »çÀ̹ö º¸¾È ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº öµµ ½Ã½ºÅÛÀÇ µðÁöÅÐÈ­, ±ÔÁ¦ ¿ä°Ç, »çÀ̹ö º¸¾È À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ öµµ »çÀ̹ö º¸¾È ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. öµµ »ç¾÷ÀÚ°¡ È¿À²¼º, ¾ÈÀü¼º, °í°´ °æÇèÀ» °³¼±Çϱâ À§ÇØ µðÁöÅÐÈ­¸¦ äÅÃÇÔ¿¡ µû¶ó »çÀ̹ö À§Çù¿¡ ³ëÃâµÉ ±âȸ°¡ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇʼöÀûÀÔ´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ ³×Æ®¿öÅ© ¹× Á¤º¸ º¸¾È(NIS) Áöħ°ú °°Àº Á¤ºÎ Àǹ«¿Í ±¹Á¦ Ç¥ÁØÀº öµµ »ç¾÷ÀÚ¿¡°Ô Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ º¸È£Çϱâ À§ÇØ °­·ÂÇÑ »çÀ̹ö º¸¾È Á¶Ä¡¸¦ ½ÃÇàÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â »çÀ̹ö º¸¾È ¼Ö·ç¼ÇÀÇ µµÀÔÀ» ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó, öµµ ȸ»ç°¡ »çÀ̹ö º¸¾È ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ÄÄÇöóÀ̾𽺠ÇÁ·¹ÀÓ¿öÅ©¸¦ ¼³Á¤ÇÏ¿© »çÀ̹ö º¸¾È ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

°í¼Óöµµ, ½º¸¶Æ® ½ÃƼ, ÀÚµ¿È­ ½Ã½ºÅÛÀÇ ±Þ°ÝÇÑ Áõ°¡´Â ÷´Ü »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ½ºÄÉÁÙ¸µ, À¯Áöº¸¼ö¸¦ À§ÇØ IoT ±â¹Ý ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â µµ½Ã°¡ ´Ã¾î³²¿¡ µû¶ó ¾ÈÀüÇÑ Åë½Å ¹× µ¥ÀÌÅÍ º¸È£¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ·£¼¶¿þ¾î ¹× ±âŸ ±³¹¦ÇÑ »çÀ̹ö °ø°ÝÀÌ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾È À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ öµµ »ç¾÷ÀÚ´Â Àû±ØÀûÀ¸·Î ¹æ¾î¿¡ ³ª¼­¾ß ÇÕ´Ï´Ù. öµµ »ç¾÷ÀÚµéÀº »çÀ̹ö º¸¾ÈÀÌ ¾ÈÀüÇϰí Áß´Ü ¾ø´Â ¼­ºñ½º¸¦ º¸ÀåÇÏ´Â µ¥ ÀÖÀ¸¸ç, Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù´Â °ÍÀ» ÀνÄÇϰí ÀÖÀ¸¹Ç·Î »çÀ̹ö º¸¾È Á¶»ç, ±³À° ¹× ´ëÀÀ Àü·«¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ±Ã±ØÀûÀ¸·Î Çö´ë ±³Åë ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ºÎºÐÀΠöµµÀÇ »çÀ̹ö º¸¾È ½ÃÀåÀÌ Çö´ë ±³Åë ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç, ¼­ºñ½º);À¯Çü(¿Âº¸µå, ÀÎÇÁ¶ó);º¸¾È À¯Çü(³×Æ®¿öÅ© º¸¾È, ¾ÖÇø®ÄÉÀÌ¼Ç º¸¾È, µ¥ÀÌÅÍ º¸È£, ¿£µåÆ÷ÀÎÆ® ÇÁ·ÎÅØ¼Ç, ½Ã½ºÅÛ °ü¸®)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Railway Cybersecurity Market to Reach US$16.2 Billion by 2030

The global market for Railway Cybersecurity estimated at US$9.4 Billion in the year 2023, is expected to reach US$16.2 Billion by 2030, growing at a CAGR of 8.0% over the analysis period 2023-2030. Solutions Component, one of the segments analyzed in the report, is expected to record a 7.6% CAGR and reach US$9.0 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 8.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 7.4% CAGR

The Railway Cybersecurity market in the U.S. is estimated at US$2.6 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.5 Billion by the year 2030 trailing a CAGR of 7.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.4% and 6.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.7% CAGR.

Railway Cybersecurity: Safeguarding Modern Rail Systems Against Evolving Threats

Why Is Cybersecurity Essential for Modern Rail Systems?

Railway cybersecurity has become a critical component of modern rail infrastructure, essential for ensuring the safety, reliability, and efficiency of increasingly digital and automated rail networks. With the adoption of advanced technologies such as automated train control, Internet of Things (IoT) devices, and centralized control systems, railways have transformed into complex, interconnected networks that rely heavily on data exchange and real-time communication. While these innovations offer tremendous benefits—such as improved scheduling, real-time monitoring, and increased operational efficiency—they also introduce vulnerabilities that could be exploited by cybercriminals. A cybersecurity breach could result in service disruptions, compromised safety, data theft, and potential physical damage, underscoring the need for robust cybersecurity measures to protect both digital and physical rail assets.

Railway cybersecurity is not only vital for preventing operational disruptions but also for safeguarding passenger safety. Attackers could potentially manipulate rail signals, gain unauthorized access to train control systems, or disable critical safety features, leading to catastrophic outcomes. The impact of a cybersecurity incident extends beyond the affected rail operator; it could lead to significant economic losses, public safety risks, and reputational damage. The stakes are high, making it imperative for rail operators to adopt comprehensive cybersecurity strategies that include both proactive defenses and response plans. Given the critical role that railways play in global logistics and public transportation, strengthening railway cybersecurity is essential to ensure safe and resilient rail systems.

What Are the Key Vulnerabilities in Railway Systems?

Railway systems are vulnerable to cyberattacks on both their operational technology (OT) and information technology (IT) infrastructures. Operational Technology refers to the hardware and software that control and monitor physical devices and processes, including signaling systems, train control systems, and SCADA (Supervisory Control and Data Acquisition) systems used to manage infrastructure. OT is highly susceptible to attacks because many legacy rail systems were not originally designed with cybersecurity in mind. As rail systems undergo digital upgrades, they can become increasingly exposed to cyber threats if these enhancements are not properly secured. For example, weak authentication in control systems could allow unauthorized access to critical operations, making it possible for attackers to disrupt train movements or manipulate track signals.

Information Technology infrastructure, which includes data centers, communication networks, and IoT devices, is another area of vulnerability. IoT devices, such as sensors used for predictive maintenance or passenger information systems, are often integrated into the network without sufficient security measures, creating potential entry points for attackers. Communication networks are essential for real-time data exchange between trains, control centers, and maintenance teams, but they are also susceptible to interception, malware, and denial-of-service (DoS) attacks. Additionally, phishing, ransomware, and insider threats are cybersecurity risks within the IT domain that can compromise sensitive data and disrupt operations. These interconnected vulnerabilities make it necessary to implement a layered cybersecurity approach that protects all aspects of railway infrastructure.

What Strategies Are Being Used to Enhance Railway Cybersecurity?

To enhance cybersecurity, railway operators are adopting a range of strategies, including network segmentation, intrusion detection, encryption, and multi-factor authentication (MFA). Network segmentation involves dividing the network into smaller, isolated sections, limiting an attacker’s ability to access multiple systems if a breach occurs. This approach is especially valuable in separating operational and information technology systems, minimizing cross-contamination between critical control systems and public networks. Intrusion detection systems (IDS) and intrusion prevention systems (IPS) monitor network traffic for suspicious activity, allowing operators to detect and respond to potential threats in real time.

Encryption is essential for protecting data in transit, particularly in wireless communication between trains and control centers, to prevent eavesdropping and unauthorized data access. In addition to encryption, multi-factor authentication (MFA) is used to secure access to critical systems, reducing the risk of unauthorized personnel gaining entry to control systems. Regular security audits and penetration testing are also becoming standard practices to identify and address vulnerabilities before they can be exploited. Furthermore, endpoint security measures, including antivirus software, firewalls, and access controls, help safeguard IoT devices and other vulnerable endpoints connected to the railway network. These strategies work in tandem to create a layered defense system, which is essential for mitigating the complex cybersecurity risks in modern rail systems.

What Is Driving the Growth in the Railway Cybersecurity Market?

The growth in the railway cybersecurity market is driven by the increasing digitalization of rail systems, regulatory requirements, and heightened awareness of cybersecurity risks. As railway operators embrace digitalization to improve efficiency, safety, and customer experience, they are also facing greater exposure to cyber threats, making cybersecurity investments essential. Government mandates and international standards, such as the European Union’s Network and Information Security (NIS) Directive, require rail operators to implement robust cybersecurity measures to protect critical infrastructure. These regulations not only drive the adoption of cybersecurity solutions but also set frameworks for compliance, ensuring that railway companies are equipped to handle cybersecurity challenges.

The surge in high-speed rail, smart city initiatives, and automated systems has further fueled demand for advanced cybersecurity solutions. As more cities implement IoT-based systems for real-time monitoring, scheduling, and maintenance, the need for secure communication and data protection has increased. Additionally, the rise in ransomware and other sophisticated cyberattacks across industries has heightened awareness of cybersecurity risks, prompting railway operators to proactively strengthen their defenses. Investment in cybersecurity research, training, and response strategies is expected to grow as rail operators recognize the critical role that cybersecurity plays in ensuring safe and uninterrupted service, ultimately solidifying the railway cybersecurity market as a crucial part of modern transportation infrastructure.

SCOPE OF STUDY:

The report analyzes the Railway Cybersecurity market in terms of US$ Million by the following Component; Security Type; Type, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Type (On-Board, Infrastructural); Security Type (Network Security, Application Security, Data Protection, End Point Protection, System Administration)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â