¼¼°èÀÇ °¡»óÈ­ º¸¾È ½ÃÀå
Virtualization Security
»óǰÄÚµå : 1595022
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 92 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ °¡»óÈ­ º¸¾È ½ÃÀåÀº 2030³â±îÁö 59¾ï ´Þ·¯¿¡ µµ´Þ

2023³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ °¡»óÈ­ º¸¾È ½ÃÀåÀº 2023-2030³â CAGR 15.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 59¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¼Ö·ç¼Ç ÄÄÆ÷³ÍÆ®´Â CAGR 14.7%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 34¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 16.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 5¾ï 8,070¸¸ ´Þ·¯, Áß±¹Àº CAGR 14.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °¡»óÈ­ º¸¾È ½ÃÀåÀº 2023³â¿¡ 5¾ï 8,070¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 8,890¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³âÀÇ CAGRÀº 14.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 13.8%¿Í 13.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °¡»óÈ­ º¸¾È ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°¡»óÈ­ º¸¾ÈÀ̶õ ¹«¾ùÀ̸ç, ¿Ö Çö´ë IT ÀÎÇÁ¶ó¿¡¼­ Áß¿äÇѰ¡?

°¡»óÈ­ º¸¾ÈÀ̶õ °¡»ó ¸Ó½Å(VM), ÇÏÀÌÆÛ¹ÙÀÌÀú, °¡»ó ³×Æ®¿öÅ©, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó µî °¡»óÈ­ ȯ°æÀ» »çÀ̹ö À§Çù, Ãë¾àÁ¡, µ¥ÀÌÅÍ Ä§ÇØ·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ °í¾ÈµÈ ´ëÃ¥, Åø, ÇÁ·ÎÅäÄÝÀ» ¸»ÇÕ´Ï´Ù. °¡»óÈ­ ȯ°æ¿¡¼­´Â ¹°¸®Àû Çϵå¿þ¾î ¸®¼Ò½º°¡ °¡»ó ȯ°æÀ¸·Î Ãß»óÈ­µÇ¾î ¿©·¯ ½Ã½ºÅÛÀÌ ´ÜÀÏ ¼­¹ö ¶Ç´Â ºÐ»êµÈ Ŭ¶ó¿ìµå ³×Æ®¿öÅ©¿¡¼­ ½ÇÇàµÉ ¼ö ÀÖ½À´Ï´Ù. °¡»óÈ­´Â È®À强, È¿À²¼º, À¯¿¬¼ºÀ» Çâ»ó½ÃŰ´Â ¹Ý¸é, ÇÏÀÌÆÛ¹ÙÀÌÀú °ø°Ý, VM ½ºÇÁ·Ñ, VM °£ Æ®·¡ÇÈ Ãë¾à¼º µî °¡»óÈ­ ƯÀ¯ÀÇ º¸¾È À̽´°¡ ¹ß»ýÇϹǷΠÀü¹®ÀûÀÎ º¸¾È ¼Ö·ç¼ÇÀÌ ÇʼöÀûÀÔ´Ï´Ù.

°¡»óÈ­ º¸¾ÈÀÇ Á߿伺Àº °¡»óÈ­ ¼­¹ö, ¿ëµµ, ³×Æ®¿öÅ©, Ŭ¶ó¿ìµå ¼­ºñ½º¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â Çö´ë IT ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀ» º¸È£ÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, ÄÁÅ×À̳ÊÈ­, µðÁöÅÐ ÀüȯÀ» À§ÇØ °¡»óÈ­¸¦ äÅÃÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ ¹«°á¼º, ±ÔÁ¦ Áؼö, ÁøÈ­ÇÏ´Â À§ÇùÀ¸·ÎºÎÅÍÀÇ º¸È£¸¦ º¸ÀåÇϱâ À§ÇØ °­·ÂÇÑ º¸¾ÈÀÌ ÇʼöÀûÀÔ´Ï´Ù. °¡»óÈ­ º¸¾È ¼Ö·ç¼Ç¿¡´Â ¹æÈ­º®, ħÀÔ °¨Áö/¹æÁö ½Ã½ºÅÛ(IDPS), ¸¶ÀÌÅ©·Î¼¼ºÐÈ­, ¾Ïȣȭ, °¡»ó ȯ°æ¿¡ ¸Â´Â º¸¾È ¾×¼¼½º Á¦¾î µîÀÌ Æ÷ÇԵ˴ϴÙ. ±â¾÷ÀÌ Áß¿äÇÑ ¿öÅ©·Îµå¸¦ °¡»óÈ­ µ¥ÀÌÅͼ¾ÅÍ¿Í ÇÏÀ̺긮µå Ŭ¶ó¿ìµå·Î ÀÌÀüÇÔ¿¡ µû¶ó °¡»óÈ­ º¸¾ÈÀº µðÁöÅÐ ¿î¿µÀÇ º¹¿ø·Â, ÇÁ¶óÀ̹ö½Ã, ¼º´ÉÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº °¡»óÈ­ º¸¾È ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº °¡»óÈ­ º¸¾È ¼Ö·ç¼ÇÀÇ ±â´É, È¿À²¼º ¹× ÀûÀÀ¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ÀÌ ºÐ¾ß Àü¹ÝÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â °¡»ó ȯ°æ ³»¿¡¼­ ¼¼¹ÐÇÑ º¸¾È Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¸¶ÀÌÅ©·Î¼¼ºÐÈ­(micro-segmentation)ÀÇ µîÀåÀÔ´Ï´Ù. ¸¶ÀÌÅ©·Î¼¼ºÐÈ­Àº °¡»ó ³×Æ®¿öÅ©¸¦ ´õ ÀÛ°í ºÐ¸®µÈ ºÎ¹®À¸·Î ºÐÇÒÇÏ¿© °³º° ¿öÅ©·Îµå, ¿ëµµ ¹× °¡»ó ¸Ó½Å¿¡ ´ëÇÑ Æ¯Á¤ º¸¾È Á¤Ã¥À» Àû¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. À̸¦ ÅëÇØ °ø°ÝÀÚÀÇ È¾Àû À̵¿ À§ÇèÀ» ÃÖ¼ÒÈ­Çϰí, Ŭ¶ó¿ìµå ¹× °¡»ó µ¥ÀÌÅͼ¾Åͳ» Ä§ÇØ»ç°í¸¦ È¿°úÀûÀ¸·Î ºÀ¼âÇÏ¿© ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡»ó ¸Ó½Å ¼öÁØ¿¡¼­ ¹æÈ­º® ±ÔÄ¢À» Àû¿ëÇÔÀ¸·Î½á ¸¶ÀÌÅ©·Î¼¼ºÐÈ­Àº Á¦·Î Æ®·¯½ºÆ® º¸¾È ¸ðµ¨À» Áö¿øÇÏ¿© Àüü ³×Æ®¿öÅ© º¸¾ÈÀ» °­È­ÇÕ´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀº °¡»óÈ­ º¸¾ÈÀ» ´õ¿í Çõ½ÅÀûÀ¸·Î º¯È­½ÃÄ×À¸¸ç, AI ±â¹Ý À§Çù °¨Áö ½Ã½ºÅÛÀº ½Ç½Ã°£ ³×Æ®¿öÅ© Æ®·¡ÇÈ, »ç¿ëÀÚ Çൿ, ¿ëµµ ¼º´ÉÀ» ºÐ¼®ÇÏ¿© °¡»ó ȯ°æÀÇ ºñÁ¤»óÀûÀÎ ÆÐÅϰú ÀáÀçÀûÀÎ Ãë¾àÁ¡À» ½Äº°ÇÕ´Ï´Ù. ML ¾Ë°í¸®ÁòÀº °ú°Å µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ¿© À§Çù °¨ÁöÀÇ Á¤È®µµ¸¦ ³ôÀÌ°í ¿ÀŽÀ» ÁÙÀÓÀ¸·Î½á À§Çù °¨ÁöÀÇ Á¤È®µµ¸¦ ³ôÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº ħÀÔ °¨Áö¸¦ °­È­Çϰí, ´ëÀÀÀ» ÀÚµ¿È­Çϸç, µ¿Àû ¿öÅ©·Îµå¸¦ È£½ºÆÃÇÏ´Â º¹ÀâÇÑ °¡»óÈ­ ȯ°æÀ» ¾ÈÀüÇÏ°Ô º¸È£ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý ºÐ¼®Àº °ú°Å Çൿ°ú ÇöÀç ÀÌ»ó ¡Èĸ¦ ±â¹ÝÀ¸·Î ÀáÀçÀû À§ÇèÀ» ¿¹ÃøÇÏ¿© ¿¹ÃøÀû º¸¾È Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÄÁÅ×À̳ÊÈ­¿Í Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ±â¼úÀÇ ¼ºÀåÀ¸·Î °¡»óÈ­ º¸¾È ȯ°æÀÌ Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ÄÁÅ×ÀÌ³Ê¿Í ¸¶ÀÌÅ©·Î¼­ºñ½ºÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÀÓ½ÃÀûÀΠȯ°æÀ» º¸È£Çϱâ À§ÇÑ º¸¾È ¼Ö·ç¼Çµµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÄÁÅ×ÀÌ³Ê º¸¾È ÅøÀº ÀÌÁ¦ °¡»óÈ­ º¸¾È ÇÁ·¹ÀÓ¿öÅ©¿¡ ÅëÇյǾî Kubernetes ¹× Docker¿Í °°Àº Ç÷§Æû¿¡ ·±Å¸ÀÓ º¸È£, À̹ÌÁö ½ºÄ³´× ¹× ¾ÈÀüÇÑ ¿ÀÄɽºÆ®·¹À̼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ µ¿Çü¾Ïȣȭ ¹× º¸¾È ´ÙÁß ´ç»çÀÚ ÄÄÇ»ÆÃ(MPC)°ú °°Àº ¾Ïȣȭ ±â¼úÀÇ ¹ßÀüÀ¸·Î °¡»óÈ­ ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ º¸È£°¡ Çâ»óµÇ¾î, µ¥ÀÌÅͰ¡ 󸮵Ǵ µ¿¾È¿¡µµ ¾ÏȣȭµÈ »óÅ·ΠÀ¯ÁöµÇµµ·Ï º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº °¡»óÈ­ º¸¾ÈÀÇ ±â´ÉÀ» È®ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó, Çö´ë IT ÀÎÇÁ¶óÀÇ ÀÚµ¿È­, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê º¸¾È, AI ±â¹Ý À§Çù ÀÎÅÚ¸®Àü½º µî ´Ù¾çÇÑ µ¿Çâ°úµµ ºÎÇÕÇÕ´Ï´Ù.

´Ù¾çÇÑ ºÐ¾ß¿¡¼­ °¡»óÈ­ º¸¾ÈÀÇ »õ·Î¿î ¿ëµµ´Â ¹«¾ùÀΰ¡?

°¡»óÈ­ º¸¾ÈÀº Áß¿äÇÑ ¿öÅ©·Îµå, ±â¹Ð µ¥ÀÌÅÍ, ºÐ»ê ³×Æ®¿öÅ©¸¦ º¸È£ÇØ¾ß ÇÒ Çʿ伺À¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Ȱ¿ëµµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¼­ºñ½º ºÐ¾ß¿¡¼­ °¡»óÈ­ º¸¾ÈÀº °¡»óÈ­ ȯ°æ¿¡¼­ È£½ºÆÃµÇ´Â ÀºÇà ¿ëµµ, °Å·¡ Ç÷§Æû ¹× °í°´ µ¥ÀÌÅͺ£À̽º¸¦ º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­´Â ¹Î°¨ÇÑ ±ÝÀ¶ °Å·¡¸¦ ºÐ¸®Çϰí ÇÙ½É ½Ã½ºÅÛ¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º¸¦ ¹æÁöÇÏ´Â ¸¶ÀÌÅ©·Î¼¼ºÐÈ­ÀÌ À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¡»óÈ­ º¸¾ÈÀº GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), PCI-DSS, SOX µîÀÇ ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϸç, ±ÝÀ¶ ¸®½ºÅ© °ü¸®ÀÇ ±âº» ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ °¡»óÈ­ º¸¾ÈÀº ÀüÀÚÀǹ«±â·Ï(EHR), ¿ø°ÝÀÇ·á ¿ëµµ, ȯÀÚ °ü¸® ½Ã½ºÅÛÀ» º¸È£ÇÕ´Ï´Ù. °¡»ó ¼­¹ö¿Í °¡»ó µ¥½ºÅ©Åé(VDI)À» º¸È£ÇÔÀ¸·Î½á ÀÇ·á ±â°üÀº ȯÀÚ µ¥ÀÌÅÍÀÇ ±â¹Ð¼ºÀ» º¸ÀåÇϰí HIPAA¿Í °°Àº ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾ÈÀüÇÑ °¡»ó ȯ°æÀº ¿ø°ÝÀÇ·á Ç÷§ÆûÀ» Áö¿øÇÏ¿© ¿ø°Ý Áø·á, Áø´Ü ¹× µ¥ÀÌÅÍ °øÀ¯¸¦ ¾ÈÀüÇÏ°Ô Áö¿øÇϸç, ¹«´Ü ¾×¼¼½º ¹× µ¥ÀÌÅÍ À¯ÃâÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¤ºÎ ±â°ü¿¡¼­ °¡»óÈ­ º¸¾ÈÀº ±â¹Ð Á¤º¸ º¸È£, º¸¾È Åë½Å, ¹Î°¨ÇÑ °¡»ó ¿öÅ©·Îµå °ü¸®¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ±â°üÀº °¡»óÈ­ º¸¾ÈÀ» ÅëÇØ Á¢±Ù Á¦¾î¸¦ ½ÃÇàÇϰí, ³×Æ®¿öÅ© Æ®·¡ÇÈÀ» ¸ð´ÏÅ͸µÇϸç, Áö´ÉÇü Áö¼Ó À§Çù(APT) ¹× ±¹°¡Àû °ø°ÝÀ¸·ÎºÎÅÍ °¡»ó ÀÎÇÁ¶ó¸¦ º¸È£ÇÕ´Ï´Ù. ±â¾÷ÀÇ °æ¿ì, °¡»óÈ­ º¸¾ÈÀº ¾ÈÀüÇÑ Å¬¶ó¿ìµå µµÀÔÀ» °¡´ÉÇÏ°Ô Çϰí, ¾ÈÀüÇÑ µ¥ÀÌÅÍ Àü¼Û, ¿öÅ©·Îµå ºÐ¸®, »ê¾÷º° ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÔÀ¸·Î½á ÇÏÀ̺긮µå Ŭ¶ó¿ìµå Àü·«À» Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾÷°è¿¡¼­ °¡»óÈ­ º¸¾ÈÀÇ »ç¿ë È®´ë´Â °¡»óÈ­ ȯ°æ¿¡¼­ µ¥ÀÌÅÍ º¸È£, ¿î¿µ ź·Â¼º ¹× ±ÔÁ¦ Áؼö¸¦ °­È­ÇÏ´Â µ¥ ÀÖÀ¸¸ç, °¡»óÈ­ º¸¾ÈÀÌ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ½À» ÀÔÁõÇÕ´Ï´Ù.

°¡»óÈ­ º¸¾È ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

°¡»óÈ­ º¸¾È ½ÃÀåÀÇ ¼ºÀåÀº °¡»óÈ­ ±â¼ú äÅà Áõ°¡, »çÀ̹ö º¸¾È À§Çù Áõ°¡, ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ±â¾÷ÀÌ ¿öÅ©·Îµå¸¦ °¡»ó ¸Ó½Å, ÄÁÅ×À̳Ê, Ŭ¶ó¿ìµå ȯ°æÀ¸·Î ÀüȯÇϸ鼭 °¡»óÈ­°¡ È®»êµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±â¾÷ÀÌ °¡»óÈ­ µ¥ÀÌÅͼ¾ÅÍ¿Í ÇÏÀ̺긮µå Ŭ¶ó¿ìµå·Î ÀüȯÇÔ¿¡ µû¶ó VM ½ºÇÁ·Ñ, ÇÏÀÌÆÛ¹ÙÀÌÀú °ø°Ý, VM °£ Æ®·¡ÇÈ °¡·Îä±â µî °¡»ó ȯ°æ ƯÀ¯ÀÇ Ãë¾àÁ¡À¸·ÎºÎÅÍ º¸È£ÇÒ ¼ö ÀÖ´Â Àü¹® º¸¾È ¼Ö·ç¼ÇÀÌ ÇʼöÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

»çÀ̹ö °ø°ÝÀÇ ºóµµ¿Í °íµµÈ­·Î ÀÎÇØ °¡»óÈ­ º¸¾È¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °ø°ÝÀÚµéÀÌ °¡»ó ȯ°æÀ» ¾Ç¿ëÇϱâ À§ÇÑ Ã·´Ü ±â¼úÀ» °³¹ßÇÔ¿¡ µû¶ó ±â¾÷Àº °¡»ó ÀÎÇÁ¶ó¸¦ ³ë¸®´Â ·£¼¶¿þ¾î, ¸Ö¿þ¾î, Á¦·Îµ¥ÀÌ ÀͽºÇ÷ÎÀÕÀ» ¹æ¾îÇϱâ À§ÇØ Â÷¼¼´ë º¸¾È ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ À§Çù °¨Áö, ¸¶ÀÌÅ©·Î ¼¼ºÐÈ­, ÀÚµ¿È­µÈ »ç°í ´ëÀÀ µîÀÇ ±â¼úÀº °¡»óÈ­ ³×Æ®¿öÅ©¿¡¼­ Ä§ÇØ»ç°í¸¦ ¿¹¹æÇϰí ÇÇÇØ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû º¸¾È Á¢±Ù ¹æ½ÄÀº µ¥ÀÌÅ͸¦ º¸È£ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ºñÁî´Ï½º ¿¬¼Ó¼º°ú ¿î¿µ ź·Â¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), HIPAA, CCPA µî µ¥ÀÌÅÍ º¸È£¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Çµµ °¡»óÈ­ º¸¾È µµÀÔ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶, ÀÇ·á, Á¤ºÎ ±â°ü µîÀÇ ¾÷°è¿¡¼­´Â ÄÄÇöóÀ̾𽺠Áؼö, µ¥ÀÌÅÍ À¯Ãâ ¹æÁö, °¡»ó ȯ°æ¿¡¼­ È£½ºÆÃµÇ´Â ±â¹Ð Á¤º¸ º¸È£¸¦ À§ÇØ °­·ÂÇÑ º¸¾È Á¶Ä¡¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. °¡»óÈ­ º¸¾È ¼Ö·ç¼ÇÀº ¾Ïȣȭ, ¾×¼¼½º Á¦¾î, °¨»ç ÃßÀû°ú °°Àº ÄÄÇöóÀ̾𽺠±â´ÉÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, ¾ÈÀüÇÑ ¿î¿µÀ» À¯ÁöÇϸ鼭 ±ÔÁ¦ ±âÁØÀ» ÃæÁ·ÇϰíÀÚ ÇÏ´Â Á¶Á÷¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

AI ±â¹Ý À§Çù ÀÎÅÚ¸®Àü½º, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê º¸¾È Åø, ³×Æ®¿öÅ© ¼¼ºÐÈ­ÀÇ Çõ½ÅÀ¸·Î °¡»óÈ­ º¸¾È ½ÃÀåÀº °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿Í ÇÔ²² ¾ÈÀüÇϰí È®À强ÀÌ ¶Ù¾î³ª¸ç ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â °¡»ó ȯ°æ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡»óÈ­ º¸¾ÈÀº »çÀ̹ö º¸¾È °­È­, µðÁöÅÐ Àüȯ Áö¿ø, ´Ù¾çÇÑ »ê¾÷±ºÀÇ ±ÔÁ¦ Áؼö¿¡ ÁßÁ¡À» µÐ ÃֽŠIT Àü·«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç, ¼­ºñ½º);µµÀÔ(¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå);ÃÖÁ¾ »ç¿ë(¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ, ±â¾÷)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ 36»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Virtualization Security Market to Reach US$5.9 Billion by 2030

The global market for Virtualization Security estimated at US$2.2 Billion in the year 2023, is expected to reach US$5.9 Billion by 2030, growing at a CAGR of 15.3% over the analysis period 2023-2030. Solutions Component, one of the segments analyzed in the report, is expected to record a 14.7% CAGR and reach US$3.4 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 16.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$580.7 Million While China is Forecast to Grow at 14.2% CAGR

The Virtualization Security market in the U.S. is estimated at US$580.7 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$888.9 Million by the year 2030 trailing a CAGR of 14.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.8% and 13.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.9% CAGR.

Global Virtualization Security Market - Key Trends & Drivers Summarized

What Is Virtualization Security, and Why Is It So Crucial in Modern IT Infrastructure?

Virtualization Security refers to the measures, tools, and protocols designed to protect virtualized environments, including virtual machines (VMs), hypervisors, virtual networks, and cloud infrastructure, from cyber threats, vulnerabilities, and data breaches. In virtualized settings, physical hardware resources are abstracted into virtual environments, allowing multiple systems to run on a single server or across distributed cloud networks. While virtualization enhances scalability, efficiency, and flexibility, it also introduces unique security challenges, such as hypervisor attacks, VM sprawl, and inter-VM traffic vulnerabilities, making specialized security solutions essential.

The importance of virtualization security lies in its ability to protect the core of modern IT infrastructure, which increasingly relies on virtualized servers, applications, networks, and cloud services. As organizations adopt virtualization to enable cloud computing, containerization, and digital transformation, robust security becomes crucial to ensure data integrity, regulatory compliance, and protection against evolving threats. Virtualization security solutions include firewalling, intrusion detection/prevention systems (IDPS), micro-segmentation, encryption, and secure access controls tailored to virtual environments. As businesses migrate critical workloads to virtualized data centers and hybrid clouds, virtualization security has become essential to maintaining the resilience, privacy, and performance of digital operations.

How Are Technological Advancements Shaping the Virtualization Security Market?

Technological advancements have significantly enhanced the capabilities, efficiency, and adaptability of Virtualization Security solutions, driving innovation across the sector. One of the major developments is the rise of micro-segmentation, which allows for granular security controls within virtual environments. Micro-segmentation divides virtual networks into smaller, isolated segments, enabling specific security policies for individual workloads, applications, or virtual machines. This minimizes the risk of lateral movement by attackers, effectively containing breaches and protecting sensitive data within cloud or virtual data centers. By applying firewall rules at the VM level, micro-segmentation supports zero-trust security models, enhancing overall network security.

The integration of artificial intelligence (AI) and machine learning (ML) has further transformed virtualization security. AI-powered threat detection systems analyze real-time network traffic, user behavior, and application performance to identify unusual patterns and potential vulnerabilities in virtual environments. ML algorithms continuously learn from historical data to improve threat detection accuracy and reduce false positives. This proactive approach enhances intrusion detection, automates response, and helps secure complex virtualized environments that often host dynamic workloads. AI-driven analytics also enable predictive security measures, anticipating potential risks based on past behaviors and current anomalies.

The growth of containerization and cloud-native technologies has reshaped the virtualization security landscape. With the increasing adoption of containers and microservices, security solutions have evolved to protect these ephemeral environments. Container security tools are now integrated into virtualization security frameworks, providing runtime protection, image scanning, and secure orchestration for platforms like Kubernetes and Docker. Additionally, advancements in encryption technologies, such as homomorphic encryption and secure multi-party computation (MPC), have improved data protection in virtualized environments by ensuring data remains encrypted even during processing. These technological innovations not only expand the capabilities of virtualization security but also align with broader trends toward automation, cloud-native security, and AI-driven threat intelligence in modern IT infrastructure.

What Are the Emerging Applications of Virtualization Security Across Different Sectors?

Virtualization Security is finding expanding applications across a wide range of industries, driven by the need to protect critical workloads, sensitive data, and distributed networks. In the financial services sector, virtualization security is essential for safeguarding banking applications, trading platforms, and customer databases hosted in virtualized environments. The sector benefits from micro-segmentation, which isolates sensitive financial transactions and prevents unauthorized access to core systems. Virtualization security also ensures compliance with regulations like GDPR, PCI-DSS, and SOX, making it a fundamental component of risk management in finance.

In the healthcare sector, virtualization security protects electronic health records (EHRs), telemedicine applications, and patient management systems. By securing virtualized servers and virtual desktops (VDI), healthcare organizations can ensure the confidentiality of patient data and meet regulatory requirements like HIPAA. Additionally, secure virtual environments support telehealth platforms, enabling safe remote consultations, diagnostics, and data sharing while preventing unauthorized access or data breaches.

In the government sector, virtualization security is used to protect classified information, secure communications, and manage sensitive virtual workloads. Government agencies rely on virtualization security to enforce access controls, monitor network traffic, and protect virtual infrastructure from advanced persistent threats (APTs) and state-sponsored attacks. For enterprises, virtualization security enables secure cloud adoption, supporting hybrid cloud strategies by ensuring secure data transfer, workload isolation, and compliance with industry-specific regulations. The expanding applications of virtualization security across these industries underscore its critical role in enhancing data protection, operational resilience, and regulatory compliance in virtualized environments.

What Drives Growth in the Virtualization Security Market?

The growth in the Virtualization Security market is driven by several factors, including increasing adoption of virtualization technologies, rising cybersecurity threats, and stringent regulatory requirements. One of the primary growth drivers is the widespread adoption of virtualization, as businesses shift workloads to virtual machines, containers, and cloud environments. As companies migrate to virtualized data centers and hybrid clouds, the need for specialized security solutions becomes critical to protect against vulnerabilities unique to virtual environments, such as VM sprawl, hypervisor attacks, and inter-VM traffic interception.

The growing frequency and sophistication of cyberattacks have further fueled demand for virtualization security. As attackers develop advanced techniques to exploit virtual environments, organizations are investing in next-generation security solutions to defend against ransomware, malware, and zero-day exploits targeting virtual infrastructure. Technologies like AI-powered threat detection, micro-segmentation, and automated incident response have become essential to prevent breaches and minimize damage in virtualized networks. This proactive approach to security not only protects data but also ensures business continuity and operational resilience.

Strict regulatory requirements for data protection, such as GDPR, HIPAA, and CCPA, have also contributed to the adoption of virtualization security. Industries like finance, healthcare, and government require robust security measures to ensure compliance, prevent data leaks, and protect sensitive information hosted in virtual environments. Virtualization security solutions offer built-in compliance features, such as encryption, access controls, and audit trails, making them crucial for organizations aiming to meet regulatory standards while maintaining secure operations.

With ongoing innovations in AI-driven threat intelligence, cloud-native security tools, and network segmentation, the virtualization security market is poised for strong growth. These trends, combined with increasing demand for secure, scalable, and compliant virtual environments, make virtualization security a vital component of modern IT strategies focused on enhancing cybersecurity, supporting digital transformation, and ensuring regulatory compliance across various industries.

SCOPE OF STUDY:

The report analyzes the Virtualization Security market in terms of US$ Thousand by the following Component; Deployment; End-Use, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Deployment (On-Premise, Cloud); End-Use (Service Providers, Enterprises)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â