¼¼°èÀÇ ³ª³ë¹èÅ͸® ½ÃÀå
Nanobatteries
»óǰÄÚµå : 1593089
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 188 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,487,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,463,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ³ª³ë¹èÅ͸® ½ÃÀåÀº 2030³â±îÁö 323¾ï ´Þ·¯¿¡ µµ´Þ

2023³â 95¾ï ´Þ·¯·Î Æò°¡µÈ ¼¼°èÀÇ ³ª³ë¹èÅ͸® ½ÃÀåÀº ºÐ¼® ±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGR 19.1%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 323¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸®Æ¬À̿ ±â¼úÀº CAGR 20.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á ½Ã 169¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ª³ë Àλ꿰 ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 18.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 25¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 17.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ³ª³ë¹èÅ͸® ½ÃÀåÀº 2023³â¿¡ 25¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 49¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGRÀº 17.9%·Î Àü¸ÁµË´Ï´Ù. ±× ¿Ü ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼®±â°£ Áß CAGRÀº °¢°¢ 17.7%¿Í 16.3%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ³ª³ë¹èÅ͸® ½ÃÀå-ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

³ª³ë¹èÅ͸®¶õ ¹«¾ùÀΰ¡, ¿¡³ÊÁö Á¤¼¼¸¦ ¾î¶»°Ô ¹Ù²Ü °ÍÀΰ¡?

³ª³ë¹èÅ͸®´Â ³ª³ë±â¼úÀ» Ȱ¿ëÇÏ¿© ÆÄ¿ö, ½ºÅ丮Áö ¿ë·®, ¼ö¸íÀ» Çâ»ó½ÃŲ ¿¡³ÊÁö ½ºÅ丮Áö µð¹ÙÀ̽º·Î, ¹èÅ͸® ±â¼úÀÇ È¹±âÀûÀÎ »ó¡ÀÔ´Ï´Ù. ³ª³ë¹èÅ͸®´Â ³ª³ë½ºÄÉÀÏÀÇ Àç·á¿Í ±¸Á¶¸¦ ÅëÇÕÇÔÀ¸·Î½á ±âÁ¸ ¹èÅ͸®º¸´Ù ÈξÀ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ Á¦°øÇϰí ÀÛ°í °¡º­¿î ÆÐŰÁö·Î ´õ ¸¹Àº ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú Çõ½ÅÀº ÄÄÆÑÆ®ÇÏ°í ¿À·¡°¡´Â Àü¿øÀÌ ¿ä±¸µÇ´Â °¡ÀüÁ¦Ç°°ú °°Àº »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ¹èÅ͸®ÀÇ ³ª³ë ½ºÄÉÀÏ ±¸Á¶´Â ¹ÝÀÀ¿¡ ´õ Å« Ç¥¸éÀûÀ» Á¦°øÇÏ¿© ¿¡³ÊÁö ¿ë·®À» ¼Õ»ó½ÃŰÁö ¾ÊÀ¸¸é ¼­ ´õ ºü¸¥ Ãæ ¹æÀü ¼Óµµ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̰Ϳ¡ ÀÇÇØ ³ª³ë¹èÅ͸®´Â ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ÀåÄ¡, Àü±âÀÚµ¿Â÷(EV)¿Í °°Àº °ø°£ ¹× ¹«°Ô Á¦ÇÑÀ¸·Î È¿À²ÀûÀÌ°í °­·ÂÇÑ ¹èÅ͸®°¡ ÇÊ¿äÇÑ ¼ö¿ä°¡ ³ôÀº ¿ëµµ¿¡ ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.

³ª³ë¹èÅ͸®´Â ÀÇ·á ºÐ¾ß¿¡¼­µµ ¾àÁøÇϰí ÀÖÀ¸¸ç, ±× ÄÄÆÑÆ®ÇÑ Å©±â¿Í ³ôÀº ¿¡³ÊÁö ¹Ðµµ´Â °í±Þ ÀÇ·á¿ë ÀÓÇöõÆ®, ¹ÙÀÌ¿À¼¾¼­, Áø´Ü ±â±âÀÇ °³¹ßÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®´Â ÀÓÇöõÆ®³ª °Ç°­ ¸ð´ÏÅ͸µ ±â±â¿¡ ÃÖ¼ÒÇÑÀÇ ºÎÇÇ·Î Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ¾î ȯÀÚ¿¡°Ô º¸´Ù ÄèÀûÇÏ°í ½Ç¿ëÀûÀÔ´Ï´Ù. °Ô´Ù°¡ ³ª³ë ¹èÅ͸® ±â¼úÀº ÃʹÚÇüÀÇ Ç÷º½Ãºí ¹èÅ͸®¿¡ ±æÀ» ¿­¾î °¡°í ÀÖ¾î ÀÇ·á±â±âÀÇ ¼³°è³ª ÀåÂø ¹æ¹ýÀ» ¹Ù²Ü °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. Ç×°ø ¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß¿¡¼­´Â, ³ª³ë¹èÅ͸®ÀÇ °æ·® ¹× ´ë¿ë·®À̶ó°í Çϴ Ư¼º¿¡ ÀÇÇØ, µå·ÐÀ̳ª ÀΰøÀ§¼º µî, ¿¡³ÊÁö È¿À²°ú °æ·®È­°¡ Áß¿äÇÑ ±â±â¿¡ Æ÷ÇԵǰí ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ ³ª³ë¹èÅ͸®´Â ³Î¸® ÀÀ¿ëµÊÀ¸·Î½á »ê¾÷°è ÀüüÀÇ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ÀçÁ¤ÀÇÇϰí Â÷¼¼´ë ±â¼úÀÇ µ¿·Â¿øÀ¸·Î¼­ ¸Å¿ì Áß¿äÇÑ Áøº¸ÀÓÀ» Áõ¸íÇϰí ÀÖ½À´Ï´Ù.

°Ô´Ù°¡ ³ª³ë¹èÅ͸®´Â º¸´Ù Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ½ÃÇÁÆ®¸¦ ¼­Æ÷Æ®ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®ÀÇ ³ôÀº È¿À²°ú ¿¡³ÊÁö ¹Ðµµ¿¡ ÀÇÇØ, ž籤À̳ª dz·ÂµîÀÇ ½ÅÀç»ý ¿¡³ÊÁö¸¦ ÀúÀåÇØ, º¸´Ù È¿°úÀûÀ¸·Î ÀÌ¿ëÇÏ´Â °ÍÀÌ °¡´ÉÇØÁý´Ï´Ù. ¿¹¸¦ µé¾î, ³ª³ë¹èÅ͸®¸¦ ±×¸®µå ½ºÅ丮Áö¿¡ »ç¿ëÇÏ¸é ½ÅÀç»ý ¿¡³ÊÁö ¹ßÀü¿¡¼­ »ý¼ºµÈ ¿¡³ÊÁö¸¦ À¯ÁöÇϰí Çʿ信 µû¶ó ¹æÃâÇÔÀ¸·Î½á ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÌ°í º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» Ãß±¸ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ȯ°æ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ³ª³ë¹èÅ͸®¿Í °°Àº È¿À²ÀûÀ̰í ÄÞÆÑÆ®Çϰí ģȯ°æÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Á߿伺ÀÌ Á¡Á¡ ºÐ¸íÇØÁö°í ÀÖÀ¸¸ç, ÀÌ À¯¸ÁÇÑ ºÐ¾ßÀÇ Ãß°¡ ¿¬±¸ °³¹ßÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

³ª³ë¹èÅ͸® ¼³°èÀÇ Áøº¸´Â ±â¼ú¿¡ ÀÇÇØ ¾î¶»°Ô Çü¼ºµÇ°í Àִ°¡?

±â¼ú Çõ½ÅÀº ³ª³ë¹èÅ͸®ÀÇ °³¹ßÀ» ÃßÁøÇϰí, ±× ¼º´ÉÀ» ³ô¿© ½Ç¿ëÀûÀÎ ¿ëµµ¸¦ È®´ëÇØ ¿Ô½À´Ï´Ù. ³ª³ë¹èÅ͸®´Â ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ, ½Ç¸®ÄÜ ³ª³ë¿ÍÀÌ¾î µî °í±Þ ³ª³ëÀç·á¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç ±âÁ¸ ¹èÅ͸® Àç·á¿¡´Â ¾ø´Â µ¶Æ¯ÇÑ Æ¯¼ºÀ» °®Ãß°í ÀÖ½À´Ï´Ù. ÀÌµé ³ª³ë Àç·á´Â Ź¿ùÇÑ Àüµµ¼º, ³ôÀº Ç¥¸éÀû, ±â°èÀû °­µµ¸¦ °¡Áö¸ç ¿¡³ÊÁö ÀúÀå¿ë·®, ³»±¸¼º, ÃæÀü¼Óµµ¸¦ ´ëÆø Çâ»ó½ÃŲ´Ù. ¿¹¸¦ µé¾î ±×·¡ÇÉÀ» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â ³ª³ë¹èÅ͸®´Â ¶Ù¾î³­ ¿­Àüµµ¼ºÀ» º¸¿© °ú¿­ ¾øÀÌ ´ëÀü·ù·Î ÀÛµ¿½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ ÀÌ ¹èÅ͸®µéÀº ƯÈ÷ ¿­ °ü¸®¿Í ¿¡³ÊÁö È¿À²ÀÌ Áß¿äÇÑ Àü±âÂ÷³ª »ê¾÷±â°è µî ¿¡³ÊÁö ¼ö¿ä°¡ ³ôÀº ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù.

¸®¼Ò±×·¡Çdzª ¿øÀÚÃþ ÁõÂø¹ý µî ÃÖ±ÙÀÇ ³ª³ë±¸Á¶È­ ±â¼úÀÇ µ¿Çâ¿¡ ÀÇÇØ ¿£Áö´Ï¾î´Â ¹èÅ͸® ³»¿¡ °íµµ·Î Á¶Á÷È­µÈ ³ª³ë½ºÄÉÀÏ ¾ÆÅ°ÅØÃ³¸¦ ¸¸µé¾î³¾ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶È­µÈ Àç·á´Â´Â ÀÌ¿ÂÀÇ È帧À» ÃËÁøÇϰí, º¸´Ù ºü¸¥ ÃæÀü ½Ã°£°ú °íÃâ·ÂÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °íü ³ª³ë¹èÅ͸®ÀÇ Áøº¸ ¶ÇÇÑ ±âÁ¸ ÀüÁöÀÇ ¾×ü ÀüÇØÁúÀ» °íü ¹°Áú·Î ´ëüÇϰí ÀÖ½À´Ï´Ù. Àü°íü ³ª³ë¹èÅ͸®´Â º¸´Ù ¾ÈÀüÇÏ°í ¾ÈÁ¤¼ºÀÌ ³ôÀ¸¸ç, ´©¾×À̳ª ¿¬¼Ò¿Í °ü·ÃµÈ À§ÇèÀÌ °æ°¨µÇ¾î º¸´Ù ¾ã°í ÄÞÆÑÆ®ÇÑ ¹èÅ͸®ÀÇ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±× °á°ú, ÀÌ·¯ÇÑ ¹èÅ͸®´Â ¾ÈÀü¼º°ú ¼ÒÇüÈ­°¡ ¿ì¼±µÇ´Â °¡Àü, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ ÁöÁö¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù.

³ª³ë¹èÅ͸® ¿¬±¸¿¡¼­ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀº ÃÖÀûÈ­µÈ ¹èÅ͸® ¾ÆÅ°ÅØÃ³ °³¹ßÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ°í ´Ù¾çÇÑ ³ª³ë Àç·á¿Í ±¸¼ºÀÇ ¼º´ÉÀ» ¿¹ÃøÇÒ ¼ö Àֱ⠶§¹®¿¡ ½ÇÇèÀû ½ÃÇà¿¡ µû¸¥ ½Ã°£°ú ºñ¿ëÀÌ Àý°¨µË´Ï´Ù. °Ô´Ù°¡ Àڱ⠼öº¹ ³ª³ë Àç·áÀÇ ¿¬±¸µµ ÁøÇàµÇ°í ÀÖ¾î ¹Ì¼¼ ·¹º§¿¡¼­ÀÇ ¸¶¸ð³ª ¼Õ»óÀ¸·ÎºÎÅÍÀÇ È¸º¹À» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀ¸·Î, ³ª³ë¹èÅ͸®ÀÇ ¼ö¸íÀ» ´Ã¸®´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀ» ÅëÇØ ³ª³ë¹èÅ͸®´Â ƯÈ÷ ¹èÅ͸®ÀÇ ¼ö¸í°ú ½Å·Ú¼ºÀÌ ÇʼöÀûÀÎ ÀÇ·á¿ë ÀÓÇöõÆ®³ª Ç×°ø¿ìÁÖ µî Áß¿äÇÑ ºÐ¾ß¿¡¼­ÀÇ Àå±âÀûÀÎ ¿ëµµ¸¦ Áö¿øÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸·Î ³ª³ë¹èÅ͸®ÀÇ ±â´ÉÀÌ °­È­µÇ°í, °è¼Ó È®´ëµÇ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ »õ·Î¿î ¿ëµµ·ÎÀÇ ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù.

³ª³ë¹èÅ͸®°¡ »ê¾÷¿¡ °¡Àå Å« ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀº ¾îµðÀԴϱî?

³ª³ë¹èÅ͸®´Â ´Ù¾çÇÑ ºÐ¾ßÀÇ ¿¡³ÊÁö ÀúÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç °¢ »ê¾÷Àº ƯÁ¤ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ µ¶Æ¯ÇÑ Æ¯¼ºÀ» Ȱ¿ëÇÕ´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ ³ª³ë¹èÅ͸®´Â ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇϰí, ÃæÀü ½Ã°£À» ´ÜÃàÇÏ´Â °æ·®À¸·Î ´ë¿ë·®ÀÇ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á Â÷¼¼´ë Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ±æÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù. ¼¼°èÀûÀ¸·Î EV ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥ ³ª³ë¹èÅ͸®´Â Ç׼ӰŸ® ¿¬Àå°ú ÃæÀü »çÀÌŬ ´ÜÃà µî ¼ÒºñÀÚ ±â´ë¿¡ ºÎÀÀÇÏ´Â È¿À²ÀûÀÌ°í °í¼º´ÉÀÎ ¹èÅ͸® °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ½Â¿ëÂ÷»Ó ¾Æ´Ï¶ó ³ª³ë¹èÅ͸®´Â ¿¡³ÊÁö ÀúÀå ¿ä±¸°¡ ³ô¾Æ °æ·®È­°¡ °¡Àå Áß¿äÇÑ Àü±â Ç×°ø±â¿¡µµ ¿µÇâÀ» ÁÖ°í ÀÖ½À´Ï´Ù. °æ·®È­µÈ ³ª³ë¹èÅ͸®´Â Àü±â Ç×°ø±âÀÇ º¸´Ù È¿À²ÀûÀÎ ÆÄ¿ö¸¦ °¡´ÉÇÏ°Ô ÇØ, ¿î¼ö ºÎ¹®¿¡ À־ÀÇ ¹èÃâ·® »è°¨À̶ó°í ÇÏ´Â ±¤¹üÀ§ÇÑ ¸ñÇ¥¿¡ °øÇåÇÕ´Ï´Ù.

¼ÒºñÀÚ¿ë ÀüÀÚ±â±â¿¡¼­´Â ³ª³ë¹èÅ͸®´Â ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ¿þ¾î·¯ºí µð¹ÙÀ̽º¿ëÀ¸·Î º¸´Ù ¾ã°í º¸´Ù °­·ÂÇÑ ¹èÅ͸®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á µð¹ÙÀ̽º ¼³°è¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ ¹èÅ͸®µéÀº ¼ö¸íÀ» ´Ã¸®°í ÃæÀü ºóµµ¸¦ ÁÙÀÓÀ¸·Î½á Æí¸®¼º°ú ±ä ¼ö¸í¿¡ ´ëÇÑ »ç¿ëÀÚÀÇ ¿ä±¸¿¡ Á÷Á¢ÀûÀ¸·Î ºÎÀÀÇÕ´Ï´Ù. ³ª³ë¹èÅ͸®ÀÇ ÀÛÀº Æû ÆÑÅÍ¿Í ³ôÀº ¿¡³ÊÁö ¹Ðµµ·Î ÀÎÇØ Á¦Á¶»ç´Â ¼º´ÉÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í º¸´Ù ½½¸²ÇÑ µð¹ÙÀ̽º¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÇÇÆ®´Ï½º Æ®·¡Ä¿³ª ½º¸¶Æ® ¿öÄ¡ µîÀÇ ¿þ¾î·¯ºí ±â¼úÀº ³ª³ë¹èÅ͸®°¡ ÄÄÆÑÆ®ÇÑ Çü»óÀ¸·Î ÃæºÐÇÑ Àü·ÂÀ» °ø±ÞÇÏ°í »ç¿ë ÆíÀǼº°ú ÄèÀûÇÔÀ» Çâ»ó½Ã۱⠶§¹®¿¡ ÀÌ·¯ÇÑ Áøº¸·ÎºÎÅÍ Æ¯È÷ ÇýÅÃÀ» ¹Þ½À´Ï´Ù. °Ô´Ù°¡ ³ª³ë¹èÅ͸®ÀÇ ¼³°è¿¡´Â À¯¿¬¼ºÀÌ Àֱ⠶§¹®¿¡ ¹Ì·¡¿¡ Á¢À̽ÄÀ̳ª À¯¿¬ÇÑ ÀüÀÚ±â±â¿¡ ÀÀ¿ëÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ ÀÖ¾î ÆÛ½º³Î ±â¼úÀÇ Çõ½Å¿¡ ±æÀ» ¿­¾îÁÝ´Ï´Ù.

ÀÇ·á ºÐ¾ß¿¡¼­ ³ª³ë¹èÅ͸®´Â ȯÀÚÀÇ Äɾî¿Í ¸ð´ÏÅ͸µÀ» °³¼±ÇÏ´Â ÀÓº£µðµå µð¹ÙÀ̽º¿Í ¹ÙÀÌ¿À ¼¾¼­ÀÇ »õ·Î¿î ÆÄµµ¸¦ Áö¿øÇÕ´Ï´Ù. ³ª³ë¹èÅ͸®ÀÇ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í ¼ÒÇü Å©±â´Â ÆäÀ̽º¸ÞÀÌÄ¿, ½Å°æÀÚ±ØÀåÄ¡, Æ÷µµ´ç ¸ð´ÏÅÍ µî ¼ÒÇüÈ­¿Í ½Å·Ú¼ºÀÌ Áß¿äÇÑ µð¹ÙÀ̽º¿¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. °Ô´Ù°¡ ³ª³ë¹èÅ͸®´Â ¹«¼± ÃæÀüÀ» Áö¿øÇϰí ÀÖ¾î ȯÀÚ´Â ºñħ½ÀÀûÀ¸·Î µð¹ÙÀ̽º¸¦ ÃæÀüÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÓÇöõÆ® »Ó¸¸ ¾Æ´Ï¶ó ³ª³ë¹èÅ͸®´Â ·¦¿ÂĨ µð¹ÙÀ̽º³ª ÈÞ´ë¿ë Áø´Üµµ±¸¿¡µµ »ç¿ëµÇ¸ç, ƯÈ÷ ¿ø°ÝÁö³ª ¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­ÀÇ ÇコÄÉ¾î ¼­ºñ½º¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ ³ª³ë¹èÅ͸®ÀÇ ¿µÇâÀº ÀÌ ±â¼úÀÌ Çõ½ÅÀ» ÃßÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó °íµµÀÇ ÀÇ·á±â±â¿¡ ÀÇÁ¸ÇÏ´Â °³ÀÎÀÇ »îÀÇ ÁúÀ» Çâ»ó½ÃŲ´Ù´Â °ÍÀ» ¿¹ÁõÇϰí ÀÖ½À´Ï´Ù.

³ª³ë¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

³ª³ë¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¾÷°è ¿ä±¸ÀÇ ÁøÈ­, °í¼º´É ¹× ¼ÒÇü Àü¿ø °ø±Þ ÀåÄ¡¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¿Í Á÷Á¢ °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÃÊ·¡µË´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è°¡ Â÷·®¿¡ Å« ¹«°Ô¸¦ °¡ÇÏÁö ¾Ê°í ´õ ±ä ÁÖÇà°Å¸®¿Í ´õ ºü¸¥ ÃæÀü½Ã°£À» Á¦°øÇÒ ¼ö ÀÖ´Â ´ë¿ë·® ¹èÅ͸®¸¦ ¿øÇϱ⠶§¹®ÀÔ´Ï´Ù. ¼¼°èÀÇ Á¤ºÎ¿Í ±â¾÷ÀÌ ¹èÃâ·® »è°¨ÀÇ ¾ß½ÉÀûÀÎ ¸ñÇ¥¸¦ ³»°É°í Àֱ⠶§¹®¿¡, EV¿¡ À־ÀÇ È¿À²ÀûÀÌ°í °æ·®ÀÎ ³ª³ë¹èÅ͸®ÀÇ ¼ö¿ä´Â ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷»Ó¸¸ ¾Æ´Ï¶ó Àü±âÇ×°ø°ú ÇØ»ó¿î¼Û µîÀÇ ºÐ¾ß¿¡¼­µµ Áö¼Ó°¡´ÉÇÑ ´ë¿ë·® ¿¡³ÊÁöÀúÀå ¼Ö·ç¼Ç ³ª³ë¹èÅ͸®°¡ ¸ð»öµÇ°í ÀÖ¾î ¿î¼Û ¿ëµµÀÇ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¼ÒºñÀÚ¿ë ÀüÀÚ±â±âµµ Áß¿äÇÑ ¼ºÀå ºÐ¾ßÀ̸ç, Á¦Á¶¾÷ü °¢»ç´Â º¸´Ù ½½¸²ÇÏ°í ÆÄ¿öÇ®ÇÑ ±â±â¿Í Àå¼ö¸íÀÇ ¹èÅ͸®¸¦ ¿ä±¸ÇÏ´Â ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ÀÀÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ¿þ¾î·¯ºí ±â±â¿¡¼­´Â °í¹Ðµµ·Î ¿À·¡°¡´Â Àü¿øÀÌ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, °¢ ȸ»ç°¡ È޴뼺°ú ½Å·Ú¼ºÀ» °âºñÇÑ Á¦Ç° °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ¾î ³ª³ë¹èÅ͸® °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³ª³ë¹èÅ͸®°¡ À¯¿¬Çϰí Á¢È÷´Â ÀåÄ¡¿¡ ÀûÇÕÇÔÀ¸·Î½á ÄÁ½´¸Ó ÀÏ·ºÆ®·Î´Ð½º¿¡ »õ·Î¿î ±æÀÌ ¿­¸®°í Á¦Ç° ¼³°è¿Í ±â´É¼º Çõ½ÅÀÌ ÃËÁøµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ª³ë¹èÅ͸®´Â ½Å·Ú¼ºÀÌ ³ôÀº ¼ÒÇü ¿¡³ÊÁö¿øÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÓÇöõÆ®, ¹ÙÀÌ¿À¼¾¼­, ±âŸ °Ç°­ ¸ð´ÏÅ͸µ ±â±â¿¡ Á¡Á¡ ´õ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

½ÅÀç»ý ¿¡³ÊÁö ÀúÀå°ú ȯ°æ Áö¼Ó°¡´É¼º ÀÌ´Ï¼ÅÆ¼ºêÀÇ Áøº¸°¡ ³ª³ë¹èÅ͸® ½ÃÀåÀ» ´õ¿í °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ¼¼°èÀÇ ½ÃÇÁÆ®¿¡ ¼ö¹ÝÇØ, ¾ÈÁ¤µÈ Àü·Â °ø±ÞÀ» È®º¸Çϱâ À§Çؼ­´Â È¿À²ÀûÀÎ ÃàÀü ¼Ö·ç¼ÇÀÌ ºÒ°¡°áÇÕ´Ï´Ù. ´ë¿ë·®À¸·Î ±ä ¼ö¸íÀÇ ³ª³ë¹èÅ͸®´Â ±×¸®µå ½ºÅ丮Áö ¹× ±âŸ ½ÅÀç»ý ¿¡³ÊÁö ¿ëµµ¿¡ ÀûÇÕÇϸç, º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀÌÇà¿¡ ÀÖ¾î °¡Ä¡¸¦ ¹ßÈÖÇÕ´Ï´Ù. °Ô´Ù°¡ Áö¼Ó °¡´É¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀǽÄÀº, Æó±â¹°À̳ª ȯ°æ¿¡ÀÇ ¿µÇâÀ» Àú°¨ÇÏ´Â ¹èÅ͸®¸¦ Æ÷ÇÔÇÑ, ȯ°æ ģȭÀûÀÎ ±â¼úÀÇ Ã¤¿ëÀ» »ê¾÷°è¿¡ ÀçÃËÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀÇ ¼ö·Å¿¡ µû¶ó ±â¼úÀÇ Áøº¸, ȯ°æ ¸ñÇ¥, º¸´Ù È¿À²ÀûÀÌ°í ¹ü¿ë¼ºÀÌ ³ôÀº Àü¿ø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î ³ª³ë¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÏ¿© »ê¾÷°è ÀüüÀÇ ¿¡³ÊÁö ÀúÀåÀÇ ¹Ì·¡¸¦ À§ÇÑ Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 44°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nanobatteries Market to Reach US$32.3 Billion by 2030

The global market for Nanobatteries estimated at US$9.5 Billion in the year 2023, is expected to reach US$32.3 Billion by 2030, growing at a CAGR of 19.1% over the analysis period 2023-2030. Lithium-Ion Technology, one of the segments analyzed in the report, is expected to record a 20.1% CAGR and reach US$16.9 Billion by the end of the analysis period. Growth in the Nano Phosphate Technology segment is estimated at 18.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.5 Billion While China is Forecast to Grow at 17.9% CAGR

The Nanobatteries market in the U.S. is estimated at US$2.5 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$4.9 Billion by the year 2030 trailing a CAGR of 17.9% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.7% and 16.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.9% CAGR.

Global Nanobatteries Market - Key Trends & Drivers Summarized

What Are Nanobatteries and How Are They Changing the Energy Landscape?

Nanobatteries, energy storage devices that leverage nanotechnology to enhance power, storage capacity, and longevity, represent a breakthrough in battery technology. By integrating nanoscale materials and structures, nanobatteries offer a significantly higher energy density than traditional batteries, enabling devices to store more energy in smaller, lighter packages. This innovation is crucial in industries like consumer electronics, where demand for compact and long-lasting power sources is paramount. The nanoscale structures in these batteries provide a larger surface area for reactions, allowing faster charge and discharge rates without compromising energy capacity. This has positioned nanobatteries as ideal solutions for high-demand applications, such as smartphones, wearable devices, and electric vehicles (EVs), where space and weight limitations necessitate efficient, powerful batteries.

Nanobatteries are also making strides in the medical field, where their compact size and high energy density support the development of advanced medical implants, biosensors, and diagnostic devices. These batteries can power implants and health monitoring devices with minimal bulk, making them more comfortable and practical for patients. Additionally, nanobattery technology is paving the way for ultra-thin, flexible batteries, potentially transforming how medical devices are designed and worn. In the aerospace and defense sectors, the lightweight, high-capacity nature of nanobatteries has led to their integration into drones, satellites, and other equipment where energy efficiency and weight reduction are critical. With such widespread applications, nanobatteries are redefining energy storage solutions across industries, proving to be a pivotal advancement in powering next-generation technology.

Moreover, nanobatteries support the shift toward more sustainable energy systems. The high efficiency and energy density of these batteries enable renewable energy sources like solar and wind to be stored and utilized more effectively. For instance, when used in grid storage, nanobatteries can hold energy generated from renewable sources, releasing it as needed to maintain consistent power supply. This capability is crucial for reducing dependency on fossil fuels and advancing the transition to cleaner energy sources. As environmental concerns grow, the importance of efficient, compact, and eco-friendly energy storage solutions like nanobatteries is becoming more evident, driving further research and development in this promising field.

How Is Technology Shaping the Advancements in Nanobattery Design?

Technological innovations have propelled nanobattery development, enhancing their performance and expanding their practical applications. Nanobatteries rely on advanced nanomaterials, such as carbon nanotubes, graphene, and silicon nanowires, which provide unique properties that traditional battery materials lack. These nanomaterials offer exceptional electrical conductivity, high surface area, and mechanical strength, significantly boosting energy storage capacity, durability, and charging speed. For instance, graphene-based nanobatteries exhibit superior thermal conductivity, allowing them to operate at higher currents without overheating. Such capabilities make these batteries suitable for high-energy-demand applications, particularly in electric vehicles and industrial machinery, where heat management and energy efficiency are crucial.

Recent developments in nanostructuring techniques, such as lithography and atomic layer deposition, have allowed engineers to create highly organized nanoscale architectures within batteries. These structured materials enhance the flow of ions, enabling faster charging times and higher power outputs. Advances in solid-state nanobatteries are also emerging, where the liquid electrolytes in traditional batteries are replaced with solid-state materials. Solid-state nanobatteries are safer and more stable, reducing risks associated with leakage or combustion, and enabling the design of thinner, more compact batteries. As a result, these batteries are gaining traction in consumer electronics, automotive, and aerospace sectors, where safety and miniaturization are prioritized.

The integration of artificial intelligence (AI) and machine learning (ML) in nanobattery research is further accelerating the development of optimized battery architectures. AI algorithms can analyze vast datasets, predicting the performance of different nanomaterials and configurations, which reduces the time and cost associated with experimental trials. Additionally, self-healing nanomaterials are being explored, aiming to extend the lifespan of nanobatteries by allowing them to recover from wear and tear at the microscopic level. This capability would enable nanobatteries to support long-term applications, especially in critical sectors like medical implants and aerospace, where battery longevity and reliability are essential. These technological advancements are enhancing nanobattery functionality and paving the way for new applications across an ever-expanding array of industries.

Where Are Nanobatteries Making the Most Significant Impact Across Industries?

Nanobatteries are revolutionizing energy storage across various sectors, with each industry harnessing their unique properties to meet specific demands. In the automotive sector, nanobatteries are paving the way for the next generation of electric vehicles by offering lightweight, high-capacity solutions that enhance battery life and reduce charging times. As the demand for EVs grows globally, nanobatteries are instrumental in developing efficient, high-performance batteries that align with consumer expectations for longer driving ranges and quicker recharge cycles. Beyond passenger vehicles, nanobatteries are also impacting electric aviation, where energy storage demands are high, and weight reduction is paramount. Lightweight nanobatteries enable more efficient power for electric aircraft, contributing to the broader goal of reducing emissions in the transportation sector.

In consumer electronics, nanobatteries are transforming device design by enabling thinner, more powerful batteries for smartphones, laptops, and wearable devices. These batteries extend the lifespan and reduce the recharge frequency, directly addressing user demand for convenience and longevity. The small form factor and high energy density of nanobatteries allow manufacturers to create slimmer devices without compromising performance. Wearable technology, such as fitness trackers and smartwatches, particularly benefits from this advancement, as nanobatteries provide ample power in a compact form, enhancing usability and comfort. Additionally, the flexibility of some nanobattery designs holds potential for future foldable or flexible electronic devices, paving the way for innovation in personal technology.

In the medical field, nanobatteries are supporting a new wave of implantable devices and biosensors that improve patient care and monitoring. Their high energy density and small size make them ideal for devices such as pacemakers, neural stimulators, and glucose monitors, where compactness and reliability are critical. Furthermore, nanobatteries are compatible with wireless charging, allowing patients to recharge their devices non-invasively. Beyond implants, nanobatteries are also used in lab-on-a-chip devices and portable diagnostic tools, expanding the reach of healthcare services, particularly in remote or underserved areas. The impact of nanobatteries in the medical sector exemplifies how this technology is not only driving innovation but also enhancing the quality of life for individuals who rely on advanced medical devices.

What Are the Key Drivers Fueling Growth in the Nanobatteries Market?

The growth in the nanobatteries market is driven by several factors directly related to advancements in technology, evolving industry needs, and consumer demand for high-performance, compact power sources. The surge in electric vehicle adoption is a primary driver, as the automotive industry seeks high-capacity batteries that can offer longer driving ranges and faster charging times without adding significant weight to vehicles. With governments and companies worldwide setting ambitious goals to reduce emissions, the demand for efficient, lightweight nanobatteries in EVs is expected to rise. In addition to cars, sectors like electric aviation and marine transport are also exploring nanobatteries for sustainable, high-capacity energy storage solutions, further driving market growth in transportation applications.

Consumer electronics is another significant area of growth, as manufacturers strive to meet consumer demands for slimmer, more powerful devices with extended battery life. The need for high-density, long-lasting power sources in smartphones, laptops, and wearable devices is fueling nanobattery development, as companies focus on creating products that are both portable and reliable. The compatibility of nanobatteries with flexible and foldable devices is also anticipated to open new avenues in consumer electronics, supporting innovation in product design and functionality. This demand for compact, powerful batteries extends to the medical industry, where nanobatteries are increasingly used in implants, biosensors, and other health-monitoring devices that require reliable, compact energy sources.

Advances in renewable energy storage and environmental sustainability initiatives are further driving the nanobattery market. With the global shift toward renewable energy sources, efficient storage solutions are crucial to ensure a steady power supply. Nanobatteries, with their high capacity and long lifespan, are well-suited for grid storage and other renewable energy applications, making them valuable in the transition to cleaner energy systems. Additionally, consumer awareness of sustainability is pushing industries to adopt eco-friendly technologies, including batteries that reduce waste and environmental impact. As these trends converge, technological advancements, environmental goals, and the demand for more efficient, versatile power sources continue to fuel growth in the nanobatteries market, positioning it as a critical component in the future of energy storage across industries.

SCOPE OF STUDY:

The report analyzes the Nanobatteries market in terms of US$ Million by the following Application; Technology, and Geographic Regions/Countries:

Segments:

Technology (Lithium-Ion Technology, Nano Phosphate Technology, Nanopore Battery Technology); Application (Military Application, Consumer Electronics Application, Renewable & Grid Energy Application, Powertools & Industrial Application, Transport Application, Other Applications)

Geographic Regions/Countries:

World; USA; Canada; Japan; China; Europe; France; Germany; Italy; UK; Rest of Europe; Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â