¼¼°èÀÇ ±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå
Military 3D Printing
»óǰÄÚµå : 1588993
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,228,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,684,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2030³â±îÁö 231¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 48¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è ±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 25.2% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 231¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÁ¸°ÅÍ ºÎǰÀº CAGR 23.8%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 77¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àç·á ¹× ºÎǰ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 24.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 14¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 24.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2023³â 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 35¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 24.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 22.2%¿Í 21.3%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 17.5%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃßÁø ¿äÀÎ ¿ä¾à

±º¿ë 3D ÇÁ¸°ÆÃÀº ±¹¹æ Á¦Á¶ ¹× ¹°·ù¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

ÀûÃþ Á¦Á¶¶ó°íµµ ºÒ¸®´Â ±º¿ë 3D ÇÁ¸°ÆÃÀº Á¤¹Ðµµ¸¦ ³ôÀÌ°í ¸®µå ŸÀÓÀ» ´ÜÃàÇÏ¿© º¹ÀâÇÑ ºÎǰ°ú Àåºñ¸¦ ½Å¼ÓÇÏ°Ô »ý»êÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ±¹¹æ Á¦Á¶¿¡ º¯È­¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ±º Á¶Á÷Àº ±âÁ¸ °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ÇöÀå ¹°·ùÀÇ À¯¿¬¼ºÀ» ³ôÀ̱â À§ÇØ ÁÖ¹®Çü ºÎǰÀ» »ý»êÇÒ ¼ö ÀÖÀ¸¸ç, 3D ÇÁ¸°ÆÃÀº Â÷·® ¹× Ç×°ø±â ¿¹ºñ ºÎǰºÎÅÍ ±ºÀÎÀ» À§ÇÑ Æ¯¼ö Àåºñ ¹× µµ±¸¿¡ À̸£±â±îÁö ¸ðµç °ÍÀ» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ¿ø°ÝÁö³ª ÀüÅõ ȯ°æ¿¡¼­ ºÎǰÀ» ÇöÁö¿¡¼­ ÀμâÇÒ ¼ö ÀÖ´Ù´Â Á¡Àº ±º¿ë 3D ÇÁ¸°ÆÃÀÇ °¡Àå Å« ÀåÁ¡ Áß ÇϳªÀÔ´Ï´Ù. ÀÌ ±â´ÉÀº ´ë·®ÀÇ ¿¹ºñ ºÎǰÀ» ¿î¼ÛÇÒ Çʿ伺À» ÁÙ¿© ¹°·ù ºñ¿ëÀ» Àý°¨Çϰí ÀÛÀü È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃÀº ±º¿ë ÀåºñÀÇ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÔ Á¦ÀÛ°ú Ä¿½ºÅ͸¶ÀÌ¡À» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÓ¹«¿¡ ƯȭµÈ µµ±¸¿Í ±¸¼º¿ä¼Ò¸¦ °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù.

±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀ» ÁÖµµÇÏ´Â Çõ½ÅÀº ¹«¾ùÀϱî?

ÃÖ±Ù Àç·á °úÇаú 3D ÇÁ¸°ÆÃ ±â¼úÀÇ Çõ½ÅÀº ±º¿ë 3D ÇÁ¸°ÆÃÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÷´Ü Æú¸®¸Ó, º¹ÇÕÀç·á, ±Ý¼ÓÇÕ±Ý µî °í°­µµ, °æ·® ¼ÒÀçÀÇ °³¹ß·Î ±º»ç¿ëÀ¸·Î ³»±¸¼º°ú ±â´É¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ´ÙÁß Àç·á ÀμâÀÇ ¹ßÀüÀ¸·Î ¼º´É Çâ»óÀ» À§ÇØ ¼­·Î ´Ù¸¥ Àç·á¸¦ °áÇÕÇÏ¿© º¹ÀâÇÑ ´Ù±â´É ºÎǰÀ» ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» 3D ÇÁ¸°ÆÃ °øÁ¤¿¡ ÅëÇÕÇÏ´Â °Íµµ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý ½Ã½ºÅÛÀº ºÎǰ ¼³°è ¹× Á¦Á¶¸¦ ÃÖÀûÈ­Çϰí Àç·á ³¶ºñ¸¦ ÁÙ¿© Á¦Á¶ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃÀº ±âÁ¸ Á¦Á¶ ¹æ¹ýÀ¸·Î´Â ¾î·Æ°Å³ª ºÒ°¡´ÉÇÑ º¹ÀâÇÑ Çü»óÀ» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëµÇ¾î Â÷¼¼´ë ±º»ç ÀåºñÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â ±º¿ë 3D ÇÁ¸°ÆÃÀÇ ¼ºÀåÀ» ¾î¶»°Ô ±ÔÁ¤Çϴ°¡?

±º¿ë 3D ÇÁ¸°ÆÃ¿¡ »ç¿ëµÇ´Â Àç·á¿¡´Â ±Ý¼Ó, Æú¸®¸Ó, ¼¼¶ó¹Í µîÀÌ ÀÖÀ¸¸ç, °­µµ¿Í ³»±¸¼ºÀÌ ¶Ù¾î³­ ±Ý¼ÓÀÌ °¡Àå ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±º¿ë 3D ÇÁ¸°ÆÃ¿¡ »ç¿ëµÇ´Â ±â¼ú¿¡´Â ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ(SLA), ¿ëÀ¶ ÀûÃþ Á¦Á¶(FDM), ¼±ÅÃÀû ·¹ÀÌÀú ¼Ò°á(SLS) µîÀÌ ÀÖÀ¸¸ç, FDMÀº Àú·ÅÇÑ °¡°Ý°ú ´ÙÀç´Ù´ÉÇÔÀ¸·Î ÀÎÇØ °¡Àå ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ±â¼úÀÔ´Ï´Ù. ÀÀ¿ë ºÐ¾ß¿¡¼­´Â ±º¿ë 3D ÇÁ¸°ÆÃÀº ¿¹ºñ ºÎǰ, ¹«±â, ÀÇ·á Àåºñ ¹× º¸È£ Àåºñ Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. Â÷·® ¹× Ç×°ø±â ¿¹ºñ ºÎǰ Á¦Á¶´Â 3D ÇÁ¸°ÆÃÀ» ÅëÇØ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ºÎǰÀ» ½Å¼ÓÇÏ°Ô »ý»êÇÒ ¼ö ÀÖ¾î ´Ù¿îŸÀÓÀ» ÁÙÀ̰í ÀÛÀü Áغñ ż¼¸¦ °­È­ÇÒ ¼ö Àֱ⠶§¹®¿¡ °¡Àå Å« ÀÀ¿ë ºÐ¾ßÀÔ´Ï´Ù. ÀÇ·á Àåºñ¿Í ÀÇÁ·À» ÇöÀå¿¡¼­ ÀμâÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ±ºÀεéÀÌ ¿ø°ÝÁö¿¡¼­ ¸ÂÃãÇü Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖ°Ô ÇØÁֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº?

±º¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ¼ºÀåÀº ÀÓ¹«¿¡ ƯȭµÈ ÀåºñÀÇ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ ¹× Á¦Á¶, 3D ÇÁ¸°ÆÃ Àç·á ¹× ±â¼úÀÇ ¹ßÀü, ¹°·ù ºñ¿ë Àý°¨ ¹× ¿î¿µ È¿À²¼º Çâ»ó¿¡ ´ëÇÑ ¿ä±¸ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±º Á¶Á÷ÀÌ Á¦Á¶ ¿ª·®À» °­È­ÇÏ°í ±âÁ¸ °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, 3D ÇÁ¸°ÆÃÀº À¯¿¬ÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¿ø°ÝÁö ¹× ÀüÅõ ȯ°æ¿¡¼­ ÁÖ¹®Çü ºÎǰÀ» Á¦Á¶ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ´ë·® Àç°íÀÇ Çʿ伺À» ÁÙÀ̰í Áß¿äÇÑ Àåºñ¸¦ Ç×»ó »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϱ⠶§¹®¿¡ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í°­µµ ¼ÒÀç¿Í AI ±â¹Ý ¼³°è µµ±¸ÀÇ °³¹ßÀº ±º¿ë 3D ÇÁ¸°ÆÃÀÇ Àû¿ë ¹üÀ§¸¦ ³ÐÇô ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 34°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Military 3D Printing Market to Reach US$23.1 Billion by 2030

The global market for Military 3D Printing estimated at US$4.8 Billion in the year 2023, is expected to reach US$23.1 Billion by 2030, growing at a CAGR of 25.2% over the analysis period 2023-2030. Printer Component, one of the segments analyzed in the report, is expected to record a 23.8% CAGR and reach US$7.7 Billion by the end of the analysis period. Growth in the Material Component segment is estimated at 24.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.4 Billion While China is Forecast to Grow at 24.5% CAGR

The Military 3D Printing market in the U.S. is estimated at US$1.4 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.5 Billion by the year 2030 trailing a CAGR of 24.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 22.2% and 21.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.5% CAGR.

Global Military 3D Printing Market - Key Trends and Drivers Summarized

How Is Military 3D Printing Shaping Defense Manufacturing and Logistics?

Military 3D printing, also known as additive manufacturing, is transforming defense manufacturing by enabling the rapid production of complex parts and equipment with enhanced precision and reduced lead times. This technology allows military organizations to produce components on-demand, reducing reliance on traditional supply chains and enabling more flexible logistics in the field. 3D printing can be used to manufacture everything from spare parts for vehicles and aircraft to specialized equipment and tools for soldiers. The ability to print parts on-site, particularly in remote or combat environments, is one of the most significant advantages of military 3D printing. This capability reduces the need to transport large quantities of spare parts, lowering logistical costs and improving operational efficiency. In addition, 3D printing allows for the rapid prototyping and customization of military equipment, enabling the development of mission-specific tools and components.

What Innovations Are Driving the Military 3D Printing Market?

Recent innovations in materials science and 3D printing technologies are enhancing the capabilities of military 3D printing. The development of high-strength, lightweight materials such as advanced polymers, composites, and metal alloys is enabling the production of durable and functional components for military applications. Additionally, advancements in multi-material printing allow for the creation of complex, multi-functional parts that combine different materials for improved performance. The integration of artificial intelligence (AI) and machine learning (ML) into 3D printing processes is also driving innovation. AI-powered systems can optimize the design and production of parts, reducing material waste and improving manufacturing efficiency. Moreover, 3D printing is being used to produce complex geometries that are difficult or impossible to create using traditional manufacturing methods, enabling the development of next-generation military equipment.

How Do Market Segments Define the Growth of Military 3D Printing?

Materials used in military 3D printing include metals, polymers, and ceramics, with metals being the most widely used due to their strength and durability. Technologies used in military 3D printing include stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS). FDM is the most commonly used technology due to its affordability and versatility. In terms of application, military 3D printing is used in the production of spare parts, weapons, medical devices, and protective gear. The production of spare parts for vehicles and aircraft is the largest application segment, as 3D printing allows for the rapid production of mission-critical components, reducing downtime and enhancing operational readiness. The ability to print medical devices and prosthetics in the field is also gaining traction, as it enables military personnel to receive customized care in remote locations.

What Factors Are Driving the Growth in the Military 3D Printing Market?

The growth in the military 3D printing market is driven by several factors, including the need for rapid prototyping and production of mission-specific equipment, advancements in 3D printing materials and technologies, and the desire to reduce logistical costs and improve operational efficiency. As military organizations seek to enhance their manufacturing capabilities and reduce dependence on traditional supply chains, 3D printing offers a flexible and cost-effective solution. The ability to produce parts on-demand in remote or combat environments is particularly valuable, as it reduces the need for large inventories and ensures that critical equipment is always available. Additionally, the development of high-strength materials and AI-powered design tools is expanding the range of applications for military 3D printing, further driving market growth.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â