¼¼°èÀÇ À½¼º ÅØ½ºÆ®È­ API ½ÃÀå
Speech-to-text API
»óǰÄÚµå : 1588975
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,322,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,966,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À½¼º ÅØ½ºÆ®È­ API ¼¼°è ½ÃÀåÀº 2030³â±îÁö 168¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 49¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À½¼º ÅØ½ºÆ®È­ API ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 19.3% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 168¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÏ´Â ºÎ¹® Áß ÇϳªÀÎ ´ë±â¾÷¿ë À½¼º ÅØ½ºÆ®È­ API´Â CAGR 17.2%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 91¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß¼Ò±â¾÷¿ë À½¼º ÅØ½ºÆ®È­ API ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 22.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 14¾ï ´Þ·¯, Áß±¹Àº CAGR 18.2%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ À½¼º ÅØ½ºÆ®È­ API ½ÃÀåÀº 2023³â 14¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 25¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 18.2%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 16.6%¿Í 16.3%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 13.8%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è À½¼º ÅØ½ºÆ®È­ API ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

À½¼º ÅØ½ºÆ®È­ API°¡ Åë½Å ±â¼úÀ» ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

À½¼º ÀÎ½Ä API·Îµµ ¾Ë·ÁÁø À½¼º ÅØ½ºÆ®È­ API´Â Ŭ¶ó¿ìµå ±â¹Ý ¶Ç´Â ¿ÂÇÁ·¹¹Ì½º Ç÷§ÆûÀ» ÅëÇØ ±¸¾î¸¦ ¹®ÀÚ·Î º¯È¯ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ÀÚ¿¬¾î ó¸®(NLP), ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML)À» »ç¿ëÇÏ¿© Àΰ£ÀÇ ±¸¾î¸¦ ½Ç½Ã°£À¸·Î ÇÊ»çÇÏ¿© °¡»ó ºñ¼­, °í°´ ¼­ºñ½º ÀÚµ¿È­, ÄÁÅÙÃ÷ Á¦ÀÛ, Á¢±Ù¼º µµ±¸ µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇÕ´Ï´Ù. ¹Ìµð¾î, ÇコÄɾî, IT ¹× Åë½Å µîÀÇ »ê¾÷¿¡¼­ »ç¿ëÀÚ °æÇèÀ» °³¼±ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­ ¹× »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º °³¼±¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó À½¼º ÅØ½ºÆ®È­ APIÀÇ Ã¤ÅÃÀÌ ºü¸£°Ô È®´ëµÇ¾î Ä¿¹Â´ÏÄÉÀ̼ÇÀ» º¸´Ù È¿À²ÀûÀÌ°í Æ÷°ýÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

À½¼º ÅØ½ºÆ®È­ API ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®Àº?

ÁÖ¿ä µµÀÔ ÇüÅ·δ Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç°ú ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼ÇÀÌ ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ±â¹Ý API´Â È®À强, Á¢±Ù¼º ¹× ºñ¿ë È¿À²¼º Ãø¸é¿¡¼­ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¾ÖÇø®ÄÉÀ̼ǿ¡´Â °í°´ ¼­ºñ½º, ³ìÃë, À½¼º ¸í·É, ½Ç½Ã°£ ĸ¼Ç, ºÐ¼® µîÀÌ Æ÷ÇԵǸç, °í°´ ¼­ºñ½º´Â ÀÚµ¿È­µÈ ´Ù±¹¾î Áö¿ø ½Ã½ºÅÛÀÇ Çʿ伺À¸·Î ÀÎÇØ Áß¿äÇÑ ºÎ¹®À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ´Â ¹Ìµð¾î ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÇコÄɾî, BFSI(ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè), IT ¹× Åë½Å, ±³À° µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ °ÉÃÄ ÀÖÀ¸¸ç, ƯÈ÷ ¹Ìµð¾î ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÐ¾ß´Â ÀÚµ¿ ³ìÃë ¹× ÄÁÅÙÃ÷ »ý¼ºÀ» À§ÇØ API¸¦ »ç¿ëÇϰí ÀÖ¾î ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.

À½¼º ÅØ½ºÆ®È­ API´Â °¢ »ê¾÷¿¡ ¾î¶»°Ô ÅëÇյǰí Àִ°¡?

¹Ìµð¾î ºÐ¾ß¿¡¼­ À½¼º ÅØ½ºÆ®È­ API´Â ÀÎÅÍºä ³ìÃë, ÀÚ¸· »ý¼º, À½¼º ÄÁÅÙÃ÷¸¦ ÅØ½ºÆ®·Î º¯È¯ÇÏ´Â µ¥ »ç¿ëµÇ¾î º¸´Ù ºü¸¥ ÄÁÅÙÃ÷ Á¦ÀÛ°ú Á¢±Ù¼º Çâ»óÀ» µ½½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ ÀÌ·¯ÇÑ API´Â ÀÓ»ó ¹®¼­È­, ÀüÀÚ ÀÇ·á ±â·Ï(EHR) ÅëÇÕ, ȯÀÚ¿ÍÀÇ ½Ç½Ã°£ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» ÃËÁøÇÏ¿© Àǻ簡 ȯÀÚ Ä¡·á¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. °í°´ ¼­ºñ½º ºÐ¾ß¿¡¼­´Â À½¼º ÅØ½ºÆ®È­ API¸¦ Ȱ¿ëÇÏ¿© À½¼º ±â¹Ý °í°´ ÀÀ´ë¸¦ ÀÚµ¿È­Çϰí Äݼ¾ÅÍ È¿À²À» °³¼±ÇÏ¸ç °í°´ ¸¸Á·µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¾÷°è¿¡¼­´Â ÀÌ·¯ÇÑ API°¡ ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µ, ȸÀÇÀÇ ½Ç½Ã°£ Àü»ç, °Å·¡ ¼¼¼Ç Áß ¸Þ¸ð ÀÛ¼º µî¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±³À° Á¦°ø ¾÷ü´Â À½¼º ÅØ½ºÆ®È­ API¸¦ ½Ç½Ã°£ ĸ¼Ç¿¡ »ç¿ëÇÏ¿© û°¢ Àå¾Ö ÇлýÀ» Áö¿øÇÏ°í º¸´Ù Á¾ÇÕÀûÀÎ ÇнÀ ȯ°æÀ» ±¸ÃàÇÏ´Â µ¥ »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

À½¼º ÅØ½ºÆ®È­ API ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

À½¼º ÅØ½ºÆ®È­ API ½ÃÀåÀÇ ¼ºÀåÀº ¹Ìµð¾î, ÀÇ·á, ±ÝÀ¶ µîÀÇ »ê¾÷¿¡¼­ ½Ç½Ã°£ Àü»ç ¹× À½¼º ¸í·É ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, AI, NLP, ML ¾Ë°í¸®ÁòÀÇ ¹ßÀüÀ¸·Î À½¼º ÅØ½ºÆ®È­ APIÀÇ Á¤È®¼º, ¼Óµµ, ¾ð¾î Áö¿øÀÌ Çâ»óµÇ¾î ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °í°´ °æÇè ¹× ¾÷¹« È¿À²¼º¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ±â¾÷µéÀÌ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °­È­Çϰí, ´Ù±¹¾î ´ëÈ­¸¦ Áö¿øÇϸç, ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇϰíÀÚ ÇÏ´Â ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ø°Ý ±Ù¹«, °¡»ó ȸÀÇ, µðÁöÅÐ Á¢±Ù¼º ±ÔÁ¤ÀÇ Áõ°¡´Â ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ºñÁî´Ï½º Ä¿¹Â´ÏÄÉÀÌ¼Ç µµ±¸ ¹× Ç÷§Æû¿¡ À½¼º ÅØ½ºÆ®È­ API¸¦ ÅëÇÕÇÏ´Â °ÍÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 33°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Speech-to-text API Market to Reach US$16.8 Billion by 2030

The global market for Speech-to-text API estimated at US$4.9 Billion in the year 2023, is expected to reach US$16.8 Billion by 2030, growing at a CAGR of 19.3% over the analysis period 2023-2030. Speech-to-text API for Large Enterprises, one of the segments analyzed in the report, is expected to record a 17.2% CAGR and reach US$9.1 Billion by the end of the analysis period. Growth in the Speech-to-text API for SMEs segment is estimated at 22.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.4 Billion While China is Forecast to Grow at 18.2% CAGR

The Speech-to-text API market in the U.S. is estimated at US$1.4 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.5 Billion by the year 2030 trailing a CAGR of 18.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.6% and 16.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.8% CAGR.

Global Speech-to-text API Market - Key Trends and Drivers Summarized

How Is Speech-to-Text API Transforming Communication Technologies?

Speech-to-text API, also known as speech recognition API, converts spoken language into written text through cloud-based or on-premise platforms. This technology uses natural language processing (NLP), artificial intelligence (AI), and machine learning (ML) to transcribe human speech in real-time, supporting a wide range of applications such as virtual assistants, customer service automation, content creation, and accessibility tools. It plays a crucial role in enhancing user experience across industries like media, healthcare, finance, and telecommunications. With increasing demand for automation and improved user interfaces, the adoption of speech-to-text APIs has expanded rapidly, making communication more efficient and inclusive.

What Are the Key Segments in the Speech-to-Text API Market?

Major deployment modes include cloud-based and on-premise solutions, with cloud-based APIs holding the largest market share due to their scalability, accessibility, and cost-effectiveness. Applications cover customer service, transcription, voice commands, real-time captioning, and analytics, with customer service representing a significant segment driven by the need for automated and multilingual support systems. End-users span industries like media and entertainment, healthcare, BFSI (banking, financial services, and insurance), IT and telecom, and education, with the media and entertainment sector leading the market as it uses APIs for automated transcription and content generation.

How Are Speech-to-Text APIs Integrated Across Industries?

In the media sector, speech-to-text APIs are used to transcribe interviews, generate subtitles, and convert audio content into written articles, supporting faster content creation and improved accessibility. In healthcare, these APIs facilitate clinical documentation, electronic health record (EHR) integration, and real-time patient communication, enabling physicians to focus more on patient care. In customer service, companies leverage speech-to-text APIs to automate voice-based customer interactions, improve call center efficiency, and enhance customer satisfaction. In the financial sector, these APIs are used for compliance monitoring, real-time transcription of meetings, and note-taking during trading sessions. Additionally, education providers use speech-to-text APIs for real-time captioning, supporting students with hearing impairments and creating a more inclusive learning environment.

What Factors Are Driving the Growth in the Speech-to-Text API Market?

The growth in the Speech-to-Text API market is driven by several factors, including increasing demand for real-time transcription and voice command automation across industries like media, healthcare, and finance. Advancements in AI, NLP, and ML algorithms have improved the accuracy, speed, and language support of speech-to-text APIs, supporting wider adoption across diverse applications. The focus on customer experience and operational efficiency has further fueled demand, as organizations seek to enhance communication, support multilingual interactions, and streamline workflows. Additionally, the rise of remote work, virtual meetings, and digital accessibility regulations has contributed to market growth, encouraging the integration of speech-to-text APIs in business communication tools and platforms.

Select Competitors (Total 33 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â