¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀå
Plastic Compounding
»óǰÄÚµå : 1588897
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 94 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 1,183¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 758¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ¼¼°è ½ÃÀåÀº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 6.6% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,183¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®ÇÁ·ÎÇÊ·» ÄÄÆÄ¿îµùÀº CAGR 6.3%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 351¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®¿¡Æ¿·» ÄÄÆÄ¿îµù ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 198¾ï ´Þ·¯, Áß±¹Àº CAGR 9.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó

¹Ì±¹ÀÇ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀº 2023³â 198¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 9.9%ÀÇ CAGRÀ» ±â·ÏÇÏ¿© 2030³â±îÁö 278¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 4.0%¿Í 5.4%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 4.9%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¶õ ¹«¾ùÀ̸ç, ¿Ö Àç·á°øÇп¡ ÇʼöÀûÀΰ¡?

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå´Â ÇÃ¶ó½ºÆ½ÀÇ ¹°¸®Àû, È­ÇÐÀû, ±â°èÀû Ư¼ºÀ» ƯÁ¤ ¿ëµµ¿¡ ¸Â°Ô º¯°æÇϱâ À§ÇØ ´Ù¾çÇÑ Ã·°¡Á¦¿Í ÇÊ·¯¸¦ È¥ÇÕÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. Âø»öÁ¦, ¾ÈÁ¤Á¦, °­È­Á¦, ³­¿¬Á¦¿Í °°Àº ÷°¡Á¦¿Í Æú¸®¸Ó¸¦ °áÇÕÇÏ¿© ÀÚµ¿Â÷, ÀüÀÚ, °ÇÃà, Æ÷Àå, ÀÇ·á µî ´Ù¾çÇÑ »ê¾÷ÀÇ ¿ä±¸¿¡ ¸Â°Ô ÇÃ¶ó½ºÆ½ È­ÇÕ¹°À» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ÂÃãÈ­´Â °­µµ, À¯¿¬¼º, ³»¿­¼º, Àüµµ¼º, ³»±¸¼º µîÀ» Çâ»ó½ÃŲ ÇÃ¶ó½ºÆ½À» Á¦Á¶ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå´Â Á¦Á¶ °øÁ¤¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Àç·á ¼³°èÀÇ À¯¿¬¼ºÀ» Á¦°øÇÏ¿© »ê¾÷°è°¡ °í¼º´É ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÑ Àç·á¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ÄÄÆÄ¿îµå ÇÃ¶ó½ºÆ½Àº Â÷·® °æ·®È­, ¿¬ºñ Çâ»ó, ºÎǰÀÇ ³»Ãæ°Ý¼º Çâ»óÀ¸·Î ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÃæÁ·ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¸¶Âù°¡Áö·Î, ÀüÀÚ ºÐ¾ß¿¡¼­µµ º¹ÇÕ ÇÃ¶ó½ºÆ½Àº Àý¿¬¼º, ¹æ¿­¼º, ³­¿¬¼ºÀ» ºÎ¿©Çϱâ À§ÇØ »ç¿ëµË´Ï´Ù. ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµåÀÇ ´Ù¿ëµµ¼º°ú ƯÁ¤ ¼º´É ±âÁØÀ» ÃæÁ·ÇÏ´Â ´É·ÂÀº Çö´ë Àç·á °øÇп¡ ÇʼöÀûÀÎ ¿ä¼ÒÀ̸ç, Á¦Á¶¾÷ü´Â »ê¾÷°è¿Í ¼ÒºñÀÚÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â Á¦Ç°À» Çõ½ÅÀûÀ¸·Î °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå »ê¾÷À» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ Å« Çõ½ÅÀ» °¡Á®¿ÔÀ¸¸ç, Á¦Á¶¾÷üµéÀÌ º¸´Ù Áøº¸µÇ°í Áö¼Ó°¡´ÉÇÑ Àç·á¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ÁÖ¿ä Æ®·»µå Áß Çϳª´Â °í¼º´É Æú¸®¸ÓÀÇ °³¹ß·Î, ÄÄÆÄ¿îµå °øÁ¤Àº ±âº» ÇÃ¶ó½ºÆ½ÀÇ ±â°èÀû, ¿­Àû, Àü±âÀû Ư¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ¹× ¿­°¡¼Ò¼º ¿¤¶ó½ºÅä¸Ó(TPE)¿Í °°Àº °í¼º´É Æú¸®¸Ó´Â ƯÈ÷ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀüÀÚ µî ±î´Ù·Î¿î ÀÀ¿ë ºÐ¾ß¿¡¼­ ±Ý¼Ó°ú °°Àº ±âÁ¸ Àç·á¸¦ ´ëüÇÒ ¼ö Àֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °æ·®È­ ¹× °í°­µµ º¹ÇÕ ÇÃ¶ó½ºÆ½Àº ÀÚµ¿Â÷ÀÇ °æ·®È­, ¿¬ºñ Çâ»ó, ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦ Áؼö¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ³ª³ëº¹ÇÕüÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ź¼Ò³ª³ëÆ©ºê, ³ª³ëŬ·¹ÀÌ, ±×·¡Çɰú °°Àº ³ª³ëÀÔÀÚ¸¦ Æú¸®¸Ó ¸ÅÆ®¸¯½º¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â Àüµµ¼º, ±â°èÀû °­µµ, À庮 ¼º´É, ³­¿¬¼º µîÀÇ Æ¯¼ºÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ª³ëº¹ÇÕÀç·á´Â ÀüÀÚ, ÆÐŰ¡, ÀÚµ¿Â÷ µî Àç·á Ư¼ºÀÇ °³¼±ÀÌ ¼º´É°ú ¾ÈÀü¿¡ ÇʼöÀûÀÎ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀüÀÚ »ê¾÷¿¡¼­ ³ª³ëº¹ÇÕÀç·á´Â ÀåÄ¡ÀÇ ¿­ °ü¸®¿Í ÀüÀÚÆÄ Â÷Æó¸¦ °³¼±Çϰí, ÆÐŰ¡¿¡¼­´Â ÇÃ¶ó½ºÆ½ÀÇ À庮 Ư¼ºÀ» Çâ»ó½ÃÄÑ Á¦Ç°ÀÇ À¯Åë±âÇÑÀ» ¿¬ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¿Í Àç»ý ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµåÀÇ ¹ßÀü°ú ÇÔ²² Áö¼Ó°¡´É¼ºÀº ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå »ê¾÷¿¡¼­ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. »ê¾÷°è¿Í ¼ÒºñÀÚ°¡ ȯ°æÀû Ã¥ÀÓÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó »ýºÐÇØ¼º ¹× Àç»ý °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ±â¼ú Çõ½ÅÀº õ¿¬¼¶À¯, ÀçȰ¿ë Æú¸®¸Ó, »ýºÐÇØ¼º ÷°¡Á¦ÀÇ »ç¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÇÃ¶ó½ºÆ½ÀÇ È¯°æ ºÎÇϸ¦ ÁÙÀÌ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀçȰ¿ë ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå´Â Á¦Á¶¾÷üµéÀÌ ¼ÒºñÀÚ ¹× »ê¾÷ Æó±â¹°·Î °íǰÁúÀÇ Á¦Ç°À» ¸¸µé·Á°í ³ë·ÂÇÔ¿¡ µû¶ó ±× Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´ÉÇÑ ¼ÒÀç´Â ¼º´É°ú ȯ°æ ±âÁØÀ» ¸ðµÎ ÃæÁ·Çϱâ À§ÇØ Æ÷Àå, °ÇÃà, ¼ÒºñÀç µî »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

°í±Þ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµåÀÇ Çʿ伺À» ÃËÁøÇÏ´Â °úÁ¦´Â ¹«¾ùÀΰ¡?

÷´Ü ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ´ëÇÑ ¼ö¿ä´Â »ê¾÷°è°¡ Á÷¸éÇÑ ¼º´É, Áö¼Ó°¡´É¼º, ±ÔÁ¦ Áؼö¿Í °°Àº µµÀü°úÁ¦¿¡ ÀÇÇØ ¹ß»ýÇÕ´Ï´Ù. °¡Àå ½Ã±ÞÇÑ °úÁ¦ Áß Çϳª´Â ƯÈ÷ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ¹× ÀüÀÚ ºÐ¾ß¿¡¼­ °í¼º´É ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â Àç·á¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÚµ¿Â÷ÀÇ Àú¿¬ºñÈ­ ¹× °æ·®È­¿¡ µû¶ó ±Ý¼ÓÀ̳ª À¯¸®¿Í °°Àº ±âÁ¸ ¼ÒÀ縦 ´ëüÇÒ ¼ö ÀÖ´Â ³»±¸¼ºÀÌ ¶Ù¾î³­ °í°­µµ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷Àº ±â°èÀû °­µµ, ³»Ãæ°Ý¼º, ¿­ ¾ÈÁ¤¼º, °æ·®¼º µî ±ÕÇü ÀâÈù Àç·á°¡ ÇÊ¿äÇϸç, ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå´Â ÀÌ·¯ÇÑ Æ¯Á¤ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦Á¶ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇÕ´Ï´Ù.

ȯ°æÀû Áö¼Ó°¡´É¼ºÀº ÷´Ü ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµåÀÇ Çʿ伺À» ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ Å« µµÀü °úÁ¦ÀÔ´Ï´Ù. ÇÃ¶ó½ºÆ½ ¿À¿°°ú ȯ°æ ÆÄ±«¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ »ê¾÷°è´Â º¸´Ù Áö¼Ó°¡´ÉÇÑ °üÇà°ú Àç·á¸¦ äÅÃÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÇÃ¶ó½ºÆ½ »ý»ê ¹× Æó±â·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÌ´Â ¹ÙÀÌ¿À ±â¹Ý ¹× ÀçȰ¿ë ÇÃ¶ó½ºÆ½ È­ÇÕ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ »ý»ê»Ó¸¸ ¾Æ´Ï¶ó, ¼º´É ÀúÇÏ ¾øÀÌ ÀçȰ¿ë ¼ÒÀ縦 ´õ ¸¹ÀÌ ÇÔÀ¯ÇÑ È­ÇÕ¹°À» °³¹ßÇÏ´Â µ¥¿¡µµ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ °úÁ¦´Â ģȯ°æ Á¦Ç°À» ¿ä±¸ÇÏ´Â ±ÔÁ¦¿Í ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϰíÀÚ ÇÏ´Â Æ÷Àå ¹× ¼ÒºñÀç ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

¾ö°ÝÇÑ ¾ÈÀü ¹× ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â °Íµµ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ÀÚµ¿Â÷, ÀüÀÚÁ¦Ç° µî ¸¹Àº »ê¾÷¿¡¼­ È­Àç ¾ÈÀü, Àü±â Àüµµ¼º, À¯ÇØ ¹°Áú »ç¿ë°ú °ü·ÃµÈ ±ÔÁ¦¸¦ ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¸¦ ÅëÇØ Á¦Á¶¾÷ü´Â ³­¿¬Á¦, UV ¾ÈÁ¤Á¦ ¹× ±âŸ ÷°¡Á¦¸¦ ÷°¡ÇÏ¿© Àç·áÀÇ ¼º´ÉÀ» À¯ÁöÇϸ鼭 ÀÌ·¯ÇÑ ±ÔÁ¤À» Áؼö ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀüÀÚ ºÐ¾ß¿¡¼­ º¹ÇÕ ÇÃ¶ó½ºÆ½Àº ÀåÄ¡ÀÇ ¾ÈÀü°ú ³»±¸¼ºÀ» º¸ÀåÇϱâ À§ÇØ ³­¿¬¼º ¹× ¿­ °ü¸®¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ±ÔÁ¦ ¿ä°ÇÀÌ °­È­µÊ¿¡ µû¶ó ¼º´É°ú ¾ÈÀü ±âÁØÀ» ¸ðµÎ ÃæÁ·ÇÏ´Â ¸ÂÃãÇü ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖÀ¸¸ç, °¢ ¿äÀÎÀº ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸ÂÃãÇü °í¼º´É ÇÃ¶ó½ºÆ½ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °¡Àå Å« ¿øµ¿·Â Áß Çϳª´Â ƯÈ÷ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ °æ·®È­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÚµ¿Â÷ ¹× Ç×°ø±â Á¦Á¶¾÷üµéÀÌ ¿¬ºñ Çâ»ó°ú ¹è±â°¡½º ¹èÃâ·® °¨¼Ò¸¦ À§ÇØ ÀÚµ¿Â÷ ¹× Ç×°ø±âÀÇ °æ·®È­¸¦ Ãß±¸Çϸ鼭, º¹ÇÕ ÇÃ¶ó½ºÆ½ÀÌ ±Ý¼Ó ¹× À¯¸®¿Í °°Àº ±âÁ¸ ¼ÒÀ縦 ´ëüÇϰí ÀÖ½À´Ï´Ù. °­µµ, ³»±¸¼º, °æ·®È­¸¦ ¸ðµÎ °®Ãá º¹ÇÕ ÇÃ¶ó½ºÆ½Àº ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¿î¼Û ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀº ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ ¶Ç ´Ù¸¥ ÁÖ¿ä ¼ºÀå ¿äÀÎÀÔ´Ï´Ù. ¼ÒºñÀÚ¿Í »ê¾÷°èÀÇ È¯°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½°ú ÀçȰ¿ë ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿Á¼ö¼ö, »çÅÁ¼ö¼ö, ¼¿·ê·Î¿À½º µî Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ» ¿ø·á·Î ÇÏ´Â ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½Àº ±âÁ¸ ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½¿¡ ºñÇØ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Àû¾î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ÀçȰ¿ë¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó °íǰÁúÀÇ Àç»ý ÇÃ¶ó½ºÆ½ È­ÇÕ¹° °³¹ßÀÌ ÃËÁøµÇ¾î ź¼Ò ¹èÃâ·®ÀÌ ÀûÀº Á¦Ç° »ý»ê¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±ÔÁ¦ ±â°ü ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ Àç·áÀÇ »ç¿ëÀ» Àå·ÁÇÏ´Â ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, À̴ ģȯ°æ ÇÃ¶ó½ºÆ½ È­ÇÕ¹°¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ±â¼úÀÇ ¹ßÀüµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀûÃþ Á¦Á¶(3D ÇÁ¸°ÆÃ), ³ª³ë±â¼ú, ÷´Ü °íºÐÀÚ °¡°ø ±â¼úÀÇ Çõ½ÅÀ¸·Î ¼º´É Ư¼ºÀÌ °³¼±µÈ º¸´Ù Á¤±³ÇÑ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÀüÀÚ, ÇコÄɾî, ¼ÒºñÀç µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÇÃ¶ó½ºÆ½ È­ÇÕ¹°ÀÇ ¿ëµµ¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀüÀÚ »ê¾÷¿¡¼­´Â ¿ì¼öÇÑ Àü±â Àý¿¬¼º, ¿­ ¾ÈÁ¤¼º ¹× ³­¿¬¼º ¼ÒÀç¿¡ ´ëÇÑ ¿ä±¸°¡ ½º¸¶Æ®Æù, ÅÂºí¸´, ¿þ¾î·¯ºí ±â¼ú µîÀÇ ±â±â¿¡ º¹ÇÕ ÇÃ¶ó½ºÆ½À» äÅÃÇϵµ·Ï ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°Ç¼³ »ê¾÷µµ ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ƯÈ÷ ½ÅÈï±¹ ½ÃÀå¿¡¼­´Â µµ½ÃÈ­¿Í ÀÎÇÁ¶ó °³¹ßÀÌ °¡¼ÓÈ­µÇ¸é¼­ ³»±¸¼º, ³»Èļº, °æ·®¼ºÀÌ ¶Ù¾î³­ °Ç¼³ ÀÚÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹è°ü, ´Ü¿­Àç, ¿ÜÀåÀç µî ´Ù¾çÇÑ °Ç¼³ ¿ëµµÀÇ Æ¯Á¤ ¿ä±¸¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â º¹ÇÕ ÇÃ¶ó½ºÆ½Àº ´Ù¿ëµµ¼º, ³»±¸¼º, ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ´Â ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀ¸·Î, ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå ½ÃÀåÀÇ ¼ºÀåÀº °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡, ±â¼ú ¹ßÀü, ÀÚµ¿Â÷, °Ç¼³, ÀüÀÚ, ÆÐŰ¡ µîÀÇ »ê¾÷¿¡¼­ ÀÀ¿ë ºÐ¾ß°¡ È®´ëµÇ´Â µî ´Ù¾çÇÑ ¿äÀÎÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ½ÃÀåÀÇ °ß°íÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ÇÃ¶ó½ºÆ½ ÄÄÆÄ¿îµå´Â Çö´ë Á¦Á¶ ¹× Àç·á °øÇÐÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ºÎÀÀÇÏ´Â ÇÙ½É ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 43°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Plastic Compounding Market to Reach US$118.3 Billion by 2030

The global market for Plastic Compounding estimated at US$75.8 Billion in the year 2023, is expected to reach US$118.3 Billion by 2030, growing at a CAGR of 6.6% over the analysis period 2023-2030. Polypropylene Compounding, one of the segments analyzed in the report, is expected to record a 6.3% CAGR and reach US$35.1 Billion by the end of the analysis period. Growth in the Polyethylene Compounding segment is estimated at 6.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$19.8 Billion While China is Forecast to Grow at 9.9% CAGR

The Plastic Compounding market in the U.S. is estimated at US$19.8 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$27.8 Billion by the year 2030 trailing a CAGR of 9.9% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.0% and 5.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.9% CAGR.

Global Plastic Compounding Market – Key Trends & Drivers Summarized

What Is Plastic Compounding and Why Is It Integral to Material Engineering?

Plastic compounding refers to the process of blending plastics with various additives and fillers to modify their physical, chemical, and mechanical properties for specific applications. By combining polymers with additives such as colorants, stabilizers, reinforcements, and flame retardants, plastic compounds can be tailored to meet the needs of various industries, including automotive, electronics, construction, packaging, and healthcare. This customization is essential for producing plastics with enhanced features like improved strength, flexibility, heat resistance, conductivity, and durability.

Plastic compounding plays a crucial role in the manufacturing process, offering flexibility in material design and enabling industries to create materials suited for high-performance applications. For example, in the automotive industry, compounded plastics are used to reduce vehicle weight, improve fuel efficiency, and meet stringent safety standards by enhancing the impact resistance of components. Similarly, in electronics, compounded plastics are used to provide insulation, heat dissipation, and flame resistance. The versatility of plastic compounding, combined with its ability to meet specific performance criteria, makes it an indispensable part of modern material engineering, allowing manufacturers to innovate and develop products that meet the evolving needs of industries and consumers.

How Are Technological Advancements Shaping the Plastic Compounding Industry?

Technological advancements are driving significant innovations in plastic compounding, enabling manufacturers to produce more advanced and sustainable materials. One of the key trends in this space is the development of high-performance polymers, where compounding processes are used to enhance the mechanical, thermal, and electrical properties of base plastics. Advanced polymers, such as engineering plastics and thermoplastic elastomers (TPEs), are gaining popularity due to their ability to replace traditional materials like metals in demanding applications, particularly in automotive, aerospace, and electronics. For instance, lightweight, high-strength compounded plastics are helping reduce vehicle weight, improve fuel efficiency, and meet stringent emission standards.

Another major advancement is the growing use of nanocomposites in plastic compounding. By incorporating nanoparticles such as carbon nanotubes, nanoclays, or graphene into polymer matrices, manufacturers can significantly improve properties like conductivity, mechanical strength, barrier performance, and flame retardancy. These nanocomposites are finding applications in sectors like electronics, packaging, and automotive, where enhanced material properties are critical for performance and safety. For example, in the electronics industry, nanocomposites help improve thermal management and electromagnetic shielding in devices, while in packaging, they enhance the barrier properties of plastics to extend the shelf life of products.

Sustainability is also a key focus in the plastic compounding industry, with advancements in bio-based polymers and recycled plastic compounds gaining traction. As industries and consumers prioritize environmental responsibility, the demand for biodegradable and renewable plastic compounds is rising. Innovations in plastic compounding have enabled the incorporation of natural fibers, recycled polymers, and biodegradable additives, helping reduce the environmental impact of plastics. Recycled plastic compounding, in particular, is becoming more important as manufacturers aim to create high-quality products from post-consumer and post-industrial waste. These sustainable materials are being used across industries, including packaging, construction, and consumer goods, to meet both performance and environmental standards.

What Challenges Are Driving the Need for Advanced Plastic Compounding?

The demand for advanced plastic compounding is being driven by several challenges that industries face in terms of performance, sustainability, and regulatory compliance. One of the most pressing challenges is the need for materials that can withstand the rigorous demands of high-performance applications, particularly in sectors like automotive, aerospace, and electronics. As vehicles become more fuel-efficient and lightweight, the need for durable, high-strength plastic compounds that can replace traditional materials like metal and glass has grown. These industries require materials that offer a balance between mechanical strength, impact resistance, thermal stability, and lightweight properties, making plastic compounding essential for producing customized solutions that meet these specific requirements.

Environmental sustainability is another major challenge driving the need for advanced plastic compounding. As global awareness of plastic pollution and environmental degradation grows, industries are under increasing pressure to adopt more sustainable practices and materials. This has led to a rise in demand for bio-based and recycled plastic compounds that reduce the environmental impact of plastic production and disposal. In addition to producing biodegradable plastics, companies are focusing on developing compounds that incorporate a higher percentage of recycled materials without compromising on performance. This challenge is particularly relevant in the packaging and consumer goods sectors, where companies are looking to meet regulatory and consumer demands for eco-friendly products.

Compliance with stringent safety and environmental regulations is another critical driver in the plastic compounding market. Many industries, such as automotive and electronics, must comply with regulations related to fire safety, electrical conductivity, and the use of hazardous substances. Plastic compounding allows manufacturers to add flame retardants, UV stabilizers, and other additives to ensure compliance with these regulations while maintaining material performance. For example, in electronics, compounded plastics must meet stringent standards for flame retardancy and thermal management to ensure the safety and durability of devices. As regulatory requirements become more rigorous, the need for customized plastic compounds that meet both performance and safety criteria is increasing.

What Factors Are Driving the Growth in the Plastic Compounding Market?

The growth in the plastic compounding market is being fueled by several key factors, each contributing to the expanding demand for customized, high-performance plastic materials across a variety of industries. One of the most significant drivers is the increasing demand for lightweight materials, particularly in the automotive and aerospace industries. As manufacturers strive to reduce vehicle and aircraft weight to improve fuel efficiency and lower emissions, compounded plastics are being used to replace traditional materials like metal and glass. The ability of compounded plastics to offer a combination of strength, durability, and lightweight properties makes them a key material in the shift toward more energy-efficient transportation solutions.

Sustainability initiatives are another major growth factor in the plastic compounding market. As consumers and industries become more environmentally conscious, there is growing demand for bio-based and recycled plastic compounds. Bio-based plastics, derived from renewable sources like corn, sugarcane, and cellulose, are gaining popularity due to their reduced environmental impact compared to traditional petroleum-based plastics. Similarly, the increased focus on recycling has driven the development of high-quality recycled plastic compounds, which are being used to create products with a smaller carbon footprint. Governments and regulatory bodies are also playing a role in promoting the use of sustainable materials, further driving demand for eco-friendly plastic compounds.

Technological advancements in plastic compounding are also contributing to market growth. Innovations in additive manufacturing (3D printing), nanotechnology, and advanced polymer processing techniques are enabling the production of more sophisticated plastic compounds with enhanced performance characteristics. These advancements are expanding the applications of plastic compounds in industries such as electronics, healthcare, and consumer goods. For example, in the electronics industry, the need for materials with excellent electrical insulation, thermal stability, and flame retardancy is driving the adoption of compounded plastics in devices such as smartphones, tablets, and wearable technology.

The construction industry is another key driver of growth in the plastic compounding market. As urbanization and infrastructure development accelerate, particularly in emerging markets, the demand for durable, weather-resistant, and lightweight construction materials is increasing. Compounded plastics, which can be tailored to meet the specific needs of construction applications, such as piping, insulation, and exterior cladding, are becoming a preferred material choice due to their versatility, durability, and cost-effectiveness.

In summary, the growth of the plastic compounding market is being driven by a combination of factors, including the need for lightweight and durable materials, the increasing focus on sustainability, technological advancements, and expanding applications in industries such as automotive, construction, electronics, and packaging. These factors are contributing to the robust growth of the market, positioning plastic compounding as a critical technology for meeting the evolving needs of modern manufacturing and material engineering.

Select Competitors (Total 43 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â