¼¼°èÀÇ Ç×°ø¿ìÁÖ¿ë ÇÊÅÍ ½ÃÀå
Aerospace Filters
»óǰÄÚµå : 1588892
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 92 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,298,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,896,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×°ø¿ìÁÖ¿ë ÇÊÅÍ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»ó

2023³â 8¾ï 2,670¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø¿ìÁÖ ÇÊÅÍ ¼¼°è ½ÃÀåÀº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 3.6% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾×ü ÇÊÅÍ´Â CAGR 3.2%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 6¾ï 7,040¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¡¾î ÇÊÅÍ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 2,380¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.0%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Ç×°ø¿ìÁÖ ÇÊÅÍ ½ÃÀåÀº 2023³â 2¾ï 2,380¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 6.0%ÀÇ ¼ºÀå·üÀ» º¸À̸ç 2030³â¿¡´Â 2¾ï 1,310¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 1.9%¿Í 2.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 2.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Ç×°ø¿ìÁÖ ÇÊÅÍ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÇÊÅͰ¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Ç×°ø¿ìÁÖ ÇÊÅÍ´Â ¿£Áø ¹× ¿¬·á ½Ã½ºÅÛ¿¡¼­ ȯ°æ Á¦¾î ½Ã½ºÅÛ(ECS) ¹× À¯¾Ð ȸ·Î¿¡ À̸£±â±îÁö Ç×°ø±â ½Ã½ºÅÛÀÇ ¾ÈÀü, ½Å·Ú¼º ¹× È¿À²¼ºÀ» º¸ÀåÇÏ´Â Áß¿äÇÑ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ ÇÊÅÍ´Â ¸ÕÁö, ¸ÕÁö, ½À±â, ±Ý¼Ó ÀÔÀÚ¿Í °°Àº ¿À¿° ¹°ÁúÀ» Á¦°ÅÇÏ¿© Áß¿äÇÑ ÀåºñÀÇ ¿ÀÀÛµ¿À̳ª °íÀåÀ» À¯¹ßÇÒ ¼ö ÀÖ´Â ¿À¿°¹°ÁúÀ» Á¦°ÅÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. Ç×°ø¿ìÁÖ »ç¾÷¿¡¼­´Â ƯÈ÷ Á¦Æ® ¿£ÁøÀ̳ª ¿¬·á ¶óÀΰú °°Àº ¼¶¼¼ÇÑ ºÎǰÀÇ °æ¿ì ÀÛÀº ¿À¿°µµ ½É°¢ÇÑ ¼Õ»óÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÊÅÍ´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ Ã»°á°ú ÀûÀýÇÑ ±â´ÉÀ» À¯ÁöÇÏ°í ºÎ½Ä, ¸·Èû ¹× ¸¶¸ð À§ÇèÀ» ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ¿¬·á ÇÊÅÍ´Â ±ú²ýÇÑ ¿¬·á¸¸ ¿£Áø¿¡ µµ´ÞÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© È¿À²À» ¶³¾î¶ß¸®°Å³ª ¿£Áø °íÀåÀ¸·Î À̾îÁú ¼ö ÀÖ´Â ÀÔÀÚÀÇ ÃàÀûÀ» ¹æÁöÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î À¯¾Ð ÇÊÅÍ´Â Âø·ú ÀåÄ¡, ºê·¹ÀÌÅ© ¹× ºñÇà Á¦¾î Ç¥¸é°ú °°Àº Áß¿äÇÑ ±â´ÉÀ» Á¦¾îÇÏ´Â Ç×°ø±â À¯¾Ð ½Ã½ºÅÛÀÇ ¹«°á¼ºÀ» À¯ÁöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÊÅͰ¡ ¾øÀ¸¸é ºÎǰÀÇ ¿­È­ ¹× ½Ã½ºÅÛ °íÀåÀÇ À§ÇèÀÌ Å©°Ô Áõ°¡ÇÏ¿© Ç×°ø±â ÀüüÀÇ ¾ÈÀüÀÌ ¼Õ»óµÉ ¼ö ÀÖ½À´Ï´Ù. ¿äÄÁ´ë, Ç×°ø¿ìÁÖ ÇÊÅÍ´Â ¹Î°£ Ç×°ø ¹× ¹æÀ§ ½Ã½ºÅÛÀÇ ¿øÈ°ÇÑ ÀÛµ¿À» º¸ÀåÇÏ´Â ±âº»ÀûÀÎ ¾ÈÀü ÀåÄ¡·Î, ±â°è ºÎǰ»Ó¸¸ ¾Æ´Ï¶ó ž½ÂÀÚÀÇ »ý¸íµµ º¸È£ÇÕ´Ï´Ù.

±â¼úÀº ¾î¶»°Ô Ç×°ø¿ìÁÖ ÇÊÅÍÀÇ ¼³°è¿Í È¿À²À» Çâ»ó½ÃÄ×À»±î?

±â¼úÀÇ ¹ßÀüÀ¸·Î Ç×°ø¿ìÁÖ ÇÊÅÍÀÇ ¼³°è¿Í ¼º´ÉÀÌ Å©°Ô Çâ»óµÇ¾î º¸´Ù È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç, Á¡Á¡ ´õ º¹ÀâÇØÁö´Â Çö´ë Ç×°ø±âÀÇ ¿ä±¸»çÇ׿¡ ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ÁÖ¿ä Çõ½Å Áß Çϳª´Â °íÈ¿À² ¹Ì¸³ÀÚ °ø±â(HEPA) ÇÊÅÍÀÇ °³¹ß·Î, ƯÈ÷ ºñÇà Áß ±â³» °ø±â¸¦ ±ú²ýÇÏ°Ô À¯ÁöÇÏ´Â ¿ªÇÒÀ» Çϴ ȯ°æ Á¦¾î ½Ã½ºÅÛ(ECS)¿¡¼­ µÎµå·¯Áö´Âµ¥, HEPA ÇÊÅÍ´Â ÇöÀç ¹ÚÅ׸®¾Æ¿Í ¹ÙÀÌ·¯½º¸¦ Æ÷ÇÔÇÑ ¹Ì¼¼ ÀÔÀÚ¸¦ Æ÷ÁýÇÒ ¼ö ÀÖ¾î ¹ÐÆóµÈ ±â³» ȯ°æ¿¡¼­ ¹ÐÆóµÈ ±â³» ȯ°æ¿¡¼­ ½Â°´°ú ½Â¹«¿øÀ» º¸È£ÇÒ ¼ö ÀÖ´Â Ãß°¡ÀûÀÎ ÃþÀ» Á¦°øÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä ±â¼ú °³¹ßÀº ÇÊÅÍ¿¡ ³ª³ë¼¶À¯ ¹× ÇÕ¼º ¸Åü¿Í °°Àº ÷´Ü ¼ÒÀ縦 »ç¿ëÇÏ¿© °¡º±°í ÄÄÆÑÆ®ÇÑ µðÀÚÀÎÀ» À¯ÁöÇϸ鼭 ¿À¿°¹°ÁúÀ» Æ÷ÁýÇÏ´Â ´É·ÂÀ» Çâ»ó½ÃŲ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ³»¸¶¸ð¼º, ³»½Ä¼º, ³»¿­¼ºÀÌ ¶Ù¾î³ª Ç×°ø±â ¿£Áø ¹× ¿¬·á ½Ã½ºÅÛ¿¡ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÁÖ¸§ ¼³°è¿Í °°Àº ÇÊÅÍ Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î ºÎÇǸ¦ ´Ã¸®Áö ¾Ê°íµµ ÇÊÅÍÀÇ Ç¥¸éÀûÀÌ Áõ°¡ÇÏ¿© ÀÔÀÚ Æ÷Áý È¿À²ÀÌ Çâ»óµÇ°í ¾Ð·Â ¼Õ½ÇÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ÇÊÅÍ ±â¼úÀÌ µîÀåÇϸ鼭 ÇÊÅÍÀÇ ¼ö¸íÀÌ ´ÙÇÑ °ÍÀ» °¨ÁöÇÒ ¼ö ÀÖ´Â ¼¾¼­¸¦ ÅëÇØ ÇÊÅÍÀÇ »óŸ¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¿¹Ãø À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Ç×°ø±â ¿î¿µÀÚ°¡ °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ ÇÊÅ͸¦ ±³Ã¼ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ´Ù¿îŸÀÓÀ» ÁÙÀ̰í Àü¹ÝÀûÀÎ ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ½Ã½ºÅÛÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁö°í °íµµÈ­µÊ¿¡ µû¶ó, ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ÇÊÅͰ¡ Çö´ëÀÇ Ç×°ø ¹× ¹æ»ê ¿ëµµÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸»çÇ×À» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô ÇØÁÙ °ÍÀÔ´Ï´Ù.

Ç×°ø¿ìÁÖ¿ë ÇÊÅÍÀÇ ÁÖ¿ä ¿ëµµ ¹× ÃÖÁ¾ ¿ëµµ´Â?

Ç×°ø¿ìÁÖ¿ë ÇÊÅÍ´Â Ç×°ø±âÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿îÇ׿¡ ÇʼöÀûÀÎ ´Ù¾çÇÑ ¿ëµµ¿¡ »ç¿ëµË´Ï´Ù. °¡Àå Áß¿äÇÑ ¿ëµµ Áß Çϳª´Â ¿£Áø ¿©°ú ½Ã½ºÅÛÀ¸·Î, ¿£Áø¿¡ ±ú²ýÇÑ °ø±â¿Í ¿¬·á¸¦ °ø±ÞÇÏ¿© È¿À²À» ¶³¾î¶ß¸®°Å³ª ¼¶¼¼ÇÑ ¿£Áø ºÎǰ¿¡ ¼Õ»óÀ» ÀÔÈú ¼ö ÀÖ´Â ¿À¿°À» ¹æÁöÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. °ø±â ÈíÀÔ±¸ ÇÊÅÍ´Â ¸ÕÁö, ¸ÕÁö ¹× ±âŸ ÀÔÀÚ°¡ ¿£Áø¿¡ À¯ÀԵǴ °ÍÀ» ¹æÁöÇÏ°í ¿ÀÀÏ ÇÊÅÍ¿Í ¿¬·á ÇÊÅÍ´Â ºÎ½Ä, ¸·Èû ¹× °ú¿­·Î À̾îÁú ¼ö ÀÖ´Â ¿À¿° ¹°ÁúÀÌ ³»ºÎ ½Ã½ºÅÛ¿¡ À¯ÀԵǴ °ÍÀ» ¹æÁöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÊÅÍ´Â ºñÇà Áß °¡È¤ÇÑ Á¶°Ç¿¡ ³ëÃâµÇ´Â Ç×°ø±â ¿£ÁøÀÇ ¼º´ÉÀ» À¯ÁöÇÏ°í ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿£Áø ¿Ü¿¡µµ Ç×°ø¿ìÁÖ ÇÊÅÍ´Â ·£µù ±â¾î, ºê·¹ÀÌÅ©, ºñÇà Á¦¾î¿Í °°Àº Ç×°ø±âÀÇ Áß¿äÇÑ ±â´ÉÀ» ±¸µ¿ÇÏ´Â À¯¾Ð ½Ã½ºÅÛ¿¡µµ ÇʼöÀûÀÔ´Ï´Ù. À¯¾Ð ÇÊÅÍ´Â ¹ëºê, ¾×Ãß¿¡ÀÌÅÍ ¹× ±âŸ ±¸¼º ¿ä¼Ò¸¦ ¼Õ»ó½Ãų ¼ö ÀÖ´Â ÀÔÀÚ¸¦ Á¦°ÅÇÏ¿© ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ¿øÈ°ÇÑ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. ȯ°æ Á¦¾î ½Ã½ºÅÛ(ECS)µµ ±â³» °ø±âÁúÀ» À¯ÁöÇϱâ À§ÇØ ¿©°ú¿¡ Å©°Ô ÀÇÁ¸ÇÏ¿© ½Â°´°ú ½Â¹«¿ø¿¡°Ô ºñÇà ³»³» ±ú²ýÇÏ°í ¿Âµµ Á¶ÀýµÈ °ø±â¸¦ Á¦°øÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ƯÈ÷ HEPA ÇÊÅÍ´Â À¯ÇØÇÑ °ø±â ÁßÀÇ ÀÔÀÚ¸¦ Æ÷ÁýÇÏ¿© Áúº´ Àü¿°ÀÇ À§ÇèÀ» ÁÙÀ̰í Àüü °´½ÇÀÇ °ø±âÁúÀ» °³¼±ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. Ç×°ø¿ìÁÖ ÇÊÅÍÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ëµµ´Â ¿¬·á ½Ã½ºÅÛ¿¡¼­ ¿À¿° ¹°ÁúÀÌ ¿£Áø¿¡ µµ´ÞÇÏ¿© ¸·ÈûÀ̳ª ¼º´É ÀúÇÏ¿Í °°Àº ¹®Á¦¸¦ ÀÏÀ¸Å°´Â °ÍÀ» ¹æÁöÇÏ´Â °ÍÀÔ´Ï´Ù. ÇÊÅÍ´Â ¹Î°£ Ç×°ø»Ó¸¸ ¾Æ´Ï¶ó ±º¿ë Ç×°ø±â, µå·Ð, ¿ìÁÖ¼±¿¡¼­µµ ¸¶Âù°¡Áö·Î Áß¿äÇϸç, ¿À¿°Àº ÀÓ¹«¸¦ À§ÅÂ·Ó°Ô ÇÏ°í ±â¹Ð ±â¼úÀ» À§Çè¿¡ ºü¶ß¸± ¼ö ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ ÇÊÅÍ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

Ç×°ø¿ìÁÖ ÇÊÅÍ ½ÃÀåÀÇ ¼ºÀåÀº ¹Î°£ Ç×°ø »ê¾÷ÀÇ È®´ë, Ç×°ø¿ìÁÖ ±â¼úÀÇ ¹ßÀü, ¾ÈÀü ¹× È¿À²¼º¿¡ ´ëÇÑ ±ÔÁ¦ ¿ä°Ç Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·Â Áß Çϳª´Â Àü ¼¼°è Ç×°ø ÀÌ¿ëÀÚ ¼ö Áõ°¡·Î ÀÎÇØ Ç×°ø±âÀÇ ½Å±Ô »ý»êÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Ç×°ø»ç°¡ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Ç×°ø±â¸¦ È®ÀåÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Ç×°ø±âÀÇ È¿À²¼º°ú ¼ö¸íÀ» º¸ÀåÇϱâ À§ÇÑ °í¼º´É ÇÊÅÍÀÇ Çʿ伺µµ ±×¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ±ÔÁ¦¿Í Ç×°ø ¿¬·áºñ »ó½ÂÀ¸·Î ÀÎÇØ ¿¬·á È¿À²ÀÌ ³ôÀº Ç×°ø±â°¡ ¿ä±¸µÊ¿¡ µû¶ó ¿£Áø ¼º´ÉÀ» ÃÖÀûÈ­Çϰí À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö Àִ ÷´Ü ¿©°ú ½Ã½ºÅÛÀÇ Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹¹æ ºÐ¾ß´Â Ç×°ø¿ìÁÖ¿ë ÇÊÅÍ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Çö´ëÀÇ ±º¿ë Ç×°ø±â¿Í µå·ÐÀº ¸ÕÁö, ¸ð·¡, ÆÄÆíÀ¸·Î ÀÎÇÑ ¿À¿°ÀÌ Ç×»ó ¼º´É¿¡ À§ÇùÀÌ µÇ´Â ±ØÇÑÀÇ È¯°æ¿¡¼­ ¿î¿µµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Â÷¼¼´ë Ç×°ø±â ¹× ÷´Ü ¹«±âÀÇ °³¹ß·Î ÀÎÇØ ±º¿ë Ç×°ø ¹× ¹«ÀÎ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Á¶°Ç¿¡¼­µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö Àִ Ư¼ö ÇÊÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº ƯÈ÷ ÃÖ±Ù ¼¼°è °Ç°­ À̽´¿¡ ºñÃß¾î ½Â°´ÀÇ °Ç°­°ú ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Ç×°ø»çµéÀº ½Â°´µé¿¡°Ô º¸´Ù ¾ÈÀüÇÏ°í ±ú²ýÇÑ È¯°æÀ» Á¦°øÇϱâ À§ÇØ HEPA ÇÊÅÍ¿Í °°Àº ±â³» °ø±â ¿©°ú ½Ã½ºÅÛ °³¼±¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Ç×°ø¿ìÁÖ ÇÊÅÍ Á¦Á¶¾÷üµé¿¡°Ô Å« ½ÃÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, Á¤ºÎ ±â°ü°ú ¹Î°£ ±â¾÷ ¸ðµÎ ¿ìÁÖ Å½»ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Ç×°ø¿ìÁÖ ÇÊÅÍ ½ÃÀå¿¡ »õ·Î¿î ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ¿ìÁÖ¼±°ú ÀΰøÀ§¼ºÀº ¿ìÁÖ °ø°£ÀÇ Áø°ø »óÅ¿¡¼­ Á¤¹Ð ±â±â¸¦ ¿À¿°À¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ °íµµ·Î Àü¹®È­µÈ ¿©°ú ½Ã½ºÅÛÀÌ ÇÊ¿äÇϸç, ÀÓ¹«ÀÇ ºóµµ¿Í º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÇÊÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî Ç×°ø¿ìÁÖ »ê¾÷ÀÇ Áö¼ÓÀûÀÎ ¼ºÀå°ú ¼º°ø¿¡ ÀÖ¾î ÇÊÅÍÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 36°Ç)

  • Amphenol
  • Camfil
  • Clarcor
  • Donaldson
  • Eaton Filtration
  • Freudenberg
  • Hollingsworth & Vose
  • Norman Filter Company
  • Pall
  • Parker Hannifin
  • Porvair
  • PTI Technologies
  • Purolator Facet, Inc.
  • Recco Filters, Ltd
  • Swift Filters

    ¸ñÂ÷

    Á¦1Àå Á¶»ç ¹æ¹ý

    Á¦2Àå ÁÖ¿ä ¿ä¾à

    • ½ÃÀå °³¿ä
    • ÁÖ¿ä ±â¾÷
    • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ
    • ¼¼°è ½ÃÀå Àü¸Á

    Á¦3Àå ½ÃÀå ºÐ¼®

    • ¹Ì±¹
    • ij³ª´Ù
    • ÀϺ»
    • Áß±¹
    • À¯·´
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • È£ÁÖ
    • Àεµ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿
    • À̶õ
    • À̽º¶ó¿¤
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ±âŸ Áßµ¿
    • ¾ÆÇÁ¸®Ä«

    Á¦4Àå °æÀï

    LSH
  • ¿µ¹® ¸ñÂ÷

    ¿µ¹®¸ñÂ÷

    Global Aerospace Filters Market to Reach US$1.1 Billion by 2030

    The global market for Aerospace Filters estimated at US$826.7 Million in the year 2023, is expected to reach US$1.1 Billion by 2030, growing at a CAGR of 3.6% over the analysis period 2023-2030. Liquid Filters, one of the segments analyzed in the report, is expected to record a 3.2% CAGR and reach US$670.4 Million by the end of the analysis period. Growth in the Air Filters segment is estimated at 4.3% CAGR over the analysis period.

    The U.S. Market is Estimated at US$223.8 Million While China is Forecast to Grow at 6.0% CAGR

    The Aerospace Filters market in the U.S. is estimated at US$223.8 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$213.1 Million by the year 2030 trailing a CAGR of 6.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.9% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.4% CAGR.

    Global Aerospace Filters Market - Key Trends and Drivers Summarized

    Why Are Filters Essential in Aerospace Applications?

    Aerospace filters are crucial components that ensure the safety, reliability, and efficiency of aircraft systems, ranging from engines and fuel systems to environmental control systems (ECS) and hydraulic circuits. These filters are designed to remove contaminants such as dirt, dust, moisture, and metal particles that could otherwise lead to the malfunction or failure of vital equipment. Given the high-stakes nature of aerospace operations, even minor contamination can cause severe damage, particularly in sensitive components like jet engines and fuel lines. Filters play a vital role in maintaining the cleanliness and proper function of these systems, reducing the risk of corrosion, blockages, and wear. For example, fuel filters ensure that only clean fuel reaches the engine, preventing the buildup of particles that could reduce efficiency or lead to engine failure. Similarly, hydraulic filters maintain the integrity of the aircraft's hydraulic systems, which control critical functions such as landing gear, brakes, and flight control surfaces. Without these filters, the risk of component degradation and system failure would increase dramatically, potentially compromising the safety of the entire aircraft. In essence, aerospace filters are a fundamental safeguard that ensures smooth operations in both commercial aviation and defense systems, protecting not only mechanical components but also the lives of those on board.

    How Has Technology Advanced Aerospace Filter Design and Efficiency?

    Technological advancements have significantly enhanced the design and performance of aerospace filters, making them more efficient, durable, and adaptable to the increasingly complex requirements of modern aircraft. One of the key innovations in this field is the development of high-efficiency particulate air (HEPA) filters, particularly in environmental control systems (ECS), which are responsible for maintaining clean cabin air during flights. HEPA filters are now capable of capturing microscopic particles, including bacteria and viruses, providing an added layer of protection for passengers and crew in enclosed cabin environments. Another major technological development is the use of advanced materials such as nanofibers and synthetic media in filters, which improve their ability to capture contaminants while maintaining a lightweight and compact design. These materials are also more resistant to wear, corrosion, and high temperatures, making them ideal for use in aircraft engines and fuel systems. In addition, advancements in filter manufacturing techniques, such as the use of pleated designs, have increased the surface area of filters without adding bulk, improving their efficiency in capturing particles while reducing pressure drop—an important factor in maintaining system performance. Additionally, smart filter technologies are emerging, allowing real-time monitoring of filter conditions through sensors that can detect when filters are nearing the end of their lifecycle. These innovations enable predictive maintenance, allowing aircraft operators to replace filters before they fail, reducing downtime and enhancing overall safety. As aerospace systems become more complex and sophisticated, these technological advancements ensure that filters can meet the evolving demands of modern aviation and defense applications.

    What Are the Key Applications and End-Uses of Aerospace Filters?

    Aerospace filters are utilized in a wide array of applications, each critical to the safe and efficient operation of aircraft. One of the most important areas is the engine filtration system, which ensures that clean air and fuel are delivered to the engine, preventing contamination that could reduce efficiency or cause damage to sensitive engine components. Air intake filters prevent dust, debris, and other particles from entering the engine, while oil and fuel filters keep the internal systems free of contaminants that could lead to corrosion, blockages, or overheating. These filters play an essential role in maintaining engine performance and extending the lifespan of aircraft engines, which are subject to extreme conditions during flight. In addition to engines, aerospace filters are vital in hydraulic systems, which power critical aircraft functions such as landing gear, brakes, and flight controls. Hydraulic filters remove particles that could damage valves, actuators, and other components, ensuring the smooth operation of these systems. Environmental control systems (ECS) also rely heavily on filtration to maintain air quality within the cabin, ensuring that passengers and crew are provided with clean, temperature-regulated air throughout the flight. HEPA filters, in particular, are used to trap harmful airborne particles, reducing the risk of disease transmission and improving overall cabin air quality. Another key application of aerospace filters is in the fuel system, where they prevent contaminants from reaching the engine and causing issues like clogging or decreased performance. Beyond commercial aviation, filters are equally important in military aircraft, drones, and spacecraft, where contamination could jeopardize missions and compromise sensitive technologies.

    What’s Driving Growth of the Aerospace Filters Market?

    The growth in the aerospace filters market is driven by several factors, including the expansion of the commercial aviation industry, advancements in aerospace technologies, and increasing regulatory requirements for safety and efficiency. One of the primary drivers is the growing number of air travelers worldwide, which has led to a surge in new aircraft production. As airlines expand their fleets to meet rising demand, the need for high performance filters to ensure the efficiency and longevity of these aircraft increases correspondingly. Moreover, the push for more fuel-efficient aircraft, driven by environmental regulations and the rising cost of aviation fuel, has further underscored the importance of advanced filtration systems that can optimize engine performance and reduce maintenance costs. In addition, the defense sector is playing a critical role in driving demand for aerospace filters. Modern military aircraft and drones operate in extreme environments where contamination from dust, sand, and debris is a constant threat to performance. The increased investment in military aviation and unmanned systems, particularly with the development of next-generation aircraft and advanced weaponry, has significantly boosted the demand for specialized filters that can function reliably in these conditions. Another key factor driving market growth is the increasing focus on passenger health and safety, particularly in light of recent global health challenges. Airlines are investing in improved cabin air filtration systems, such as HEPA filters, to ensure a safer and cleaner environment for passengers, thus creating a significant market opportunity for aerospace filter manufacturers. Lastly, the growing interest in space exploration, driven by both government agencies and private companies, has created new avenues for the aerospace filters market. Spacecraft and satellites require highly specialized filtration systems to protect sensitive instruments from contamination in the vacuum of space, and as missions become more frequent and complex, the demand for these filters is expected to rise. Together, these factors highlight the vital role that filters play in ensuring the continued growth and success of the aerospace industry.

    Select Competitors (Total 36 Featured) -

    TABLE OF CONTENTS

    I. METHODOLOGY

    II. EXECUTIVE SUMMARY

    III. MARKET ANALYSIS

    IV. COMPETITION

    (ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
    ¨Ï Copyright Global Information, Inc. All rights reserved.
    PC¹öÀü º¸±â