¼¼°èÀÇ ¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ½ÃÀå
Bulk Acoustic Wave (BAW) Filters
»óǰÄÚµå : 1588880
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 346¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â¿¡ 114¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ¼¼°è ½ÃÀåÀº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 17.2% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 346¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çʸ§ ¹úÅ© À½Çâ °øÁø±â´Â CAGR 19.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 167¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼Ö¸®µå ¸¶¿îÆ® °øÁø±â BAW ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 31¾ï ´Þ·¯, Áß±¹Àº CAGR 23.2%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ½ÃÀåÀº 2023³â 31¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 86¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 23.2%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 12.4%¿Í 14.7%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 13.5%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅͶõ ¹«¾ùÀ̸ç, ¿Ö Çö´ë Åë½Å ½Ã½ºÅÛ¿¡ ÇʼöÀûÀΰ¡?

¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ´Â ´Ù¾çÇÑ Åë½Å ½Ã½ºÅÛ¿¡¼­ À½ÆÄ¸¦ »ç¿ëÇÏ¿© ƯÁ¤ Á֯ļö ½ÅÈ£¸¦ ÇÊÅ͸µÇϴ ÷´Ü ÀüÀÚºÎǰÀÔ´Ï´Ù. BAW ÇÊÅÍ´Â ¿øÄ¡ ¾Ê´Â ½ÅÈ£´Â °¨¼è½ÃŰ¸é¼­ ÇÊ¿äÇÑ Á֯ļö¸¦ ¼±ÅÃÀûÀ¸·Î Åë°ú½ÃÄÑ ½ÅÈ£ÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, BAW ÇÊÅÍ´Â À̵¿Åë½Å, ¹«¼± ³×Æ®¿öÅ©, IoT ±â±â, Â÷·®¿ë ÀüÀÚÁ¦Ç°, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °í¼º´É, ÄÄÆÑÆ®ÇÑ Å©±â, °íÁ֯ļö¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ È¿À²ÀûÀÌ°í ¾ÈÁ¤ÀûÀÎ ½ÅÈ£ 󸮰¡ ÇÊ¿äÇÑ Çö´ë Åë½Å ½Ã½ºÅÛ¿¡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

BAW ÇÊÅÍ¿¡ ´ëÇÑ ¼ö¿ä´Â ¹«¼± Åë½Å ±â¼ú, ƯÈ÷ 4G ¹× 5G ³×Æ®¿öÅ©ÀÇ º¸±Þ°ú ÇÔ²² ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿¬°áµÈ ±â±âÀÇ ¼ö¿Í °í¼Ó µ¥ÀÌÅÍ Àü¼Û¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó º¹ÀâÇÑ Á֯ļö ½ºÆåÆ®·³À» °ü¸®ÇÒ ¼ö ÀÖ´Â È¿°úÀûÀÎ ÇÊÅ͸µ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í Áß¿äÇØÁö°í ÀÖÀ¸¸ç, BAW ÇÊÅÍ´Â ±âÁ¸ ÇÊÅÍ¿¡ ºñÇØ ¼º´ÉÀÌ Çâ»óµÇ¾î ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ Åë½ÅÀ» ±¸ÇöÇÏ´Â µ¥ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ Åë½ÅÀ» ±¸ÇöÇÏ´Â µ¥ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

BAW ÇÊÅÍ´Â ¾î¶»°Ô ½ÅÈ£ ǰÁú°ú ÀåÄ¡ ¼º´ÉÀ» Çâ»ó½Ã۴°¡?

BAW ÇÊÅÍ´Â ½ÅÈ£ Àü¼Û¿¡¼­ ³ôÀº ¼±Åüº°ú ³·Àº »ðÀÔ ¼Õ½ÇÀ» Á¦°øÇÏ¿© ½ÅÈ£ ǰÁú°ú ÀåÄ¡ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ºÒÇÊ¿äÇÑ Á֯ļö¸¦ ÇÊÅ͸µÇÏ´Â µ¿½Ã¿¡ ÇÊ¿äÇÑ ½ÅÈ£¸¦ Å©°Ô ÀúÇϽÃŰÁö ¾Ê°í Åë°ú½ÃŰ´Â ´É·ÂÀº Åë½Å ½Ã½ºÅÛ¿¡¼­ ³ëÀÌÁî¿Í °£¼·À» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. BAW ÇÊÅÍ´Â ÈÞ´ëÆù, ±âÁö±¹ µî ½ÅÈ£ ¹«°á¼º À¯Áö°¡ °íǰÁú Åë½Å¿¡ ÇʼöÀûÀÎ Çù´ë¿ª ÇÊÅ͸µÀÌ ÇÊ¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ƯÈ÷ È¿°úÀûÀ̸ç, º¸´Ù ¼±¸íÇÑ À½¼º, Çâ»óµÈ µ¥ÀÌÅÍ Àü¼Û·ü, ¸ð¹ÙÀÏ ¹× ¹«¼± ±â±âÀÇ Àü¹ÝÀûÀÎ ¼º´É Çâ»óÀ¸·Î À̾îÁý´Ï´Ù. ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù.

BAW ÇÊÅÍ´Â ½ÅÈ£ ǰÁúÀ» Çâ»ó½ÃŰ´Â °Í ¿Ü¿¡µµ ÀüÀÚ±â±âÀÇ Àü¹ÝÀûÀÎ È¿À²¼º°ú ¼ÒÇüÈ­¿¡ ±â¿©ÇÕ´Ï´Ù. BAW ÇÊÅÍ´Â ÀÛ°í °¡º­¿ö ¸ð¹ÙÀÏ ±â±â³ª °ø°£ Á¦¾àÀÌ ÀÖ´Â ±âŸ ¾ÖÇø®ÄÉÀ̼ǿ¡ ³»ÀåÇϱ⿡ ÀûÇÕÇϸç, Á¦Á¶¾÷ü´Â ±â´É ÀúÇÏ ¾øÀÌ ´õ ½½¸²ÇÑ µðÀÚÀÎÀ» ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. BAW ÇÊÅÍÀÇ ÅëÇÕÀº °­·ÂÇÑ ¼º´ÉÀ» º¸ÀåÇϸ鼭µµ Åë½Å ½Ã½ºÅÛÀÇ Àüü DzÇÁ¸°Æ®¸¦ ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ Á¦Á¶¾÷ü¿Í ¿£Áö´Ï¾î¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ´Ù"°í ¸»Çß½À´Ï´Ù. ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº BAW ÇÊÅÍÀÇ ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀ¸·Î ¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍÀÇ ¼º´É, ¼³°è ¹× Á¦Á¶ °øÁ¤ÀÌ Å©°Ô Çâ»óµÇ¾î ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ´õ¿í È¿°úÀûÀÔ´Ï´Ù. ÁÖ¿ä ±â¼ú Çõ½Å Áß Çϳª´Â BAW ÇÊÅÍÀÇ À½Çâ Æ¯¼ºÀ» Çâ»ó½ÃŰ´Â ÷´Ü Àç·á ¹× Á¦Á¶ ±â¼úÀÇ °³¹ßÀÔ´Ï´Ù. ÁúÈ­¾Ë·ç¹Ì´½(AlN) ¹× ¸®Æ¬ ´Ï¿Àº£ÀÌÆ®(LiNbO3)¿Í °°Àº °íǰÁú ¾ÐÀü Àç·á¸¦ »ç¿ëÇÏ¿© Á֯ļö Ư¼ºÀÌ Çâ»óµÇ°í ¿­ ¾ÈÁ¤¼ºÀÌ °³¼±µÈ ÇÊÅ͸¦ ±¸ÇöÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â BAW ÇÊÅͰ¡ ´õ ³ôÀº Á֯ļö¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© 5G¸¦ Æ÷ÇÔÇÑ Â÷¼¼´ë Åë½Å ±â¼ú¿¡ ÀûÇÕÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº BAW ÇÊÅÍ¿Í Àü·Â ÁõÆø±â ¹× ÀúÀâÀ½ ÁõÆø±â¿Í °°Àº ´Ù¸¥ ±¸¼º¿ä¼Ò¸¦ ÅëÇÕÇÏ¿© ´ÜÀÏ Ä¨À¸·Î ¸¸µç °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ ¿Â Ĩ(SoC) Á¢±Ù ¹æ½ÄÀº ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ Åë½Å ÀåºñÀÇ Àüü Å©±â¿Í º¹À⼺À» ÁÙÀ̰í, 3D ÆÐŰ¡ ¹× Ĩ ½ºÄÉÀÏ ÆÐŰ¡°ú °°Àº ÷´Ü ÆÐŰ¡ ±â¼úÀº BAW ÇÊÅÍÀÇ ¼ÒÇüÈ­¸¦ ´õ¿í ÃËÁøÇÏ¿© ¼ÒÇü ÀüÀÚ±â±â¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¼ÒÇü ÀüÀÚ±â±â¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ Á¦Á¶¾÷ü´Â Ãֽй«¼± Åë½Å ½Ã½ºÅÛÀÇ Áõ°¡ÇÏ´Â ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â °í¼º´É ÇÊÅ͸¦ °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚµ¿È­µÈ Á¦Á¶ °øÁ¤°ú µðÁöÅÐ ¼³°è µµ±¸ÀÇ ÃâÇöÀ¸·Î BAW ÇÊÅÍÀÇ »ý»ê È¿À²°ú ǰÁú °ü¸®µµ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­ µÈ Å×½ºÆ® ¹× ÃøÁ¤ ±â¼úÀ» ÅëÇØ Á¦Á¶ Áß ÇÊÅÍ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© ÃÖÁ¾ Á¦Ç°ÀÇ Àϰü¼º°ú ½Å·Ú¼ºÀ» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ã¹Ä·¹ÀÌ¼Ç ¹× ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ ¿£Áö´Ï¾î´Â ÃÖÀûÈ­µÈ ÇÊÅÍ ±¸Á¶¸¦ ¼³°èÇÏ°í ¹°¸®Àû ÇÁ·ÎÅäŸÀÔÀÌ »ý»êµÇ±â Àü¿¡ ¼º´É Ư¼ºÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº BAW ÇÊÅÍÀÇ ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Åë½Å, ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ ºÐ¾ß·Î Àû¿ë ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù.

BAW ÇÊÅÍ ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¹úÅ© ź¼ºÆÄ(BAW) ÇÊÅÍ ½ÃÀåÀÇ ¼ºÀåÀº 5G ±â¼úÀÇ ±Þ¼ÓÇÑ Ã¤ÅÃ, ¹«¼± Åë½Å Àåºñ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, IoT ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¹ßÀü, È¿À²ÀûÀÎ Á֯ļö °ü¸®¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. °íÁÖÆÄ µ¿ÀÛ°ú ½ÅÈ£ ó¸® ´É·ÂÀÇ Çâ»óÀ» ÇÊ¿ä·Î ÇÏ´Â 5G ³×Æ®¿öÅ©ÀÇ ±¸ÃàÀ¸·Î BAW ÇÊÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸ð¹ÙÀÏ »ç¾÷ÀÚµéÀÌ ³×Æ®¿öÅ© ¿ë·®°ú Ä¿¹ö¸®Áö¸¦ °­È­Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, 5G¿Í °ü·ÃµÈ º¹ÀâÇÑ Á֯ļö ½ºÆåÆ®·³À» °ü¸®Çϱâ À§Çؼ­´Â °í±Þ ÇÊÅ͸µ ¼Ö·ç¼ÇÀÇ ÅëÇÕÀÌ ÇʼöÀûÀÔ´Ï´Ù.

»ç¹°ÀÎÅͳÝ(IoT)ÀÇ È®´ë·Î ÀÎÇÑ Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ Áõ°¡´Â BAW ÇÊÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, IoT ¾ÖÇø®ÄÉÀ̼ÇÀº ´Ù¾çÇÑ Á֯ļö ´ë¿ª¿¡ ´ëÇÑ È¿À²ÀûÀÎ Åë½Å ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ È¯°æ¿¡¼­ ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» º¸ÀåÇϱâ À§ÇØ BAW ÇÊÅͰ¡ ÇʼöÀûÀÔ´Ï´Ù. ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿Í Ä¿³ØÆ¼µåÄ« ±â¼úÀÇ ÅëÇÕÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â Åë½ÅÀ» À§ÇÑ È¿°úÀûÀÎ ÇÊÅ͸µ ¼Ö·ç¼Ç¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ BAW ÇÊÅÍ´Â ´Ù¾çÇÑ È¯°æ¿¡¼­ ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

¶ÇÇÑ, ¹«¼± Åë½Å ½Ã½ºÅÛ¿¡¼­ °£¼·À» ÁÙÀÌ°í ½ÅÈ£ ǰÁúÀ» Çâ»ó½ÃŰ´Â °ÍÀÌ Áß¿äÇØÁü¿¡ µû¶ó °í±Þ ÇÊÅ͸µ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÌ Á֯ļö ´ë¿ª »ç¿ë ¹× ³ëÀÌÁî ·¹º§¿¡ ´ëÇØ ´õ¿í ¾ö°ÝÇÑ ¿ä°ÇÀ» ºÎ°úÇÔ¿¡ µû¶ó, BAW ÇÊÅÍ´Â Àü¹ÝÀûÀÎ ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ ±ÔÁ¤ Áؼö¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀ» Áß½ÉÀ¸·Î ÇÑ ½ÅÈï ½ÃÀåÀÇ Åë½Å ÀÎÇÁ¶ó°¡ ºü¸£°Ô ¼ºÀåÇϸ鼭 BAW ÇÊÅÍ Á¦Á¶¾÷ü¿¡ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ ¾ÖÇø®ÄÉÀÌ¼Ç È®´ë, ÷´Ü Åë½Å ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ BAW ÇÊÅÍ ½ÃÀåÀº ÁøÈ­ÇÏ´Â »ê¾÷Àû ¿ä±¸¿Í ¹«¼± ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ´Â ¿©°ÇÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 33°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Bulk Acoustic Wave (BAW) Filters Market to Reach US$34.6 Billion by 2030

The global market for Bulk Acoustic Wave (BAW) Filters estimated at US$11.4 Billion in the year 2023, is expected to reach US$34.6 Billion by 2030, growing at a CAGR of 17.2% over the analysis period 2023-2030. Film Bulk Acoustic Resonator, one of the segments analyzed in the report, is expected to record a 19.1% CAGR and reach US$16.7 Billion by the end of the analysis period. Growth in the Solidly Mounted Resonator BAW segment is estimated at 15.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.1 Billion While China is Forecast to Grow at 23.2% CAGR

The Bulk Acoustic Wave (BAW) Filters market in the U.S. is estimated at US$3.1 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$8.6 Billion by the year 2030 trailing a CAGR of 23.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.4% and 14.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.5% CAGR.

Global Bulk Acoustic Wave (BAW) Filters Market - Key Trends & Drivers Summarized

What Are Bulk Acoustic Wave (BAW) Filters & Why Are They Essential in Modern Communication Systems?

Bulk Acoustic Wave (BAW) filters are advanced electronic components that use acoustic waves to filter specific frequency signals in various communication systems. These filters are crucial in ensuring signal integrity by selectively allowing desired frequencies to pass while attenuating unwanted signals. BAW filters are widely used in mobile communication devices, wireless networks, and a range of applications such as IoT devices, automotive electronics, and consumer electronics. Their high performance, compact size, and ability to operate at high frequencies make them essential for modern communication systems that require efficient and reliable signal processing.

The demand for BAW filters has surged due to the increasing proliferation of wireless communication technologies, particularly with the rollout of 4G and 5G networks. As the number of connected devices and the demand for high-speed data transmission continue to rise, the need for effective filtering solutions that can manage complex frequency spectrums becomes more critical. BAW filters provide improved performance compared to traditional filters, making them integral components in enabling faster and more reliable communication in various applications.

How Do BAW Filters Improve Signal Quality & Device Performance?

BAW filters enhance signal quality and device performance by providing high selectivity and low insertion loss in signal transmission. Their ability to filter out unwanted frequencies while allowing desired signals to pass without significant degradation is crucial in minimizing noise and interference in communication systems. This results in clearer audio, improved data rates, and overall better performance in mobile and wireless devices. BAW filters are particularly effective in applications that require narrow bandwidth filtering, such as in mobile phones and base stations, where maintaining signal integrity is essential for high-quality communication.

In addition to improving signal quality, BAW filters contribute to the overall efficiency and compactness of electronic devices. Their small size and lightweight nature make them suitable for integration into mobile devices and other space-constrained applications, allowing manufacturers to create slimmer designs without compromising functionality. This is particularly important in the consumer electronics sector, where consumer demand for lightweight, high-performance devices continues to grow. The integration of BAW filters helps reduce the overall footprint of communication systems while ensuring robust performance, making them an attractive option for manufacturers and engineers.

How Are Technological Advancements Shaping the Development of BAW Filters?

Technological advancements have significantly enhanced the performance, design, and manufacturing processes of Bulk Acoustic Wave (BAW) filters, making them more effective for a variety of applications. One of the key innovations is the development of advanced materials and manufacturing techniques that improve the acoustic properties of BAW filters. The use of high-quality piezoelectric materials, such as aluminum nitride (AlN) and lithium niobate (LiNbO3), has led to filters with better frequency response and improved thermal stability. These materials enable BAW filters to operate efficiently at higher frequencies, making them suitable for next-generation communication technologies, including 5G.

Another significant advancement is the integration of BAW filters with other components, such as power amplifiers and low-noise amplifiers, into single-chip solutions. This system-on-chip (SoC) approach reduces the overall size and complexity of communication devices while enhancing performance. Advanced packaging technologies, such as 3D packaging and chip-scale packages, further facilitate the miniaturization of BAW filters, allowing them to be seamlessly integrated into compact electronic devices. These innovations enable manufacturers to develop high-performance filters that meet the increasing demands of modern wireless communication systems.

The emergence of automated manufacturing processes and digital design tools has also improved the production efficiency and quality control of BAW filters. Automated testing and measurement techniques allow for real-time monitoring of filter performance during production, ensuring consistency and reliability in the final products. Additionally, simulation and modeling software enable engineers to design optimized filter structures, enhancing their performance characteristics before physical prototypes are produced. These technological advancements not only enhance the capabilities of BAW filters but also expand their applications in various sectors, including telecommunications, automotive, and industrial automation.

What Factors Are Driving Growth in the BAW Filters Market?

The growth in the Bulk Acoustic Wave (BAW) filters market is driven by several factors, including the rapid adoption of 5G technology, increasing demand for wireless communication devices, advancements in IoT applications, and the rising focus on efficient spectrum management. The rollout of 5G networks, which require high-frequency operation and improved signal processing capabilities, has significantly increased the demand for BAW filters. As mobile operators seek to enhance network capacity and coverage, the integration of advanced filtering solutions becomes essential for managing the complex frequency spectrum associated with 5G.

The growing number of connected devices, fueled by the expansion of the Internet of Things (IoT), is also driving demand for BAW filters. IoT applications often require efficient communication solutions that can handle various frequency bands, making BAW filters critical for ensuring reliable data transmission in diverse environments. The automotive sector is also witnessing increased adoption of BAW filters, as the integration of advanced driver-assistance systems (ADAS) and connected vehicle technologies relies on effective filtering solutions for reliable communication.

Additionally, the emphasis on reducing interference and improving signal quality in wireless communication systems has led to a heightened focus on advanced filtering technologies. As regulatory bodies impose stricter requirements on spectrum usage and noise levels, BAW filters offer a viable solution for achieving compliance while enhancing overall performance. Emerging markets, particularly in Asia-Pacific, are experiencing rapid growth in telecommunications infrastructure, creating new opportunities for BAW filter manufacturers. With ongoing innovations, expanding applications across various sectors, and increasing demand for advanced communication solutions, the BAW filters market is poised for sustained growth, driven by evolving industry needs and advancements in wireless technology.

Select Competitors (Total 33 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â