¼¼°èÀÇ Â÷·® Á¦¾î ÀåÄ¡ ½ÃÀå
Vehicle Control Units
»óǰÄÚµå : 1588861
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Â÷·® Á¦¾î ÀåÄ¡ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 225¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 73¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Â÷·® Á¦¾î ÀåÄ¡ ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 17.5% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 225¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î ±¸¼º ¿ä¼Ò´Â CAGR 18.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 149¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Çϵå¿þ¾î ±¸¼º ¿ä¼Ò ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 16.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯, Áß±¹Àº CAGR 22.4%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Â÷·® Á¦¾î ÀåÄ¡ ½ÃÀå ±Ô¸ð´Â 2023³â 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö ½ÃÀå ±Ô¸ð°¡ 59¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 22.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 12.1%¿Í 14.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 13.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Â÷·®Á¦¾îÀåÄ¡(VCU) ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Â÷·®Á¦¾îÀåÄ¡(VCU)¶õ ¹«¾ùÀ̸ç, ¿Ö Çö´ë ÀÚµ¿Â÷ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀΰ¡?

Â÷·® Á¦¾î ÀåÄ¡(VCU)´Â ¿£Áø Á¦¾î, º¯¼Ó±â, ºê·¹ÀÌÅ©, ¾ÈÀü, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÇÏÀ§ ½Ã½ºÅÛÀÇ ¼º´ÉÀ» °ü¸®Çϰí ÃÖÀûÈ­ÇÏ´Â ÀÚµ¿Â÷ÀÇ ÇÙ½É ÀüÀÚ ÀåÄ¡·Î, ±âÁ¸ ³»¿¬ ±â°üÂ÷(ICE)¿Í ÷´Ü Àü±âÀÚµ¿Â÷(EV) ¸ðµÎ¿¡¼­ °¡¼Ó ¹× °¨¼Ó, ¿¡³ÊÁö °ü¸®, ¿îÀü Áö¿ø ±â´ÉÀ» Á¶Á¤ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. VCU´Â Â÷·®ÀÇ 'µÎ³ú'·Î¼­ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ó¸®Çϰí ÃÖÀûÀÇ ¼º´É, ¾ÈÀü, ¿¬·á ¹× ¿¡³ÊÁö È¿À²À» º¸ÀåÇϱâ À§ÇÑ ¸í·ÉÀ» ½ÇÇàÇÏ¿© Â÷·®ÀÇ ¼º´É, ¾ÈÀü, ¿¬·á ¹× ¿¡³ÊÁö È¿À²À» º¸ÀåÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù.

VCUÀÇ Á߿伺Àº º¹ÀâÇÑ ÀÚµ¿Â÷ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ°í °ü¸®ÇÏ¿© ÀÚµ¿Â÷¸¦ º¸´Ù ¾ÈÀüÇÏ°í ½º¸¶Æ®Çϸç È¿À²ÀûÀ¸·Î ¸¸µå´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Àüµ¿È­, ÀÚÀ²ÁÖÇà, Ä¿³ØÆ¼µåÄ«·Î À̵¿ÇÔ¿¡ µû¶ó VCU´Â ´Ù¾çÇÑ ÇÏÀ§ ½Ã½ºÅÛÀ» ¿øÈ°ÇÏ°Ô ÀÛµ¿½Ã۱â À§ÇØ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àü±âÀÚµ¿Â÷¿¡¼­ VCU´Â ¹èÅ͸® ¼º´É, ¿¡³ÊÁö ȸ¼ö ¹× ¸ðÅÍ Á¦¾î¸¦ °ü¸®ÇÏ¿© ÁÖÇà°Å¸® ¿¬Àå ¹× Àü¹ÝÀûÀÎ È¿À²¼º Çâ»ó¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. º¸´Ù ½º¸¶Æ®Çϰí È¿À²ÀûÀÎ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó VCU´Â ÃֽŠÀÚµ¿Â÷ ½Ã½ºÅÛÀÇ Çʼö ±¸¼º ¿ä¼Ò·Î ÀÚµ¿È­, Ä¿³ØÆ¼ºñƼ ¹× Àüµ¿È­ÀÇ Áøº¸¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº VCU ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀ¸·Î Â÷·® Á¦¾î ÀåÄ¡(VCU)ÀÇ ´É·Â, È¿À²¼º ¹× ±â´ÉÀÌ Å©°Ô Çâ»óµÇ¾î ÀÚµ¿Â÷ ºÐ¾ß Àü¹ÝÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ÅëÇÕ ¹× Áß¾Ó ÁýÁᫎ VCUÀÇ µîÀåÀÔ´Ï´Ù. ÀÌ VCU´Â ¿©·¯ °³ÀÇ °³º° Á¦¾î À¯´ÖÀ» ÇϳªÀÇ °í¼º´É À¯´ÖÀ¸·Î ´ëüÇÏ¿© ¿©·¯ Â÷·® ±â´ÉÀ» µ¿½Ã¿¡ °ü¸®ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áß¾Ó ÁýÁᫎ VCU´Â Â÷·® ¾ÆÅ°ÅØÃ³¸¦ ´Ü¼øÈ­ÇÏ°í ¹è¼± º¹À⼺À» ÁÙÀÌ¸ç µ¥ÀÌÅÍ Ã³¸® ¼Óµµ¸¦ Çâ»ó½ÃÄÑ ÁÖÇà°Å¸® ÃÖÀûÈ­¸¦ À§ÇØ ½Ã½ºÅÛ ÅëÇÕ°ú °æ·®È­°¡ Áß¿äÇÑ Àü±âÀÚµ¿Â÷(EV)¿¡ ÀûÇÕÇÕ´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» VCU¿¡ ÅëÇÕÇÏ¿© Â÷·® ¼º´É°ú ¾ÈÀü¼ºÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖÀ¸¸ç, AI°¡ žÀçµÈ VCU´Â ¿¹Ãø ºÐ¼®ÀÌ °¡´ÉÇÏ¿© ¿îÀü »óȲ, ÃËÁø¿äÀÎ Çൿ, ȯ°æ ¿äÀο¡ µû¶ó ½Ç½Ã°£À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI ±â¹Ý VCU´Â EVÀÇ ¿¡³ÊÁö ¹èºÐÀ» ÃÖÀûÈ­Çϰí, ¿¹Ãø Á¦¾î¸¦ ÅëÇØ Á¦µ¿ ½Ã½ºÅÛÀ» °­È­Çϸç, Áö¼ÓÀûÀÎ ÇнÀ ¾Ë°í¸®ÁòÀ» ÅëÇØ ÀÚÀ² ÁÖÇà ±â´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¾¼­ À¶ÇÕ ±â¼úÀÇ ¹ßÀüÀ¸·Î VCU´Â Ä«¸Þ¶ó, ·¹ÀÌ´õ, LiDAR µî ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Â÷·®(SDV)À¸·ÎÀÇ ÀüȯÀº VCU¿¡µµ º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. ÃֽŠVCU´Â OTA(Over-the-Air) ¾÷µ¥ÀÌÆ®¸¦ Áö¿øÇÏ¿© ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¹°¸®Àû °³ÀÔ ¾øÀÌ ¿ø°ÝÀ¸·Î ¼ÒÇÁÆ®¿þ¾î ¾÷±×·¹À̵带 ¹èÆ÷Çϰí, »õ·Î¿î ±â´ÉÀ» Ãß°¡Çϰí, ¹ö±×¸¦ ¼öÁ¤ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ±â´ÉÀ» ÅëÇØ Â÷·®ÀÌ Ãֽбâ¼ú¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á Â÷·® ¼ö¸í, ¾ÈÀü¼º ¹× °í°´ ¸¸Á·µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ 5G Ä¿³ØÆ¼ºñƼÀÇ ºÎ»óÀ¸·Î VCUÀÇ Åë½Å ±â´ÉÀÌ Çâ»óµÇ¾î Â÷·®, ÀÎÇÁ¶ó ¹× Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛ °£¿¡ ´õ ºü¸£°í ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ ±³È¯ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº VCUÀÇ ±â´ÉÀ» È®ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ »ê¾÷ÀÇ ÀÚµ¿È­, Ä¿³ØÆ¼ºñƼ, Àüµ¿È­¿Í °°Àº ±¤¹üÀ§ÇÑ Ãß¼¼¸¦ Áö¿øÇÕ´Ï´Ù.

´Ù¾çÇÑ Â÷Á¾¿¡¼­ Â÷·® Á¦¾î ÀåÄ¡ÀÇ »õ·Î¿î ÀÀ¿ë ºÐ¾ß´Â ¹«¾ùÀΰ¡?

Â÷·® Á¦¾î À¯´ÖÀº Çö´ë ±³Åë¼ö´ÜÀÇ °íµµÀÇ ±â´É, È¿À²¼º ¹× ¾ÈÀü¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ´Ù¾çÇÑ Â÷Á¾¿¡ ´ëÇÑ Àû¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿¡¼­ VCU´Â ¹èÅ͸® °ü¸®, ȸ»ý Á¦µ¿, ÆÄ¿öÆ®·¹ÀÎ Á¦¾î, ¿­ °ü¸® µî Áß¿äÇÑ ±â´ÉÀ» °ü¸®Çϸç, ¿¡³ÊÁö »ç¿ë ÃÖÀûÈ­, ÁÖÇà°Å¸® ¿¬Àå, ÃæÀü È¿À² Çâ»ó¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇÏ¿© EVÀÇ ¼º´É¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó VCU´Â ¾ç¹æÇâ ÃæÀü, ½º¸¶Æ® ¿¡³ÊÁö ¶ó¿ìÆÃ, Àç»ý °¡´É ¿¡³ÊÁö¿ø°úÀÇ ÅëÇÕ°ú °°Àº ±â´ÉÀ» Áö¿øÇÏ°Ô µÇ¾ú½À´Ï´Ù.

ÇÏÀ̺긮µå Â÷·®¿¡¼­ VCU´Â ³»¿¬±â°ü(ICE)°ú Àü±â ¸ðÅÍÀÇ »óÈ£ ÀÛ¿ëÀ» °ü¸®ÇÏ¿© ÁÖÇà »óȲ¿¡ µû¶ó ¿¬·á È¿À²°ú Àü·Â °ø±ÞÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. VCU´Â ¿¡³ÊÁö È帧ÀÇ ±ÕÇüÀ» ¸ÂÃß°í, Àü·Â ºÐ¹è¸¦ Á¶Á¤Çϰí, ÇÏÀ̺긮µå ±¸µ¿ ¸ðµå¸¦ Á¦¾îÇÏ¿© ICE¿Í Àü·Â °£ÀÇ ¿øÈ°ÇÑ ÀüȯÀ» º¸ÀåÇÕ´Ï´Ù. Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Â÷·®(PHEV)¿¡¼­ VCU´Â ÃæÀü °ü¸®¿Í ¿¡³ÊÁö ȸ»ýµµ ´ã´çÇϸç, ÃÖ°í ¼öÁØÀÇ ¿¬ºñ È¿À²°ú ¹èÃâ·® °¨¼Ò¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷(AV)¿¡¼­ VCU´Â ÁßÃ߽Űæ°èÀÇ ¿ªÇÒÀ» ¼öÇàÇÏ¸ç ¼¾¼­ ÅëÇÕ, ÀÇ»ç°áÁ¤, ½Ç½Ã°£ ³»ºñ°ÔÀ̼ǰú °°Àº º¹ÀâÇÑ ÀÛ¾÷À» °ü¸®ÇÕ´Ï´Ù. Ä«¸Þ¶ó, ·¹ÀÌ´õ, LiDAR, GPSÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÚÀ²ÁÖÇàÀ» ½ÇÇöÇÕ´Ï´Ù. ¶ÇÇÑ, Æ®·°°ú ¹ö½º¸¦ Æ÷ÇÔÇÑ »ó¿ëÂ÷ VCU´Â °æ·Î ÃÖÀûÈ­, ºÎÇÏ ºÐ»ê, ½Ç½Ã°£ Áø´Ü°ú °°Àº °í±Þ Â÷·® °ü¸® ÀÛ¾÷À» ó¸®ÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, VCUÀÇ ¹ü¿ë¼º°ú ÀûÀÀ¼ºÀº ½Ç½Ã°£ Á¦¾î, Ä¿³ØÆ¼ºñƼ, È¿À²¼ºÀÌ ÇÙ½ÉÀÎ Çö´ë ÀÚµ¿Â÷ ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ½Ç½Ã°£ Á¦¾î, Ä¿³ØÆ¼ºñƼ, È¿À²¼ºÀÌ ÇÙ½ÉÀÎ Çö´ë ÀÚµ¿Â÷ ½Ã½ºÅÛ¿¡¼­ VCUÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶ÇÕ´Ï´Ù.

Â÷·®Á¦¾îÀåÄ¡(VCU) ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

Â÷·® Á¦¾î ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀåÀº Àü±âÀÚµ¿Â÷ÀÇ º¸±Þ, ÀÚÀ²ÁÖÇà ±â¼úÀÇ ¹ßÀü, Ä¿³ØÆ¼µå Â÷·® ÀÎÇÁ¶óÀÇ ºÎ»ó µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¼¼°è Àü±âÈ­·ÎÀÇ Àüȯ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¾ö°ÝÇÑ ¹è±â °¡½º ±ÔÁ¦¸¦ ÃæÁ·Çϱâ À§ÇØ Àü±âÀÚµ¿Â÷¿¡ ¸¹Àº ÅõÀÚ¸¦Çϰí ÀÖÀ¸¸ç, ´õ ±ú²ýÇÑ ±³Åë ¼ö´Ü¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, EV »ý»êÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó ¹èÅ͸® ¼º´É, ¿¡³ÊÁö ºÐ¹è ¹× ¿­ °ü¸®¸¦ °ü¸®ÇÏ´Â °í±Þ VCU¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. °ü¸®¸¦ °ü¸®ÇÏ´Â °í±Þ VCU¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, VCU´Â ±Þ¼ºÀåÇÏ´Â Àü±âÂ÷ ½ÃÀå¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ÀÇ ÀÚµ¿È­ ¼öÁØÀÌ ³ô¾ÆÁö¸é¼­ °í±Þ VCU¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Ã·´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)À» µµÀÔÇÏ°í ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷¸¦ ÇâÇØ ³ª¾Æ°¡°í ÀÖ´Â °¡¿îµ¥, ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÚÀ²ÁÖÇàÀ» º¸ÀåÇϱâ À§ÇØ Ã³¸® ´É·Â, AI ±â´É, ¼¾¼­ ÅëÇÕÀÌ °­È­µÈ VCU°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ VCU´Â ½Ç½Ã°£ ÀÇ»ç°áÁ¤, °íµµÀÇ ÀÎÁö ¹× ¿¹Ãø ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÚµ¿Â÷ ºÐ¾ßÀÇ ±¤¹üÀ§ÇÑ ÀÚµ¿È­ Ãß¼¼¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

5G Ä¿³ØÆ¼ºñƼ, V2X(Vehicle-to-Everything) Åë½Å, SDV(Software-Defined Vehicle) µî Ä¿³ØÆ¼µå Â÷·® ±â¼úÀÇ ¹ßÀüÀº VCU ½ÃÀåÀ» ´õ¿í °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Â÷·®, ÀÎÇÁ¶ó, Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º °£ ½Ç½Ã°£ µ¥ÀÌÅÍ ±³È¯À» °¡´ÉÇÏ°Ô ÇÏ¿© ±³Åë °ü¸®, ¿¹Áö Á¤ºñ, ¿ø°Ý Áø´Ü µîÀÇ ±â´ÉÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¬°á¼ºÀº ¾ÈÀü¼ºÀ» ³ôÀ̰í, ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, »ç¿ëÀÚ °æÇèÀ» °³¼±Çϱ⠶§¹®¿¡ VCU´Â ½º¸¶Æ® Ä¿³ØÆ¼µå ±³Åë ½Ã½ºÅÛ °³¹ßÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Á¤ºÎ Â÷¿øÀÇ Ä£È¯°æÀûÀÌ°í ¾ÈÀüÇÑ ÀÚµ¿Â÷¿¡ ´ëÇÑ Àμ¾Æ¼ºê¿Í ±ÔÁ¦ Àǹ«È­µµ VCU ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç, Àü±âÂ÷ µµÀÔÀ» ÃËÁøÇÏ´Â Á¤Ã¥, ¾ö°ÝÇÑ ¹è±â°¡½º ¹èÃâ ±âÁØ ¹× ¾ÈÀü ±ÔÁ¦·Î ÀÎÇØ ÷´Ü Â÷·® Á¦¾î ±â¼ú¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. AI ÅëÇÕ, ¼¾¼­ À¶ÇÕ, Ä¿³ØÆ¼ºñƼÀÇ Çõ½ÅÀ¸·Î VCU ½ÃÀåÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ Àüµ¿È­, ÀÚµ¿È­, Ä¿³ØÆ¼ºñƼ¸¦ ÇâÇÑ ¼¼°è Æ®·»µå¿¡ ÈûÀÔ¾î ³ôÀº ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Vehicle Control Units Market to Reach US$22.5 Billion by 2030

The global market for Vehicle Control Units estimated at US$7.3 Billion in the year 2023, is expected to reach US$22.5 Billion by 2030, growing at a CAGR of 17.5% over the analysis period 2023-2030. Software Component, one of the segments analyzed in the report, is expected to record a 18.1% CAGR and reach US$14.9 Billion by the end of the analysis period. Growth in the Hardware Component segment is estimated at 16.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 22.4% CAGR

The Vehicle Control Units market in the U.S. is estimated at US$1.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$5.9 Billion by the year 2030 trailing a CAGR of 22.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.1% and 14.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.4% CAGR.

Global Vehicle Control Units (VCU) Market - Key Trends & Drivers Summarized

What Are Vehicle Control Units (VCU), and Why Are They So Crucial in Modern Automotive Systems?

Vehicle Control Units (VCU) are central electronic devices within vehicles that manage and optimize the performance of various subsystems, including engine control, transmission, braking, safety, and infotainment systems. VCUs play a crucial role in both conventional internal combustion engine (ICE) vehicles and advanced electric vehicles (EVs) by coordinating functions like acceleration, deceleration, energy management, and driver assistance. They serve as the “brain” of the vehicle, processing data from sensors and executing commands to ensure optimal performance, safety, and fuel or energy efficiency.

The importance of VCUs lies in their ability to integrate and manage complex automotive systems, making vehicles safer, smarter, and more efficient. As the automotive industry shifts towards electrification, autonomous driving, and connected vehicles, VCUs have become even more critical for achieving seamless operation across various subsystems. In electric vehicles, for example, VCUs manage battery performance, energy recovery, and motor control, playing a vital role in extending range and improving overall efficiency. With the rising demand for smarter and more efficient vehicles, VCUs have become indispensable components in modern automotive systems, supporting advancements in automation, connectivity, and electrification.

How Are Technological Advancements Shaping the Vehicle Control Units (VCU) Market?

Technological advancements have significantly enhanced the capabilities, efficiency, and functionality of Vehicle Control Units (VCU), driving innovation across the automotive sector. One of the most significant developments is the rise of integrated and centralized VCUs, which replace multiple individual control units with a single, high-performance unit that manages multiple vehicle functions simultaneously. These centralized VCUs simplify vehicle architecture, reduce wiring complexity, and improve data processing speeds, making them ideal for electric vehicles (EVs), where system integration and weight reduction are critical for range optimization.

The integration of artificial intelligence (AI) and machine learning (ML) into VCUs has further improved vehicle performance and safety. AI-powered VCUs are capable of predictive analytics, which allows for real-time adjustments based on driving conditions, driver behavior, and environmental factors. For example, AI-driven VCUs can optimize energy distribution in EVs, enhance braking systems with predictive control, and improve autonomous driving functions through continuous learning algorithms. Additionally, advancements in sensor fusion technology have enabled VCUs to process data from multiple sensors, such as cameras, radar, and LiDAR, improving the accuracy and reliability of advanced driver-assistance systems (ADAS) and automated driving systems.

The transition to software-defined vehicles (SDVs) has also transformed VCUs. Modern VCUs now support over-the-air (OTA) updates, allowing automakers to deploy software upgrades remotely, add new features, and fix bugs without the need for physical intervention. This capability enhances vehicle longevity, safety, and customer satisfaction by ensuring that vehicles remain up-to-date with the latest technology. Furthermore, the rise of 5G connectivity has improved VCU communication capabilities, enabling faster and more reliable data exchange between vehicles, infrastructure, and cloud-based systems. These technological innovations not only expand the functions of VCUs but also support the broader trends toward automation, connectivity, and electrification in the automotive industry.

What Are the Emerging Applications of Vehicle Control Units Across Different Vehicle Types?

Vehicle Control Units are finding expanding applications across various vehicle types, driven by the need for advanced functionality, efficiency, and safety in modern transportation. In electric vehicles (EVs), VCUs manage critical functions such as battery management, regenerative braking, powertrain control, and thermal management. They play a central role in optimizing energy usage, extending range, and improving charging efficiency, making them integral to EV performance. As EV technology evolves, VCUs are increasingly supporting features like bidirectional charging, smart energy routing, and integration with renewable energy sources.

In hybrid vehicles, VCUs manage the interaction between the internal combustion engine (ICE) and electric motor, optimizing fuel efficiency and power delivery based on driving conditions. These VCUs balance energy flow, regulate power distribution, and control hybrid drive modes, ensuring seamless transitions between ICE and electric power. In plug-in hybrids (PHEVs), VCUs also handle charging management and energy recuperation, making them essential for achieving the highest levels of fuel efficiency and reduced emissions.

For autonomous vehicles (AVs), VCUs serve as the central nervous system, managing complex tasks like sensor integration, decision-making, and real-time navigation. They process data from cameras, radar, LiDAR, and GPS to ensure safe and reliable autonomous operation. Additionally, VCUs in commercial vehicles, including trucks and buses, handle advanced fleet management tasks, such as route optimization, load balancing, and real-time diagnostics, improving efficiency and reducing downtime. The versatility and adaptability of VCUs across these different vehicle types highlight their critical role in modern automotive systems, where real-time control, connectivity, and efficiency are key.

What Drives Growth in the Vehicle Control Units (VCU) Market?

The growth in the Vehicle Control Units market is driven by several factors, including the increasing adoption of electric vehicles, advancements in autonomous driving technology, and the rise of connected vehicle infrastructure. One of the primary growth drivers is the global shift toward electrification, with automakers investing heavily in electric vehicles to meet stringent emission regulations and growing consumer demand for cleaner transportation. As EV production accelerates, the demand for advanced VCUs that manage battery performance, energy distribution, and thermal management has surged, making VCUs essential components in the rapidly expanding EV market.

The push for higher levels of vehicle automation has also fueled the demand for sophisticated VCUs. As automakers introduce more advanced driver-assistance systems (ADAS) and progress toward fully autonomous vehicles, VCUs with enhanced processing power, AI capabilities, and sensor integration are required to ensure safe and reliable autonomous driving. These VCUs enable real-time decision-making, advanced perception, and predictive analytics, supporting the broader trend of automation in the automotive sector.

The rise of connected vehicle technologies, including 5G connectivity, vehicle-to-everything (V2X) communication, and software-defined vehicles (SDVs), has further driven the VCU market. VCUs enable real-time data exchange between vehicles, infrastructure, and cloud-based services, supporting functions like traffic management, predictive maintenance, and remote diagnostics. This connectivity enhances safety, reduces downtime, and improves user experiences, making VCUs central to the development of smart and connected transportation systems.

Government incentives and regulatory mandates for cleaner and safer vehicles have also supported the growth of the VCU market. Policies promoting EV adoption, stricter emissions standards, and safety regulations have increased the need for advanced vehicle control technologies. With ongoing innovations in AI integration, sensor fusion, and connectivity, the VCU market is poised for strong growth, driven by global trends toward electrification, automation, and connectivity in the automotive industry.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â