¼¼°èÀÇ ÀǾàǰ ¿©°ú ½ÃÀå
Pharmaceutical Filtration
»óǰÄÚµå : 1588837
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ÀǾàǰ ¿©°ú ½ÃÀåÀº 2030³â±îÁö 510¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 170¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀǾàǰ ¿©°ú ¼¼°è ½ÃÀåÀº 2023-2030³â µ¿¾È ¿¬Æò±Õ 17.0%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â¿¡´Â 510¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸âºê·¹ÀÎ ÇÊÅÍ´Â CAGR 21.0%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 196¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÁ¸®ÇÊÅÍ ¹× µö ¹Ìµð¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 17.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 43¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 22.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀǾàǰ ¿©°ú ½ÃÀåÀº 2023³â 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö ½ÃÀå ±Ô¸ð°¡ 141¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 22.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 11.3%¿Í 14.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 12.9%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀǾàǰ ¿©°ú ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÀǾàǰ ¿©°ú ½ÃÀåÀº ¾î¶»°Ô ¹ßÀüÇØ ¿Ô´Â°¡?

ÀǾàǰ ¿©°ú´Â ÀǾàǰ Á¦Á¶ ¹× Á¤Á¦¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ¿© ÀǾàǰ¿¡ ¿À¿° ¹°Áú, ÀÔÀÚ ¹× ¹Ì»ý¹°ÀÌ Æ÷ÇÔµÇÁö ¾Êµµ·Ï º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ö³â µ¿¾È ÀǾàǰ ¿©°ú ½ÃÀåÀº Á¦¾à Á¦Á¶ °øÁ¤ÀÇ ¹ßÀü°ú ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç¿¡ ÈûÀÔ¾î Å©°Ô ¹ßÀüÇØ ¿Ô½À´Ï´Ù. Ãʱâ Á¦¾à ¾÷°èÀÇ ¿©°ú ±â¼úÀº ¾×ü¿¡¼­ °íü ÀÔÀÚ¸¦ Á¦°ÅÇÏ´Â °Í°ú °°Àº ±âº»ÀûÀÎ ¿©°ú ¿ä±¸¿¡ ÁßÁ¡À» µÎ¾ú½À´Ï´Ù. ±×·¯³ª Á¦¾à Á¦Á¶°¡ Á¡Á¡ ´õ º¹ÀâÇØÁü¿¡ µû¶ó ¿©°úÀÇ ¹üÀ§´Â Á¤¹Ð¿©°ú, ³ª³ë ¿©°ú, ÇÑ¿Ü ¿©°ú ¹× Çö´ë ÀǾàǰ Á¦Á¶¿¡ ¿ä±¸µÇ´Â ¾ö°ÝÇÑ ¼øµµ ±âÁØÀ» ÃæÁ·Çϵµ·Ï ¼³°èµÈ ±âŸ °í±Þ °øÁ¤À¸·Î È®ÀåµÇ¾ú½À´Ï´Ù.

¿©°ú °øÁ¤Àº ¹«±Õ ÁÖ»çÁ¦, »ý¹°ÇÐÀû Á¦Á¦, ¹é½Å ¹× ±âŸ ¼¶¼¼ÇÑ Á¦Á¦ »ý»ê¿¡ ƯÈ÷ Áß¿äÇϸç, ¹Ì·®ÀÇ ºÒ¼ø¹°µµ ÀǾàǰÀÇ ¾ÈÀü¼º°ú È¿´ÉÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿À¿°¿¡ ¸Å¿ì ¹Î°¨ÇÑ »ý¹°ÇÐÀû Á¦Á¦ ¹× ¹ÙÀÌ¿À½Ã¹Ð·¯¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ °í±Þ ¿©°ú ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÀǾàǰ ¿©°ú ½ÃÀåÀº ±ÔÁ¦ ¹× ǰÁú °ü¸® ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ °í±Þ, ½Å·ÚÇÒ ¼ö ÀÖ°í È®Àå °¡´ÉÇÑ ¿©°ú ½Ã½ºÅÛÀ» ¿øÇÏ´Â ¹ÙÀÌ¿À Á¦¾à»ç, À§Å¹»ý»ê(CMO) ¹× ¿¬±¸ ±â°ü¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ¾î¶»°Ô ÀǾàǰ ¿©°ú ½ÃÀåÀ» Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ÀǾàǰ ¿©°ú ½ÃÀå¿¡¼­ ¿©°ú È¿À²À» ³ôÀ̰í, È®À强À» °­È­Çϸç, Á¡Á¡ ´õ ¾ö°ÝÇØÁö´Â ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µî ÀǾàǰ ¿©°ú ½ÃÀå¿¡¼­ Çõ½ÅÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå Áß¿äÇÑ Çõ½Å Áß Çϳª´Â ¹ÙÀÌ¿ÀÀǾàǰ Á¦Á¶¿¡ ³Î¸® »ç¿ëµÇ´Â ÀÏȸ¿ë ¿©°ú ½Ã½ºÅÛÀÇ °³¹ßÀÔ´Ï´Ù. ÀÏȸ¿ë ¿©°ú´Â ¹èÄ¡ °£ ¼¼Ã´ ¹× °ËÁõÀÇ Çʿ伺À» ¾ø¾Ö°í ±³Â÷ ¿À¿°ÀÇ À§ÇèÀ» ÁÙÀ̸ç Á¦Á¶ °øÁ¤À» °£¼ÒÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¦Á¶¿¡ À¯¿¬¼ºÀ» Á¦°øÇÏ¿© ±â¾÷ÀÌ °ªºñ½Ñ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÏÁö ¾Ê°íµµ ¼ö¿ä¿¡ µû¶ó »ý»ê·®À» ´Ã¸®°Å³ª ÁÙÀÏ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Á¤¹Ð¿©°ú, ÇÑ¿Ü ¿©°ú, ³ª³ë ¿©°ú¿Í °°Àº ¸· ¿©°ú ±â¼úµµ Å©°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¾×ü³ª ±âü¿¡¼­ ÀÔÀÚ, ¹ÚÅ׸®¾Æ ¹× ±âŸ ºÒ¼ø¹°À» Á¤È®ÇÏ°Ô Á¦°ÅÇÒ ¼ö ÀÖ¾î ¹«±Õ ÀǾàǰ ¹× ¹ÙÀÌ¿ÀÀǾàǰ »ý»ê¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ¼¼¶ó¹Í ¸âºê·¹ÀÎ, °íºÐÀÚ ¸âºê·¹ÀÎ µî ¸âºê·¹ÀÎ ¼ÒÀçÀÇ ¹ßÀüÀ¸·Î ¿©°ú ¼º´É, ³»±¸¼º, °¡È¤ÇÑ È­ÇÐÁ¦Ç° ¹× °¡È¤ÇÑ Á¶°Ç¿¡ ´ëÇÑ ³»¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀ» ÅëÇÕÇÑ ÀÚµ¿ ¿©°ú ½Ã½ºÅÛÀÌ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¦Á¶¾÷ü°¡ ¿©°ú °øÁ¤À» ÃÖÀûÈ­ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¿½Ã¿¡ ǰÁú Ç¥ÁØ ¹× ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϵµ·Ï µ½°í ÀÖ½À´Ï´Ù. ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¶Ç ´Ù¸¥ ±â¼ú ¹ßÀüÀº ¿¬¼Ó ¿©°ú·Î, ¿©°ú °øÁ¤ÀÌ ÁߴܵÇÁö ¾Êµµ·Ï ÇÏ´Â ¿¬¼Ó ¿©°úÀÔ´Ï´Ù. ¿¬¼Ó ¿©°ú´Â °øÁ¤ÀÇ Áߴܰú Àç°³°¡ ºñÈ¿À²°ú ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ´Â ´ë±Ô¸ð ÀǾàǰ Á¦Á¶¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ÇöÀç »ý»ê È¿À²¼ºÀ» ³ôÀÌ°í »ý¹°ÇÐÀû Á¦Á¦ ¹× ¹é½Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ¹ÙÀÌ¿ÀÀǾàǰ Á¦Á¶¾÷ü°¡ äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÀǾàǰ ¿©°ú ½ÃÀåÀÇ »õ·Î¿î µ¿ÇâÀº?

ÀǾàǰ ¿©°ú ½ÃÀåÀº ¾÷°èÀÇ ¿ä±¸¿Í ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â¿¡ ´ëÀÀÇϱâ À§ÇØ ¸î °¡Áö »õ·Î¿î Æ®·»µå°¡ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. Å« È帧 Áß Çϳª´Â ÀǾàǰ °³¹ß¿¡¼­ »ý¹°ÇÐÀû Á¦Á¦¿Í ¹ÙÀÌ¿À½Ã¹Ð·¯¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ý¹°ÇÐÀû Á¦Á¦´Â ±âÁ¸ÀÇ ÀúºÐÀÚ ÀǾàǰº¸´Ù º¹ÀâÇÏ°í ¹Î°¨Çϱ⠶§¹®¿¡ ÀǾàǰÀÇ ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 ¿À¿°¹°ÁúÀ» È®½ÇÇÏ°Ô Á¦°ÅÇÒ ¼ö ÀÖ´Â °íµµÀÇ ¿©°ú ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ´ÜŬ·ÐÇ×ü, ¹é½Å, À¯ÀüÀÚ Ä¡·áÁ¦¸¦ Æ÷ÇÔÇÑ »ý¹°ÇÐÀû Á¦Á¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¼¶¼¼ÇÑ Á¦Ç°À» À§ÇØ ¼³°èµÈ Ư¼ö ¿©°ú ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ Ãß¼¼´Â ÀǾàǰ Á¦Á¶¿¡¼­ ÀÏȸ¿ë ¶Ç´Â ÀÏȸ¿ë ±â¼ú(SUT)ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÏȸ¿ë ¿©°ú ½Ã½ºÅÛÀº °¡µ¿ ÁßÁö ½Ã°£ ´ÜÃà, ±³Â÷ ¿À¿° À§Çè °¨¼Ò, ½¬¿î È®À强 µî ¿©·¯ °¡Áö ÀåÁ¡ÀÌ ÀÖ¾î ¼Ò·® »ý»ê ¹× ÀÓ»ó½ÃÇè Á¦Á¶¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ´õ ¸¹Àº Á¦¾à»ç°¡ À¯¿¬ÇÑ Á¦Á¶ ¸ðµ¨À» äÅÃÇÔ¿¡ µû¶ó ÀÏȸ¿ë ¿©°ú ±â¼úÀº ƯÈ÷ ¸ÂÃãÇü ÀǾàǰ ¹× ¼¼Æ÷ Ä¡·áÁ¦ »ý»ê¿¡ ÀÖ¾î Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀǾàǰ ¿©°ú ½ÃÀå¿¡¼­ Áö¼Ó°¡´É¼ºµµ Áß¿äÇÑ °í·Á»çÇ×ÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº Æó±â¹°À» ÃÖ¼ÒÈ­Çϰí, ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̸ç, ¿©°ú °øÁ¤¿¡ ģȯ°æ ¼ÒÀ縦 »ç¿ëÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ÀçȰ¿ë °¡´ÉÇÑ Àç·á¸¦ »ç¿ëÇϰųª ȯ°æ ¹ßÀÚ±¹À» ÁÙÀÌ´Â ¿©°ú ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀº ±ÔÁ¦¿¡ ´ëÇÑ ¾Ð¹Ú°ú º¸´Ù ģȯ°æÀûÀÎ ÀǾàǰ Á¦Á¶ ¹æ¹ý¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸·Î ÀÎÇØ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ±â¼ú°ú °øÁ¤ ÀÚµ¿È­ÀÇ ÅëÇÕµµ ½ÃÀåÀ» Çü¼ºÇÏ´Â Æ®·»µå Áß ÇϳªÀÔ´Ï´Ù. ÷´Ü ¼¾¼­, µ¥ÀÌÅÍ ºÐ¼® ¹× ±â°è ÇнÀ ¾Ë°í¸®ÁòÀÌ ¿©°ú ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ¿©°ú °øÁ¤À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À̸¦ ÅëÇØ ¿©°ú °øÁ¤ÀÇ È¿À²¼º°ú Àϰü¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Á¦Á¶¾÷ü´Â ¿À·ù¿Í ¿À¿°ÀÇ À§ÇèÀ» ÁÙÀ̸鼭 ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀǾàǰ ¿©°ú ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀǾàǰ ¿©°ú ½ÃÀåÀÇ ¼ºÀåÀº »ý¹°ÇÐÀû Á¦Á¦¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã °­È­, ¿©°ú ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀü µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿øµ¿·Â Áß Çϳª´Â »ý¹°ÇÐÀû Á¦Á¦ÀÇ »ý»ê È®´ëÀ̸ç, ÀÌ·Î ÀÎÇØ °í±Þ ¿©°ú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ÜŬ·ÐÇ×ü, ¹é½Å, ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·áÁ¦¸¦ Æ÷ÇÔÇÑ ¹ÙÀÌ¿ÀÀǾàǰÀº Á¦Ç°ÀÇ ¼øµµ¿Í ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¸Å¿ì ¾ö°ÝÇÑ ¿©°ú °øÁ¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¹ÙÀÌ¿ÀÀǾàǰ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¹ÙÀÌ¿À½Ã¹Ð·¯ÀÇ ¼ºÀå°ú ÇÔ²² ÀÌ·¯ÇÑ º¹ÀâÇÑ Ä¡·á¸¦ À§ÇØ Æ¯º°È÷ ¼³°èµÈ ¿©°ú ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº ÀǾàǰ Á¦Á¶¸¦ °ü¸®ÇÏ´Â ±ÔÁ¦ ȯ°æÀÇ ¾ö°ÝÇÔÀÔ´Ï´Ù. ¹Ì±¹ FDA, EMA ¹× ±âŸ ¼¼°è ±ÔÁ¦ ±â°üÀº ÀǾàǰ Á¦Á¶, ƯÈ÷ ¹«±Õ ¹× ¿À¿° Á¦¾î¿Í °ü·ÃÇÏ¿© ¾ö°ÝÇÑ °¡À̵å¶óÀÎÀ» ºÎ°úÇϰí ÀÖ½À´Ï´Ù. ÀǾàǰ ¿©°ú ½Ã½ºÅÛÀº Á¦Ç°¿¡ ¹Ì¸³ÀÚ, ¹Ì»ý¹° ¹× ¹ß¿­¼º ¹°ÁúÀÌ Æ÷ÇÔµÇÁö ¾Êµµ·Ï º¸ÀåÇÔÀ¸·Î½á Á¦Á¶¾÷ü°¡ ÀÌ·¯ÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±ÔÁ¦ ±âÁØÀÌ ¾ö°ÝÇØÁü¿¡ µû¶ó Á¦¾à»çµéÀº ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϰí Á¦Ç°ÀÇ ¾ÈÀü¼ºÀ» À¯ÁöÇϱâ À§ÇØ Ã·´Ü ¿©°ú ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÏȸ¿ë ±â¼ú(SUT)ÀÇ Ã¤Åõµ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÀÏȸ¿ë ¿©°ú ½Ã½ºÅÛÀº ƯÈ÷ ¹ÙÀÌ¿ÀÀǾàǰ Á¦Á¶¿¡¼­ ´õ ³ôÀº À¯¿¬¼º, È¿À²¼º ¹× ºñ¿ë È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼¼Ã´ ¹× °ËÁõÀÇ Çʿ伺À» ÁÙ¿© ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ°í »ý»ê ÀÏÁ¤À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Ò·® »ý»êÀÌ ÇÊ¿äÇÑ ¸ÂÃãÇü ÀǾàǰÀÇ Áõ°¡ Ãß¼¼´Â ÀÏȸ¿ë ¿©°ú ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬¼Ó ¿©°ú, ÀÚµ¿È­ ½Ã½ºÅÛ, ÷´Ü ¸âºê·¹ÀÎ ¼ÒÀç¿Í °°Àº ±â¼ú Çõ½ÅÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ» ÅëÇØ Á¦¾àȸ»ç´Â ¿©°ú °øÁ¤ÀÇ È¿À²¼º, È®À强 ¹× ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¦¾à Á¦Á¶ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½Éµµ ÃËÁø¿äÀÎ Áß ÇϳªÀ̸ç, ±â¾÷µéÀº Æó±â¹°°ú ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈ­Çϴ ģȯ°æ ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î °íǰÁúÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÀǾàǰ Á¦Á¶ °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÀǾàǰ ¿©°ú ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Pharmaceutical Filtration Market to Reach US$51.0 Billion by 2030

The global market for Pharmaceutical Filtration estimated at US$17.0 Billion in the year 2023, is expected to reach US$51.0 Billion by 2030, growing at a CAGR of 17.0% over the analysis period 2023-2030. Membrane Filters, one of the segments analyzed in the report, is expected to record a 21.0% CAGR and reach US$19.6 Billion by the end of the analysis period. Growth in the Prefilters & Depth Media segment is estimated at 17.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.3 Billion While China is Forecast to Grow at 22.5% CAGR

The Pharmaceutical Filtration market in the U.S. is estimated at US$4.3 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$14.1 Billion by the year 2030 trailing a CAGR of 22.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.3% and 14.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.9% CAGR.

Global Pharmaceutical Filtration Market – Key Trends & Drivers Summarized

How Has the Pharmaceutical Filtration Market Evolved?

Pharmaceutical filtration plays a crucial role in the production and purification of drug formulations, ensuring that pharmaceutical products are free from contaminants, particles, and microorganisms. Over the years, the pharmaceutical filtration market has evolved significantly, driven by advancements in drug manufacturing processes and stringent regulatory requirements. Initially, filtration techniques in the pharmaceutical industry were primarily focused on basic filtration needs, such as removing solid particles from liquids. However, as pharmaceutical manufacturing has become more complex, the scope of filtration has expanded to include microfiltration, nanofiltration, ultrafiltration, and other advanced processes designed to meet the stringent purity standards required in modern drug production.

The filtration process is particularly critical in the production of sterile injectable drugs, biologics, vaccines, and other sensitive formulations, where even trace levels of impurities could compromise drug safety or efficacy. The growing focus on biologics and biosimilars, which are highly sensitive to contamination, has further emphasized the need for sophisticated filtration solutions. As a result, the market for pharmaceutical filtration has seen increased demand from biopharmaceutical companies, contract manufacturing organizations (CMOs), and research institutions seeking advanced, reliable, and scalable filtration systems to meet regulatory and quality control standards.

How Are Technological Advancements Shaping the Pharmaceutical Filtration Market?

Technological advancements are playing a transformative role in the pharmaceutical filtration market, improving filtration efficiency, enhancing scalability, and ensuring compliance with increasingly stringent regulatory requirements. One of the most significant innovations in this sector is the development of single-use filtration systems, which have gained widespread adoption in biopharmaceutical manufacturing. Single-use filtration eliminates the need for cleaning and validation between batches, reducing the risk of cross-contamination and streamlining the production process. These systems also offer flexibility in manufacturing, allowing companies to scale production up or down depending on demand without investing in costly infrastructure. Membrane filtration technologies, such as microfiltration, ultrafiltration, and nanofiltration, have also advanced significantly. These technologies allow for the precise removal of particles, bacteria, and other impurities from liquids and gases, making them essential in the production of sterile drugs and biopharmaceuticals. Advances in membrane materials, including ceramic and polymer membranes, have improved filtration performance, durability, and resistance to harsh chemicals or extreme conditions. Additionally, automated filtration systems integrated with real-time monitoring and data analytics capabilities are becoming more prevalent. These systems help manufacturers optimize filtration processes, ensuring that they meet quality standards and regulatory requirements while reducing operational costs. Another technological advancement impacting the market is continuous filtration, which allows for uninterrupted filtration processes. Continuous filtration is especially beneficial in large-scale drug manufacturing, where stopping and restarting the process could lead to inefficiencies and increased costs. This method is now being adopted by biopharmaceutical manufacturers looking to enhance their production efficiency and meet growing demand for biologics and vaccines.

What Are the Emerging Trends in the Pharmaceutical Filtration Market?

Several emerging trends are reshaping the pharmaceutical filtration market as it responds to growing industry needs and regulatory pressures. One major trend is the increasing focus on biologics and biosimilars in drug development. As biologics are more complex and sensitive than traditional small-molecule drugs, they require highly sophisticated filtration techniques to ensure the removal of contaminants while preserving the integrity of the drug. The rising demand for biologics, including monoclonal antibodies, vaccines, and gene therapies, has significantly boosted the need for specialized filtration systems designed for these sensitive products. Another important trend is the growing use of disposable or single-use technologies (SUTs) in pharmaceutical manufacturing. Single-use filtration systems offer several advantages, including reduced downtime, lower risk of cross-contamination, and easier scalability, making them ideal for small batch production and clinical trial manufacturing. As more pharmaceutical companies adopt flexible manufacturing models, especially in the production of personalized medicines and cell therapies, single-use filtration technologies are expected to see continued growth. Sustainability is also becoming a key consideration in the pharmaceutical filtration market. Manufacturers are looking for ways to minimize waste, reduce energy consumption, and use environmentally friendly materials in their filtration processes. There is a growing interest in filtration systems that incorporate recyclable materials or have a smaller environmental footprint. This focus on sustainability is being driven by both regulatory pressures and consumer demand for more eco-friendly pharmaceutical production practices. The integration of digital technologies and process automation is another trend shaping the market. Advanced sensors, data analytics, and machine learning algorithms are being integrated into filtration systems to provide real-time monitoring and control of filtration processes. This not only improves the efficiency and consistency of the filtration process but also ensures that manufacturers can meet stringent regulatory requirements while reducing the risk of errors or contamination.

What Is Driving the Growth of the Pharmaceutical Filtration Market?

The growth in the pharmaceutical filtration market is driven by several key factors, including the rising demand for biologics, increasing regulatory scrutiny, and technological advancements in filtration systems. One of the most important drivers is the expansion of biologics production, which has created a significant need for advanced filtration solutions. Biopharmaceuticals, which include monoclonal antibodies, vaccines, and cell and gene therapies, require highly stringent filtration processes to ensure product purity and safety. The increasing focus on biologics, combined with the growth of biosimilars, is expected to fuel demand for filtration systems that are designed specifically for these complex therapies. Another major factor is the stringent regulatory environment governing pharmaceutical manufacturing. Regulatory agencies such as the U.S. FDA, EMA, and other global authorities have imposed strict guidelines for drug production, particularly regarding sterility and contamination control. Pharmaceutical filtration systems play a critical role in helping manufacturers meet these regulatory requirements by ensuring that products are free from particulate matter, microorganisms, and pyrogens. As regulatory standards become more rigorous, pharmaceutical companies are investing heavily in advanced filtration technologies to ensure compliance and maintain product safety. The adoption of single-use technologies (SUTs) is also a key growth driver. Single-use filtration systems offer greater flexibility, efficiency, and cost-effectiveness, particularly in biopharmaceutical production. These systems reduce the need for cleaning and validation, thereby lowering operational costs and shortening production timelines. The growing trend toward personalized medicines, which often require small batch production, is further boosting the demand for single-use filtration systems. Additionally, technological innovations such as continuous filtration, automated systems, and advanced membrane materials are driving the market forward. These innovations enable pharmaceutical companies to improve the efficiency, scalability, and reliability of their filtration processes. The focus on sustainability in pharmaceutical manufacturing is another driver, as companies seek eco-friendly solutions that minimize waste and energy consumption. Combined, these factors are expected to contribute to sustained growth in the pharmaceutical filtration market as demand for high-quality, safe, and efficient drug production processes continues to rise.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â