¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀå
HD Map for Autonomous Vehicles
»óǰÄÚµå : 1572034
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,387,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,161,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀåÀº 2030³â±îÁö 263¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 44¾ï ´Þ·¯·Î ÃßÁ¤µÈ ÀÚÀ²ÁÖÇàÂ÷¿ë HD ¸Ê ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 29.0%·Î ¼ºÀåÇØ 2030³â¿¡´Â 263¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠŬ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 30.5%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 201¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÓº£µðµå ¼Ö·ç¼Ç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 24.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 13¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 27.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀåÀº 2023³â 13¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2023³âºÎÅÍ 2030³âÀÇ ºÐ¼® ±â°£¿¡¼­ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 27.8%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â±îÁö 39¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¸®Àû ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 25.9%¿Í 24.4%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¾à 19.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀå : ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

HD ¸ÅÇÎÀº ÀÚÀ² ÁÖÇà ³×ºñ°ÔÀ̼ǿ¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

HD ¸ÊÀº Â÷¼± Ç¥Áö, ±³Åë Ç¥Áö, ÁÖº¯ ÀÎÇÁ¶ó¸¦ Æ÷ÇÔÇÑ µµ·Î ȯ°æÀÇ ¸Å¿ì »ó¼¼ÇÑ Ç¥ÇöÀ» Á¦°øÇϸç ÀÚÀ² ÁÖÇà Â÷·®ÀÇ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÛµ¿¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±âÁ¸ GPS ½Ã½ºÅÛ°ú ´Þ¸® HD ¸ÊÀº ¼¾Æ¼¹ÌÅÍ ¼öÁØÀÇ Á¤È®µµ¸¦ Á¦°øÇϹǷΠÀÚÀ² ÁÖÇà Â÷·®Àº ¾ÈÀüÇÑ ³×ºñ°ÔÀ̼ǰú ½Ç½Ã°£ ¿îÀü ÆÇ´ÜÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ »ê¾÷ÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó Â÷·®ÀÇ Áö°¢°ú ÀÇ»ç°áÁ¤ ´É·ÂÀ» ³ôÀÌ´Â °íÇØ»óµµ µ¥ÀÌÅÍÀÇ Çʿ伺À¸·Î HD ¸Ê ¼ö¿ä°¡ °è¼Ó È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áöµµ´Â ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®¿Í Á¤È®µµ°¡ ³»ºñ°ÔÀ̼ǰú ¾ÈÀü¿¡ Áß¿äÇÑ ¼öÁØ 4¿Í 5ÀÇ ÀÚÀ² ÁÖÇà¿¡ ÇʼöÀûÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®Àº?

HD ¸ÊÀÇ À¯ÇüÀº Ŭ¶ó¿ìµå ±â¹Ý, ÀÓº£µðµå ½Ã½ºÅÛ, ½Ç½Ã°£ ¾÷µ¥ÀÌÆ® ¸ÊÀ» Æ÷ÇÔÇϸç, °¢°¢ »ó¼¼µµ¿Í ÀÌ¿ë »ç·Ê°¡ ´Ù¸¨´Ï´Ù. ¾ÖÇø®ÄÉÀ̼ÇÀº °í±Þ ¿îÀü Áö¿ø ½Ã½ºÅÛ(ADAS)¿¡¼­ ¿ÏÀü ÀÚÀ² ÁÖÇà ½Ã½ºÅÛ¿¡ À̸£±â±îÁö ±¤¹üÀ§Çϰí HDÁöµµ´Â Â÷¼± À¯Áö, ¹°Ã¼ °¨Áö ¹× °æ·Î °èȹ¿¡ Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁöµµÀÇ ÃÖÁ¾ »ç¿ëÀڷδ ÀÚÀ²ÁÖÇàÂ÷ Á¦Á¶¾÷ü, Çø´ ¿î¿µÀÚ, ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ÅõÀÚÇÏ´Â ¶óÀ̵å ÇìÀϸµ ȸ»ç µîÀÌ ÀÖ½À´Ï´Ù. ƯÈ÷ ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç µîÀÇ ÀÚµ¿Â÷, ÇÏÀÌÅ×Å© ¼½ÅͰ¡ HD ¸ÅÇÎ ±â¼úÀÇ Ã¤¿ëÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ¾î¶»°Ô HD¸Ê ±â´ÉÀ» °­È­Çϰí Àִ°¡?

HD ¸ÊÇÎÀÇ ±â¼úÀû Áøº¸·Î ¸Å¿ì »ó¼¼ÇÏ°í ½Ç½Ã°£À¸·Î ¾÷µ¥ÀÌÆ® °¡´ÉÇÑ Áöµµ¸¦ ¸¸µé ¼ö ÀÖÀ¸¸ç ÀÚÀ² ÁÖÇà Â÷·®ÀÇ ¼º´ÉÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó µî ¼¾¼­ÀÇ ÅëÇÕÀ» ÅëÇØ Â÷·®Àº Á¾ÇÕÀûÀΠȯ°æ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ó¸®ÇÏ¿© HD ¸ÊÀ¸·Î ¾÷µ¥ÀÌÆ®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ÀΰøÁö´É(AI)Àº ÁöµµÀÇ Á¤È®¼ºÀ» ³ôÀ̰í Â÷·®ÀÌ È¯°æ º¯È­¸¦ ÀνÄÇϰí ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ÇÏÀÌÅ×Å© ±â¾÷, Áöµµ ¼­ºñ½º Á¦°ø¾÷ü°£ÀÇ Á¦ÈÞ·Î °íÈ­Áú Áöµµ °³¹ßÀÌ °¡¼ÓÈ­µÇ¾î ÀÚÀ²ÁÖÇàÂ÷ ¹èÄ¡¸¦ À§ÇÑ È®À强°ú °¡¿ë¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀ̶õ?

ÀÚÀ²ÁÖÇàÂ÷¿ë HD¸Ê ½ÃÀåÀÇ ¼ºÀåÀº ÀÚÀ²ÁÖÇàÂ÷ ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸¿Í ½Ç½Ã°£ ³×ºñ°ÔÀÌ¼Ç ¹× ¾ÈÀü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ ÀÚÀ²ÁÖÇàÂ÷·Î À̵¿ÇÏ´Â °¡¿îµ¥, º¸´Ù °íµµÀÇ ÀÚÀ²¼ºÀ» ½ÇÇöÇϱâ À§Çؼ­´Â HD Áöµµ°¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ÷´Ü ±â¼ú ¹× Â÷·® ¿îÇà ȸ»çÀÇ ÀÚÀ² ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â HD Áöµµ ¼Ö·ç¼Ç ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚÀ²ÁÖÇà¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø°ú ½º¸¶Æ®½ÃƼ ÀÎÇÁ¶óÀÇ È®´ë°¡ ÀÌ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Â÷·®ÀÇ ¾ÈÀü¼º, È¿À²¼º, ³»ºñ°ÔÀ̼ÇÀÇ Á¤¹Ðµµ¸¦ Çâ»ó½ÃŰ´Â °Í¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ, ÀÚÀ²ÁÖÇàÂ÷¿¡ÀÇ HD ¸ÊÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¸ñÀÇ °æÀï»ç(Àü 34»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global HD Map for Autonomous Vehicles Market to Reach US$26.3 Billion by 2030

The global market for HD Map for Autonomous Vehicles estimated at US$4.4 Billion in the year 2023, is expected to reach US$26.3 Billion by 2030, growing at a CAGR of 29.0% over the analysis period 2023-2030. Cloud-based Solution, one of the segments analyzed in the report, is expected to record a 30.5% CAGR and reach US$20.1 Billion by the end of the analysis period. Growth in the Embedded Solution segment is estimated at 24.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.3 Billion While China is Forecast to Grow at 27.8% CAGR

The HD Map for Autonomous Vehicles market in the U.S. is estimated at US$1.3 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.9 Billion by the year 2030 trailing a CAGR of 27.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 25.9% and 24.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 19.8% CAGR.

Global HD Map for Autonomous Vehicles Market - Key Trends and Drivers Summarized

How Is HD Mapping Revolutionizing Autonomous Vehicle Navigation?

HD maps are essential for the accurate and reliable operation of autonomous vehicles, providing highly detailed representations of the road environment, including lane markings, traffic signs, and surrounding infrastructure. Unlike traditional GPS systems, HD maps offer centimeter-level precision, enabling autonomous vehicles to navigate safely and make real-time driving decisions. As the autonomous vehicle industry accelerates, the demand for HD maps continues to grow, driven by the need for high-resolution data that enhances vehicle perception and decision-making capabilities. These maps are integral to Level 4 and Level 5 autonomous driving, where real-time updates and accuracy are critical for navigation and safety.

What Are the Key Segments in the HD Map for Autonomous Vehicles Market?

Types of HD maps include cloud-based, embedded systems, and real-time updating maps, each offering varying degrees of detail and use cases. Applications range from advanced driver assistance systems (ADAS) to fully autonomous driving systems, with HD maps providing critical information for lane-keeping, object detection, and route planning. End-users of these maps include autonomous vehicle manufacturers, fleet operators, and ride-hailing companies that are investing in self-driving technology. The automotive and tech sectors, particularly in regions like North America, Europe, and Asia-Pacific, are leading the adoption of HD mapping technologies.

How Are Technological Innovations Enhancing HD Map Capabilities?

Technological advancements in HD mapping are enabling the creation of highly detailed and real-time updatable maps that significantly improve autonomous vehicle performance. The integration of sensors such as LiDAR, radar, and cameras allows vehicles to gather comprehensive environmental data, which is then processed and updated in HD maps. Machine learning algorithms and artificial intelligence (AI) are playing crucial roles in enhancing map accuracy, enabling vehicles to recognize and adapt to changes in their environment. Furthermore, partnerships between automakers, tech companies, and mapping service providers are accelerating the development of high-definition maps, improving their scalability and availability for autonomous vehicle deployment.

What Factors Are Driving the Growth in the HD Map for Autonomous Vehicles Market?

The growth in the HD map for autonomous vehicles market is driven by several factors, including the rapid advancements in autonomous vehicle technology and the increasing demand for real-time navigation and safety solutions. As the automotive industry shifts towards self-driving vehicles, HD maps are becoming essential for achieving higher levels of autonomy. The rise in investments from automakers, tech giants, and fleet operators in autonomous technology is further fueling the demand for HD mapping solutions. Additionally, government support for autonomous driving, coupled with the expansion of smart city infrastructure, is contributing to the growth of this market. The growing focus on improving vehicle safety, efficiency, and navigation precision is also driving the adoption of HD maps in autonomous vehicles.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â