¼¼°èÀÇ ±×·¡ÇÁ ºÐ¼® ½ÃÀå
Graph Analytics
»óǰÄÚµå : 1571969
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,015,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,045,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº 2030³â±îÁö 113¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÈ ±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº 2030³â¿¡´Â 113¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 30.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±×·¡ÇÁ ºÐ¼® ¼Ö·ç¼ÇÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 31.0%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 85¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×·¡ÇÁ ºÐ¼® ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 28.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 4,400¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 37.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ÀÇ ±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº 2023³â 4¾ï 4,400¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 34¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 37.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 23.1%¿Í 26.8%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¾à 25.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ±×·¡ÇÁ ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

±×·¡ÇÁ ºÐ¼®Àº µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤ÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô Çü¼ºÇϴ°¡?

±×·¡ÇÁ ºÐ¼®Àº º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ °ü°è¿Í ¿¬°áÀ» ºÐ¼®ÇÏ´Â °­·ÂÇÑ µµ±¸·Î ºÎ»óÇÏ¸ç ±â¾÷Àº ¼û°ÜÁø ÆÐÅÏ, µ¿Çâ, ÅëÂû·ÂÀ» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ±×·¡ÇÁ ºÐ¼®Àº °³º° µ¥ÀÌÅÍ Æ÷ÀÎÆ®¿¡ ÁÖ¸ñÇÏ´Â ±âÁ¸ÀÇ ºÐ¼® ±â¹ý°ú ´Þ¸® µ¥ÀÌÅÍ Æ÷ÀÎÆ®°¡ ¾î¶»°Ô °ü·ÃµÇ¾î ÀÖ´ÂÁö È®ÀÎÇϱâ À§ÇØ »ç±â °¨Áö, ¼Ò¼È ³×Æ®¿öÅ© ºÐ¼®, Ãßõ ¿£Áø µîÀÇ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÔ´Ï´Ù. ±×·¡ÇÁ À̷аú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÔÀ¸·Î½á ±×·¡ÇÁ ºÐ¼®Àº ½Ç½Ã°£À¸·Î µ¥ÀÌÅÍ ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ°í °í°´ Çൿ, °ø±Þ¸Á ¿ªÇÐ ¹× »çÀ̹ö º¸¾È À§Çù¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ±×·¡ÇÁ ºÐ¼® ¼Ö·ç¼Ç ¼ö¿ä°¡ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®¿Í ¿ëµµ´Â?

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº ¼ÒÇÁÆ®¿þ¾î³ª ¼­ºñ½º µîÀÇ À¯Çüº°, ¿ÂÇÁ·¹¹Ì½ºÇüÀ̳ª Ŭ¶ó¿ìµå ±â¹Ý µîÀÇ µµÀÔ Çüź°·Î ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¡ÇÁ ºÐ¼®ÀÇ ¿ëµµ´Â ´Ù¾çÇϸç, ±ÝÀ¶, ÇコÄɾî, Åë½Å, ¼Ò¸Å µîÀÇ ¾÷°è¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ±ÝÀ¶ ºÐ¾ß¿¡¼­´Â º¹ÀâÇÑ °Å·¡ ³×Æ®¿öÅ©¸¦ ºÐ¼®ÇÏ´Â ´É·ÂÀÌ Áß¿äÇÑ ºÎÁ¤ ŽÁö ¹× ¾ÈƼ ¸Ó´Ï ·Ð´õ¸µ(AML)¿¡ ±×·¡ÇÁ ºÐ¼®ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇコÄɾî´Â Áúº´ Áø´Ü ¹× Ä¡·á ÃÖÀûÈ­¸¦ À§ÇØ È¯ÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼Ò¼È ³×Æ®¿öÅ© ºÐ¼®, Ãßõ ½Ã½ºÅÛ, »çÀ̹ö º¸¾Èµµ ±×·¡ÇÁ ºÐ¼®ÀÌ Àα⸦ ²ø°í ÀÖ´Â Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷´Â È®À强°ú »ç¿ë ÆíÀǼºÀ¸·Î ÀαⰡ ³ô¾ÆÁ³Áö¸¸ ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼ÇÀº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸¾È ¿ä±¸ »çÇ×À» °¡Áø Á¶Á÷¿¡¼­ ¼±È£µË´Ï´Ù.

Çõ½ÅÀº ±×·¡ÇÁ ºÐ¼®ÀÇ ±â´ÉÀ» ¾î¶»°Ô È®ÀåÇմϱî?

±â¼úÀÇ Áøº¸´Â ƯÈ÷ È®À强, ó¸® ¼Óµµ ¹× ±âŸ °í±Þ ºÐ¼® µµ±¸¿ÍÀÇ ÅëÇÕÀ̶ó´Â Á¡¿¡¼­ ±×·¡ÇÁ ºÐ¼®ÀÇ ´É·ÂÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. º´·Ä ó¸®¿Í ºÐ»ê ÄÄÇ»ÆÃÀÇ µîÀåÀ¸·Î, ±×·¡ÇÁ ºÐ¼® Ç÷§ÆûÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ±â¾÷Àº ´ë±Ô¸ð ±×·¡ÇÁ¸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀº ±×·¡ÇÁ ºÐ¼®ÀÌ º¹ÀâÇÑ ÆÐÅÏÀ» ÆÄ¾ÇÇϰí ÇâÈÄ °á°ú¸¦ ¿¹ÃøÇÏ´Â ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. °Ô´Ù°¡ Neo4j³ª TigerGraph µîÀÇ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽ºÀÇ Áøº¸¿¡ ÀÇÇØ ±×·¡ÇÁ ±¸Á¶ µ¥ÀÌÅÍÀÇ º¸Á¸°ú Äõ¸®¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ½Ç½ÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ» ÅëÇØ ±×·¡ÇÁ ºÐ¼®Àº Çö´ë µ¥ÀÌÅÍ °úÇÐ ¹× ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º Àü·«¿¡ Áß¿äÇÑ ¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù.

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº?

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº ½Ç½Ã°£ ÅëÂû·Â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Çö´ë ºñÁî´Ï½º ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ °ü°èÀÇ º¹À⼺°ú °°Àº ¿©·¯ ¿äÀε鿡 ÀÇÇØ ¾ß±âµË´Ï´Ù. ¼Ò¼È ¹Ìµð¾î, IoT ±â±â, °í°´°úÀÇ »óÈ£ÀÛ¿ë µîÀÇ ¼Ò½º¿¡¼­ Á¶Á÷ÀÌ ´õ ¸¹Àº »óÈ£ ¿¬°á µ¥ÀÌÅ͸¦ »ý¼ºÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¿¬°áÀ» ºÐ¼®ÇÒ ¼ö ÀÖ´Â µµ±¸¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. º¹ÀâÇÑ µ¥ÀÌÅÍ °ü°è¸¦ ºÐ¼®ÇØ¾ß ÇÏ´Â AI¿Í ¸Ó½Å·¯´× ¿ëµµÀÇ »ó½ÂÀº ±×·¡ÇÁ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ »çÀ̹ö º¸¾È, »ç±â °¨Áö, °ø±Þ¸Á ÃÖÀûÈ­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ® ±×·¡ÇÁ ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ±×·¡ÇÁ ºÐ¼® ±â´ÉÀ» Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÇ È®Àåµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Graph Analytics Market to Reach US$11.3 Billion by 2030

The global market for Graph Analytics estimated at US$1.8 Billion in the year 2023, is expected to reach US$11.3 Billion by 2030, growing at a CAGR of 30.4% over the analysis period 2023-2030. Graph Analytics Solutions, one of the segments analyzed in the report, is expected to record a 31.0% CAGR and reach US$8.5 Billion by the end of the analysis period. Growth in the Graph Analytics Services segment is estimated at 28.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$444.0 Million While China is Forecast to Grow at 37.6% CAGR

The Graph Analytics market in the U.S. is estimated at US$444.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.4 Billion by the year 2030 trailing a CAGR of 37.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 23.1% and 26.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 25.2% CAGR.

Global Graph Analytics Market - Key Trends and Drivers Summarized

How Is Graph Analytics Shaping the Future of Data-Driven Decision-Making?

Graph analytics is emerging as a powerful tool for analyzing relationships and connections within complex data sets, enabling organizations to uncover hidden patterns, trends, and insights. Unlike traditional analytics methods, which focus on individual data points, graph analytics examines how data points are related to each other, making it ideal for applications such as fraud detection, social network analysis, and recommendation engines. By leveraging graph theory and machine learning algorithms, graph analytics allows businesses to analyze data in real time, providing deeper insights into customer behavior, supply chain dynamics, and cybersecurity threats. As organizations increasingly rely on data-driven decision-making, the demand for graph analytics solutions is rapidly expanding.

What Are the Key Segments and Applications of the Graph Analytics Market?

The graph analytics market can be segmented by type, including software and services, and by deployment, such as on-premise and cloud-based solutions. Applications of graph analytics are diverse, spanning industries such as finance, healthcare, telecommunications, and retail. In finance, graph analytics is used for fraud detection and anti-money laundering (AML), where the ability to analyze complex networks of transactions is critical. In healthcare, it helps in analyzing patient data for disease diagnosis and treatment optimization. Social network analysis, recommendation systems, and cybersecurity are other key areas where graph analytics is gaining traction. Cloud-based deployments are becoming more popular due to their scalability and ease of use, while on-premise solutions are preferred by organizations with stringent data security requirements.

How Are Technological Innovations Expanding the Capabilities of Graph Analytics?

Technological advancements are significantly enhancing the capabilities of graph analytics, particularly in terms of scalability, processing speed, and integration with other advanced analytics tools. The rise of parallel processing and distributed computing is enabling graph analytics platforms to handle massive datasets, allowing businesses to analyze large-scale graphs in real time. The integration of artificial intelligence (AI) and machine learning (ML) is also improving the ability of graph analytics to identify complex patterns and predict future outcomes. Moreover, advancements in graph databases, such as Neo4j and TigerGraph, are providing more efficient ways to store and query graph-structured data. These innovations are making graph analytics a critical component of modern data science and business intelligence strategies.

What Factors Are Driving the Growth in the Graph Analytics Market?

The growth in the graph analytics market is driven by several factors, including the increasing demand for real-time insights and the growing complexity of data relationships in modern business environments. As organizations generate more interconnected data from sources such as social media, IoT devices, and customer interactions, the need for tools that can analyze these connections is becoming more critical. The rise of AI and machine learning applications, which often require complex data relationships to be analyzed, is further propelling the demand for graph analytics. Additionally, the growing focus on cybersecurity, fraud detection, and supply chain optimization is driving the adoption of graph analytics solutions. The expansion of cloud-based platforms, which offer scalable and cost-effective graph analytics capabilities, is also contributing to market growth.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â