¼¼°èÀÇ X¼± ±¤ÀüÀÚ ºÐ±¤ ½ÃÀå
X-Ray Photoelectron Spectroscopy
»óǰÄÚµå : 1565172
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 197 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

X¼± ±¤ÀüÀÚ ºÐ±¤ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 7¾ï 3,620¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â X¼± ±¤ÀüÀÚ ºÐ±¤ ¼¼°è ½ÃÀåÀº 2023-2030³â°£ ¿¬Æò±Õ 4.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇコÄÉ¾î ºÎ¹®Àº CAGR 4.9%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 3¾ï 3,920¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÝµµÃ¼ ÃÖÁ¾ ¿ëµµ ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 5.3%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 9,950¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 4.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ X¼± ±¤ÀüÀÚ ºÐ±¤ ½ÃÀåÀº 2023³â 1¾ï 9,950¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö ½ÃÀå ±Ô¸ð°¡ 1¾ï 6,070¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â°£ 4.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 4.6%¿Í 3.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 4.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è X¼± ±¤ÀüÀÚ ºÐ±¤(XPS) ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

X¼± ±¤ÀüÀÚ ºÐ±¤À̶õ ¹«¾ùÀ̸ç, ¿Ö Áß¿äÇѰ¡?

X¼± ±¤ÀüÀÚ ºÐ±¤(XPS)Àº Àç·áÀÇ Ç¥¸é È­ÇÐ ¿¬±¸¿¡ »ç¿ëµÇ´Â °íÁ¤¹Ð ºÐ¼® ±â¼úÀÔ´Ï´Ù. XPS´Â Àç·á Ç¥¸éÀÇ ¿ø¼Ò Á¶¼º, È­ÇÐÀû »óÅ ¹× ÀüÀÚ ±¸Á¶¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇϱ⠶§¹®¿¡ Àç·á °úÇÐ, ¹ÝµµÃ¼, ȯ°æ Á¶»ç, È­ÇÐ ¿¬±¸ ¹× ±âŸ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖÀ¸¸ç, ¹Ú¸·, ³ª³ë Àç·á ¹× Ç¥¸é ÄÚÆÃÀÇ Æ¯¼ºÈ­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ¿¬±¸ÀÚ¿Í ¿£Áö´Ï¾î°¡ ¿øÀÚ ¼öÁØ¿¡¼­ Àç·áÀÇ °Åµ¿À» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ¿øÀÚ ¼öÁØ¿¡¼­ Àç·áÀÇ °Åµ¿À» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ Á¤º¸´Â ½Å¼ÒÀç °³¹ß, Á¦Á¶ °øÁ¤ °³¼±, ÀüÀÚÁ¦Ç°¿¡¼­ ÀǾàǰ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Á¦Ç° ǰÁú È®º¸¿¡ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº XPSÀÇ ´É·ÂÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÃÖ±ÙÀÇ ±â¼ú ¹ßÀüÀº X¼± ±¤ÀüÀÚ ºÐ±¤ÀÇ ´É·ÂÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. °ËÃâ±âÀÇ °¨µµ¿Í ºÐÇØ´ÉÀÌ Çâ»óµÇ¾î ³ª³ë ´ÜÀ§±îÁö º¸´Ù Á¤È®ÇÏ°í »ó¼¼ÇÑ Ç¥¸é ºÐ¼®ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÚµ¿È­µÈ ½Ã·á ó¸®¿Í ³ôÀº 󸮷® ½Ã½ºÅÛÀÇ ÅëÇÕÀ¸·Î ºÐ¼® ÇÁ·Î¼¼½º°¡ °£¼ÒÈ­µÇ¾î XPS¸¦ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ ´õ¿í ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ´õ °­·ÂÇÑ X¼± ¼Ò½ºÀÇ °³¹ß·Î ÀÎÇØ XPS·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â Àç·áÀÇ ¹üÀ§°¡ ³Ð¾îÁ³À¸¸ç, ¿©±â¿¡´Â Àý¿¬ Àç·á¿Í °°Àº µµÀüÀûÀΠǥ¸éµµ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº XPSÀÇ Àû¿ë ¹üÀ§¸¦ ³ÐÇô Çй®Àû ¿¬±¸¿Í »ê¾÷Àû ÀÀ¿ë ¸ðµÎ¿¡¼­ XPS¸¦ ´õ¿í ´ÙÀç´Ù´ÉÇÑ µµ±¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

÷´Ü ¼ÒÀç °³¹ß¿¡¼­ XPSÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

XPS´Â ƯÈ÷ ¹ÝµµÃ¼, ¿¡³ÊÁö ÀúÀå, ÄÚÆÃ µîÀÇ »ê¾÷¿¡¼­ ÷´Ü Àç·á °³¹ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ¹ÝµµÃ¼ »ê¾÷¿¡¼­ XPS´Â ¸¶ÀÌÅ©·ÎĨ ¹× ±âŸ ÀüÀÚ ºÎǰ¿¡ »ç¿ëµÇ´Â Àç·áÀÇ ±¸¼º°ú ¼øµµ¸¦ ºÐ¼®ÇÏ¿© ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¿¡³ÊÁö ÀúÀå ºÐ¾ß¿¡¼­ XPS´Â ¿¬±¸ÀÚµéÀÌ ¹èÅ͸® Àç·áÀÇ Ç¥¸é È­ÇÐÀ» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¾î È¿À²À» ³ôÀÌ°í ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Âù°¡Áö·Î XPS´Â ´Ù¾çÇÑ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ºÎ½Ä ¹æÁö ÄÚÆÃ ¹× º¸È£ ÃþÀ» °³¹ßÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Ç¥¸é Ư¼º¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÅëÂû·ÂÀ» ÅëÇØ XPS´Â º¸´Ù ³»±¸¼ºÀÌ ³ô°í È¿À²ÀûÀÌ¸ç Æ¯Á¤ ¿ëµµ¿¡ ¸Â´Â Àç·á¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

XPS ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

¹ÝµµÃ¼, ¿¡³ÊÁö, ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼­ ÷´Ü ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, XPS ÀåºñÀÇ ±â¼ú ¹ßÀü, ¿¬±¸ ¹× Á¦Á¶ ºÐ¾ß¿¡¼­ Á¤¹ÐÇÑ Ç¥¸é ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀÎÀÌ XPS ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷¿¡¼­ ´õ ÀÛ°í È¿À²ÀûÀÎ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ǰÁú °ü¸® ¹× Àç·á ¿¬±¸ ºÐ¾ß¿¡¼­ XPS¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ª³ë±â¼ú°ú Ç¥¸é °øÇÐÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ »ó¼¼ÇÑ Ç¥¸é Ư¼º Æò°¡°¡ ÇÊ¿äÇØÁö¸é¼­ XPS¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°èÀÇ ±â¼ú Çõ½ÅÀÌ ÁøÇàµÇ°í ´õ º¹ÀâÇÑ Àç·á°¡ °³¹ßµÊ¿¡ µû¶ó XPS¿Í °°Àº °í±Þ ºÐ¼® µµ±¸ÀÇ Çʿ伺ÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 47°Ç)

  • 3D Dental
  • EAG Laboratories
  • Glenbrook Technologies, Inc.
  • Hiden Analytical
  • Hitachi High-Tech Corporation
  • Intertek Group Plc
  • JEOL Ltd.
  • Kratos Analytical Ltd.
  • National Nanofab Center
  • Nova Ltd.

    ¸ñÂ÷

    Á¦1Àå Á¶»ç ¹æ¹ý

    Á¦2Àå ÁÖ¿ä ¿ä¾à

    • ½ÃÀå °³¿ä
    • ÁÖ¿ä ±â¾÷
    • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ
    • ¼¼°è ½ÃÀå Àü¸Á

    Á¦3Àå ½ÃÀå ºÐ¼®

    • ¹Ì±¹
    • ij³ª´Ù
    • ÀϺ»
    • Áß±¹
    • À¯·´
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹
    • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±âŸ Áö¿ª

    Á¦4Àå °æÀï

    LSH
  • ¿µ¹® ¸ñÂ÷

    ¿µ¹®¸ñÂ÷

    Global X-Ray Photoelectron Spectroscopy Market to Reach US$1.0 Billion by 2030

    The global market for X-Ray Photoelectron Spectroscopy estimated at US$736.2 Million in the year 2023, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2023-2030. Healthcare End-Use, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$339.2 Million by the end of the analysis period. Growth in the Semiconductors End-Use segment is estimated at 5.3% CAGR over the analysis period.

    The U.S. Market is Estimated at US$199.5 Million While China is Forecast to Grow at 4.5% CAGR

    The X-Ray Photoelectron Spectroscopy market in the U.S. is estimated at US$199.5 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$160.7 Million by the year 2030 trailing a CAGR of 4.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.6% and 3.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

    Global X-Ray Photoelectron Spectroscopy (XPS) Market – Key Trends & Drivers Summarized

    What Is X-Ray Photoelectron Spectroscopy and Why Is It Important?

    X-ray Photoelectron Spectroscopy (XPS) is a highly precise analytical technique used to study the surface chemistry of materials. It provides detailed information about the elemental composition, chemical state, and electronic structure of a material's surface, making it an indispensable tool in fields like materials science, semiconductors, environmental studies, and chemical research. XPS plays a critical role in characterizing thin films, nanomaterials, and surface coatings, helping researchers and engineers understand how materials behave at the atomic level. This information is crucial for developing new materials, improving manufacturing processes, and ensuring the quality of products in industries ranging from electronics to pharmaceuticals.

    How Are Technological Advances Shaping XPS Capabilities?

    Recent technological advancements have significantly enhanced the capabilities of X-ray Photoelectron Spectroscopy. Improvements in detector sensitivity and resolution have allowed for more accurate and detailed surface analysis, even at the nanoscale level. The integration of automated sample handling and high-throughput systems has streamlined the analysis process, making XPS more accessible for industrial applications. Additionally, the development of more powerful X-ray sources has expanded the range of materials that can be analyzed using XPS, including challenging surfaces like insulating materials. These technological innovations are broadening the scope of XPS, making it a more versatile tool for both academic research and industrial applications.

    What Role Does XPS Play in the Development of Advanced Materials?

    XPS is critical in the development of advanced materials, particularly in industries such as semiconductors, energy storage, and coatings. For example, in the semiconductor industry, XPS is used to analyze the composition and purity of materials used in microchips and other electronic components, ensuring optimal performance. In energy storage, XPS helps researchers understand the surface chemistry of battery materials, leading to improved efficiency and longer life cycles. Similarly, XPS is essential in the development of corrosion-resistant coatings and protective layers for various industrial applications. By providing detailed insights into surface properties, XPS enables the development of materials that are more durable, efficient, and tailored to specific applications.

    What Is Driving Growth in the XPS Market?

    The growth in the X-ray Photoelectron Spectroscopy market is driven by several factors, including the rising demand for advanced materials in industries such as semiconductors, energy, and healthcare, technological advancements in XPS equipment, and the increasing need for precise surface analysis in research and manufacturing. The semiconductor industry’s push for smaller, more efficient components has increased the demand for XPS in quality control and materials research. Additionally, advancements in nanotechnology and surface engineering require detailed surface characterization, further boosting the demand for XPS. As industries continue to innovate and develop more complex materials, the need for advanced analytical tools like XPS will drive the market’s growth.

    Select Competitors (Total 47 Featured) -

    TABLE OF CONTENTS

    I. METHODOLOGY

    II. EXECUTIVE SUMMARY

    III. MARKET ANALYSIS

    IV. COMPETITION

    (ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
    ¨Ï Copyright Global Information, Inc. All rights reserved.
    PC¹öÀü º¸±â