¼¼°èÀÇ ÄÜÅ©¸®Æ® ³Ã°¢ ½ÃÀå
Concrete Cooling
»óǰÄÚµå : 1565030
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 296 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÄÜÅ©¸®Æ® ³Ã°¢ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 50¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÄÜÅ©¸®Æ® ³Ã°¢ ¼¼°è ½ÃÀåÀº 2023-2030³â°£ ¿¬Æò±Õ 7.2%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â±îÁö 50¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ö³Ã½Ä ³Ã°¢Àº CAGR 6.6%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 18¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °ø³Ã½Ä ³Ã°¢ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 270¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.6%·Î ¼ºÀå Àü¸Á

¹Ì±¹ ÄÜÅ©¸®Æ® ³Ã°¢ ½ÃÀåÀº 2023³â 8¾ï 270¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 10.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.6%¿Í 6.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 4.3%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÄÜÅ©¸®Æ® ³Ã°¢ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÄÜÅ©¸®Æ® ³Ã°¢ÀÌ Çö´ë °ÇÃà¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÄÜÅ©¸®Æ® ³Ã°¢Àº ´ë±Ô¸ð °Ç¼³ ÇÁ·ÎÁ§Æ®, ƯÈ÷ ´õ¿î ±âÈÄ¿Í °æÈ­ °úÁ¤¿¡¼­ ¹ß»ýÇÏ´Â ¿­·Î ÀÎÇØ ¹«°á¼ºÀÌ ¼Õ»óµÉ ¼ö ÀÖ´Â °Å´ëÇÑ ±¸Á¶¹°¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÄÜÅ©¸®Æ®°¡ °æÈ­µÉ ¶§, ¼öÈ­¶ó´Â È­ÇÐ ¹ÝÀÀÀÌ ÀϾ¸é¼­ ¾öû³­ ¿­ÀÌ ¹ß»ýÇÕ´Ï´Ù. ´ë±Ô¸ð Ÿ¼³À̳ª °í¿Â ȯ°æ¿¡¼­´Â ÀÌ ¿­·Î ÀÎÇØ ÄÜÅ©¸®Æ® ³»ºÎ ¿Âµµ°¡ ±Þ°ÝÇÏ°Ô »ó½ÂÇÏ¿© ¿­ ±Õ¿­°ú ±¸Á¶Àû ³»±¸¼º ÀúÇÏ, ³ª¾Æ°¡ ÄÜÅ©¸®Æ® ÀüüÀÇ °­µµ ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ´ï, ¹ßÀü¼Ò, ±³·® µîÀÇ ÇÁ·ÎÁ§Æ®¿¡¼­´Â ÀÌ·¯ÇÑ ¾Ç¿µÇâÀ» ¹æÁöÇϱâ À§ÇØ ¼öÈ­ Áß ÄÜÅ©¸®Æ® ¿Âµµ¸¦ Á¦¾îÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÄÜÅ©¸®Æ® ³Ã°¢Àº ³Ã°¢¼ö, ¾óÀ½ Á¶°¢, ¾×ü Áú¼Ò, ±¸Á¶¹° ³» ³Ã°¢ ÆÄÀÌÇÁ µîÀÇ ±â¼úÀ» »ç¿ëÇÏ¿© °æÈ­ °úÁ¤¿¡¼­ ÃÖÀûÀÇ ¿Âµµ ¹üÀ§¸¦ À¯ÁöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº ÄÜÅ©¸®Æ®°¡ ±ÕÀÏÇÏ°Ô °æÈ­µÇµµ·Ï º¸ÀåÇÏ°í ±¸Á¶¹°ÀÇ Àå±âÀûÀÎ ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼ö¸®¸¦ ¹æÁöÇÕ´Ï´Ù. ±×·±µ¥ ¿Ö ÄÜÅ©¸®Æ® ³Ã°¢ÀÌ ÀÌ·¸°Ô ÇʼöÀûÀÎ °ÍÀϱî? ±×¸®°í ±×°ÍÀÌ ´ë±Ô¸ð °ÇÃ๰ÀÇ Ç°Áú°ú ¼ö¸í¿¡ ¾î¶² Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡´Â°¡?

´Ù¾çÇÑ ÄÜÅ©¸®Æ® ³Ã°¢ °ø¹ýÀº ¾î¶»°Ô ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇմϱî?

ÄÜÅ©¸®Æ® ³Ã°¢ °ø¹ýÀº ÇÁ·ÎÁ§Æ® ¿ä±¸ »çÇ׿¡ µû¶ó ´Ù¾çÇÑ °ø¹ýÀÌ »ç¿ëµÇ¸ç, °¢ °ø¹ýÀº ÄÜÅ©¸®Æ® È¥ÇÕ¹°ÀÇ ¿Âµµ¸¦ Á¶ÀýÇÏ´Â µ¥ ¶Ñ·ÇÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °¡Àå ÀϹÝÀûÀÎ ¹æ¹ý Áß Çϳª´Â ÄÜÅ©¸®Æ® È¥ÇÕ¹°¿¡ ³Ã¼ö¸¦ »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. È¥ÇÕ¹°¿¡ »ç¿ëµÇ´Â ¹°ÀÇ ¿Âµµ¸¦ ³·Ãß´Â °Í¸¸À¸·Îµµ °è¾àÀÚ´Â ¼öÈ­ Áß¿¡ ¹ß»ýÇÏ´Â Àüü ¿­À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÀÚÁÖ »ç¿ëµÇ´Â ¹æ¹ýÀº ¾óÀ½ Á¶°¢À» »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ¹° ´ë½Å ¾óÀ½ Á¶°¢À» È¥ÇÕ¹°¿¡ Ãß°¡ÇÏ¸é ¾óÀ½ÀÌ ³ì¾Æ °úµµÇÑ ¿­À» Èí¼öÇÏ¿© ¿Âµµ »ó½ÂÀ» ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ãß°¡ ³Ã°¢ÀÌ ÇÊ¿äÇÑ ±ØÇÑÀÇ »óȲ¿¡¼­´Â ¾×ü Áú¼Ò¸¦ »ç¿ëÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ ¹æ¹ýÀº ¾×ü Áú¼Ò°¡ ºü¸¥ ³Ã°¢À» Á¦°øÇϱ⠶§¹®¿¡ ´ë·®ÀÇ ÁÖÀÔÀ̳ª ÁÖº¯ ¿Âµµ°¡ ¸Å¿ì ³ôÀº Áö¿ª¿¡¼­ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÄÜÅ©¸®Æ® ±¸Á¶¹° ³»ºÎ¿¡ ¸Å¸³µÈ ³Ã°¢ ÆÄÀÌÇÁ¸¦ ÅëÇØ ³Ã°¢¼ö°¡ ¼øÈ¯ÇÏ¿© °æÈ­ ´Ü°è¿¡¼­ ±¸Á¶¹°ÀÇ Äھ¼­ ¿­À» Èí¼öÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¿­ ±Õ¿­ÀÇ À§ÇèÀ» ÁÙÀÏ »Ó¸¸ ¾Æ´Ï¶ó ÄÜÅ©¸®Æ®°¡ ÀǵµÇÑ ¾ÐÃà °­µµ¸¦ ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀûÀýÇÑ ³Ã°¢ ¹æ¹ýÀÇ ¼±ÅÃÀº Ÿ¼³ ±Ô¸ð, ÁÖº¯ ¿Âµµ, ÃÖÁ¾ ±¸Á¶¹°¿¡ ¿ä±¸µÇ´Â °­µµ ¹× ³»±¸¼º°ú °°Àº ¿äÀο¡ µû¶ó °áÁ¤µË´Ï´Ù.

ÄÜÅ©¸®Æ® ³Ã°¢ÀÇ Çõ½ÅÀº ¾î¶»°Ô È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃÄ×À»±î?

ÄÜÅ©¸®Æ® ³Ã°¢ ±â¼úÀÇ ¹ßÀüÀ¸·Î ³Ã°¢ °øÁ¤ÀÇ È¿À²¼º°ú ȯ°æ Áö¼Ó°¡´É¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ ¹æ¹ýÀº È¿°úÀûÀÌÁö¸¸, ƯÈ÷ ¸¹Àº ¾çÀÇ ¹°°ú ¿¡³ÊÁö°¡ ÇÊ¿äÇÑ °æ¿ì ÀÚ¿øÀ» ¸¹ÀÌ ¼ÒºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÚµ¿ ³Ã°¢ ½Ã½ºÅÛ°ú ÃÖÀûÈ­ µÈ ¿­ ¸ðµ¨°ú °°Àº ±â¼ú Çõ½ÅÀº ÄÜÅ©¸®Æ® ¿Âµµ °ü¸®ÀÇ Á¤È®¼º°ú ¿¡³ÊÁö ¼Òºñ¸¦ ¸ðµÎ °³¼±Çß½À´Ï´Ù. ÇöÀç ÀÚµ¿ ³Ã°¢ ½Ã½ºÅÛÀº ¼öÈ­ °úÁ¤ Àü¹Ý¿¡ °ÉÃÄ ÄÜÅ©¸®Æ® ¿Âµµ¸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÒ ¼ö Àֱ⠶§¹®¿¡ ¼öµ¿ °³ÀÔ ¾øÀ̵µ ÀϰüµÈ ³Ã°¢À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ³Ã°¢ÀÇ Á¤È®¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ½Ã½ºÅÛÀÌ ¹Ì¸® ¼³Á¤µÈ ÃßÁ¤Ä¡°¡ ¾Æ´Ñ ½ÇÁ¦ »óȲ¿¡ µû¶ó ³Ã°¢ ¼Óµµ¸¦ Á¶Á¤ÇÒ ¼ö Àֱ⠶§¹®¿¡ ºÒÇÊ¿äÇÑ ÀÚ¿ø »ç¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º Ãø¸é¿¡¼­ Àç»ý °¡´É ¿¡³ÊÁö¿øÀ» ³Ã°¢ °øÁ¤¿¡ ÅëÇÕÇÏ´Â °ÍÀº ƯÈ÷ ³Ã°¢°ü µî Àå±âÀûÀÎ ³Ã°¢ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÑ ÇÁ·ÎÁ§Æ®¿¡¼­ »õ·Î¿î Æ®·»µå°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ž籤À» ÀÌ¿ëÇÑ ³Ã°¢ ½Ã½ºÅÛÀº ´ë±Ô¸ð °Ç¼³ ÇÁ·ÎÁ§Æ®¿¡¼­ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ ¼ö´ÜÀ¸·Î °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿­ ¸ðµ¨¸µÀÇ ¹ßÀüÀ¸·Î ¿£Áö´Ï¾îµéÀº ÄÜÅ©¸®Æ® ±¸Á¶¹°ÀÇ ³Ã°¢ ¿ä±¸ »çÇ×À» º¸´Ù Á¤È®ÇÏ°Ô ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ°Ô µÇ¾î °ú³Ã°¢À» ÃÖ¼ÒÈ­ÇÏ¿© ¿¡³ÊÁö¿Í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¼±Àº ÄÜÅ©¸®Æ® ³Ã°¢À» º¸´Ù È¿À²ÀûÀ¸·Î ¸¸µé »Ó¸¸ ¾Æ´Ï¶ó °Ç¼³ ¾÷°èÀÇ Áö¼Ó °¡´ÉÇÑ °üÇàÀ¸·ÎÀÇ ±¤¹üÀ§ÇÑ Àüȯ¿¡ ºÎÇÕÇÕ´Ï´Ù.

ÄÜÅ©¸®Æ® ³Ã°¢ ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÄÜÅ©¸®Æ® ³Ã°¢ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¿©·¯ °¡Áö ¿äÀÎ, ƯÈ÷ ´õ¿î ±âÈÄÀÇ ½ÅÈï±¹ ½ÃÀå¿¡¼­ ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ º¸±Þ È®´ë µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. Áßµ¿, ¾ÆÇÁ¸®Ä« ¹× ¾Æ½Ã¾ÆÀÇ ÀϺΠ±¹°¡µéÀÌ ´ë±Ô¸ð °Ç¹°, ´ï, ±³·® ¹× ¹ßÀü¼Ò °Ç¼³¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ¾î ÄÜÅ©¸®Æ® °æÈ­ Áß È¿°úÀûÀÎ ¿Âµµ Á¦¾îÀÇ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. À̵é Áö¿ªÀÇ ³ôÀº ÁÖº¯ ¿Âµµ´Â ¿­ ±Õ¿­ÀÇ À§ÇèÀ» Áõ°¡½ÃÄÑ ÄÜÅ©¸®Æ®ÀÇ ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ °íµµÀÇ ³Ã°¢ ±â¼úÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, Àç»ý ¿¡³ÊÁö ºÐ¾ß, ƯÈ÷ ¼ö·Â ¹ßÀü ´ï°ú ž籤 ¹ßÀü¼Ò °Ç¼³ÀÇ È®´ë·Î ÀÎÇØ ÄÜÅ©¸®Æ® ³Ã°¢ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·ÎÁ§Æ®¿¡´Â ´ë·®ÀÇ ÄÜÅ©¸®Æ®°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ·¯ÇÑ ±¸Á¶¹°ÀÇ ¹«°á¼ºÀº °æÈ­ °úÁ¤¿¡¼­ È¿°úÀûÀÎ ³Ã°¢¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº Áö¼Ó °¡´ÉÇÑ °Ç¼³ °üÇà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Á¤ºÎ¿Í ÀÌÇØ°ü°èÀÚµéÀÌ È¯°æ ģȭÀûÀÎ °ÇÃà ¹æ½ÄÀ» Àå·ÁÇÔ¿¡ µû¶ó ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ¹°À» Àý¾àÇÒ ¼ö ÀÖ´Â ³Ã°¢ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¹ÀâÇÑ °ÇÃà ¼³°è¿¡ 3D ÇÁ¸°ÅÍ·Î ¸¸µç ÄÜÅ©¸®Æ®¸¦ »ç¿ëÇÏ´Â µî °Ç¼³ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÄÜÅ©¸®Æ® ¿Âµµ¸¦ Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ³Ã°¢ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ÅëÇØ °Ç¹°ÀÇ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â ½º¸¶Æ® °ÇÃà Áõ°¡·Î ÀÎÇØ ÄÜÅ©¸®Æ® ³Ã°¢¿¡ ÀÚµ¿È­µÈ ½Ç½Ã°£ ¿Âµµ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Àüü ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(46°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Concrete Cooling Market to Reach US$5.0 Billion by 2030

The global market for Concrete Cooling estimated at US$3.0 Billion in the year 2023, is expected to reach US$5.0 Billion by 2030, growing at a CAGR of 7.2% over the analysis period 2023-2030. Water Cooling, one of the segments analyzed in the report, is expected to record a 6.6% CAGR and reach US$1.8 Billion by the end of the analysis period. Growth in the Air Cooling segment is estimated at 5.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$802.7 Million While China is Forecast to Grow at 10.6% CAGR

The Concrete Cooling market in the U.S. is estimated at US$802.7 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 10.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.6% and 6.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.3% CAGR.

Global Concrete Cooling Market - Key Trends and Drivers Summarized

Why Is Concrete Cooling Essential in Modern Construction?

Concrete cooling plays a critical role in large-scale construction projects, particularly in hot climates and for massive structures where the heat generated during the curing process can lead to compromised integrity. When concrete sets, a chemical reaction called hydration occurs, generating significant heat. In large pours or in high-temperature environments, this heat can cause the internal temperature of the concrete to rise rapidly, potentially leading to thermal cracking, poor structural durability, and even a reduction in the overall strength of the concrete. For projects like dams, power plants, and bridges, controlling the concrete temperature during hydration is crucial to prevent these adverse effects. Concrete cooling techniques, such as using chilled water, ice flakes, liquid nitrogen, or employing cooling pipes within the structure, are deployed to maintain an optimal temperature range during the curing process. These methods ensure that the concrete sets evenly, improving the long-term stability of the structure and preventing costly repairs down the line. But why has concrete cooling become so indispensable, and how does it directly impact the quality and longevity of large-scale construction?

How Do Different Concrete Cooling Methods Work to Maintain Structural Integrity?

Various concrete cooling methods are used depending on the specific requirements of the project, and each plays a distinct role in regulating the temperature of the concrete mix. One of the most common techniques involves the use of chilled water in the concrete mix. By simply reducing the temperature of the water used in the mixture, contractors can significantly lower the overall heat generated during hydration. Another frequently employed method is the use of ice flakes. These flakes are added to the mix instead of water, with the ice melting and absorbing excess heat, thereby reducing the temperature rise. In extreme situations where even more cooling is required, liquid nitrogen is often utilized. This method is particularly effective for large pours or in regions with very high ambient temperatures, as liquid nitrogen provides rapid cooling. Additionally, cooling pipes, which are embedded within the concrete structure, allow cool water to circulate and absorb heat from the core of the structure during the curing phase. These techniques not only mitigate the risk of thermal cracking but also ensure that the concrete achieves its intended compressive strength. Choosing the right cooling method is based on factors such as the size of the pour, ambient temperature, and the desired strength and durability of the final structure.

How Has Innovation in Concrete Cooling Improved Efficiency and Sustainability?

Advances in concrete cooling technology have significantly enhanced the efficiency and environmental sustainability of cooling processes. Traditional methods, while effective, can be resource-intensive, particularly when large volumes of water or energy are required. However, innovations like automated cooling systems and optimized thermal models have improved both accuracy and energy consumption in managing concrete temperatures. Automated cooling systems now allow real-time monitoring and control of concrete temperature throughout the entire hydration process, ensuring consistent cooling without the need for manual intervention. This not only increases the precision of cooling but also reduces unnecessary resource use, as the system can adjust the cooling rate in response to actual conditions rather than pre-set estimates. In terms of sustainability, the integration of renewable energy sources into the cooling process has become an emerging trend, particularly for projects that require long-term cooling infrastructure, such as cooling pipes. Solar-powered cooling systems, for instance, are being explored as a means to reduce the carbon footprint associated with large-scale construction projects. Furthermore, advances in thermal modeling now enable engineers to simulate the cooling requirements of concrete structures more accurately, helping to minimize overcooling and thus save energy and costs. These technological improvements are not only making concrete cooling more efficient but are also aligning with the construction industry's broader shift towards sustainable practices.

What Are the Key Growth Drivers in the Concrete Cooling Market?

The growth in the concrete cooling market is driven by several factors, including the increasing prevalence of large-scale infrastructure projects, particularly in developing regions with hot climates. As countries in the Middle East, Africa, and parts of Asia invest heavily in constructing massive buildings, dams, bridges, and power plants, the need for effective temperature control during concrete curing has become more critical than ever. High ambient temperatures in these regions exacerbate the risk of thermal cracking, necessitating advanced cooling techniques to maintain the structural integrity of concrete. Additionally, the expansion of the renewable energy sector, particularly the construction of hydroelectric dams and solar power plants, has led to a surge in demand for concrete cooling technologies. These projects often require large volumes of concrete, and the integrity of these structures depends heavily on effective cooling during the curing process. Another key driver is the increasing focus on sustainable construction practices. As governments and industry stakeholders push for greener building methods, the adoption of energy-efficient and water-conserving cooling systems is rising. Furthermore, advancements in construction technology, such as the growing use of 3D-printed concrete for complex architectural designs, require precise control over concrete temperature, further fueling the demand for cooling solutions. Finally, the rising trend of smart construction practices, where data-driven decisions are used to optimize building performance, has led to greater integration of automated and real-time temperature monitoring systems in concrete cooling, boosting the overall growth of the market.

Select Competitors (Total 46 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â