¼¼°èÀÇ ÄÜÅ©¸®Æ® ¼¶À¯ ½ÃÀå
Concrete Fiber
»óǰÄÚµå : 1564888
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 196 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÄÜÅ©¸®Æ® ¼¶À¯ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 27¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÄÜÅ©¸®Æ® ¼¶À¯ ¼¼°è ½ÃÀåÀº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 6.9% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °­Ã¶ ¼¶À¯´Â CAGR 6.8%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 20¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯¸® ¼¶À¯ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7¾ï 1,580¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.3%·Î ¼ºÀå Àü¸Á

¹Ì±¹ ÄÜÅ©¸®Æ® ¼¶À¯ ½ÃÀåÀº 2023³â 7¾ï 1,580¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 10¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 10.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.6%¿Í 6.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 4.1%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÄÜÅ©¸®Æ® ¼¶À¯ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÄÜÅ©¸®Æ® ¼¶À¯°¡ Çö´ë °Ç¼³¿¡ Çõ¸íÀ» °¡Á®¿Ã ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÄÜÅ©¸®Æ® ¼¶À¯´Â ÄÜÅ©¸®Æ® ±¸Á¶¹°ÀÇ ³»±¸¼º, ÀÎÀå °­µµ ¹× ±Õ¿­ ÀúÇ×¼ºÀ» °­È­ÇÏ¿© °Ç¼³ »ê¾÷À» ºü¸£°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀ¸·Î ÄÜÅ©¸®Æ®´Â ¾ÐÃà¿¡´Â °­ÇÏÁö¸¸ ÀÎÀå¿¡´Â »ó´ëÀûÀ¸·Î ¾àÇϰí, ÀÀ·Â ÇÏ¿¡¼­ ±Õ¿­ÀÌ ¹ß»ýÇϱ⠽±½À´Ï´Ù. ÄÜÅ©¸®Æ® ¼¶À¯´Â °­Ã¶, À¯¸®, ÇÕ¼º Æú¸®¸Ó ¶Ç´Â õ¿¬ ¹°Áú°ú °°Àº Àç·á·Î ¸¸µé ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¾àÁ¡À» º¸¿ÏÇϱâ À§ÇØ ÄÜÅ©¸®Æ®¿¡ È¥Çյ˴ϴÙ. ÄÜÅ©¸®Æ® ¸ÅÆ®¸¯½º Àüü¿¡ ¼¶À¯¸¦ ºÐÆ÷½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ º¸°­Àç´Â ¼öÃà, ¿Âµµ º¯È­ ¶Ç´Â ³ôÀº ÇÏÁßÀ¸·Î ÀÎÇØ Çü¼ºµÉ ¼ö ÀÖ´Â ±Õ¿­À» ¾ïÁ¦ÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼¶À¯ÀÇ ÅëÇÕÀº ÄÜÅ©¸®Æ®ÀÇ ÀμºÀ» Å©°Ô Çâ»ó½ÃÄÑ ´«¿¡ º¸ÀÌ´Â ±Õ¿­À» Çü¼ºÇÏÁö ¾Ê°í ´õ Å« ÀÀ·ÂÀ» °ßµô ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. °íÃþ ºôµù°ú ±³·®¿¡¼­ Æ÷Àå µµ·Î¿Í »ê¾÷¿ë ¹Ù´ÚÀç¿¡ À̸£±â±îÁö ÄÜÅ©¸®Æ® ¼¶À¯¸¦ »ç¿ëÇÏ¸é ±¸Á¶¹°ÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨Çϸç Ãæ°Ý°ú ¸¶¸ð¿¡ ´ëÇÑ ³ôÀº ÀúÇ×·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ³ôÀº ³»±¸¼º°ú ºñ¿ë È¿À²¼ºÀÌ ¸ðµÎ ¿ä±¸µÇ´Â ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ ƯÈ÷ Áß¿äÇÏ°Ô ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ±×·¸´Ù¸é ÄÜÅ©¸®Æ® ¼¶À¯´Â ¾î¶»°Ô °Ç¼³ÀÇ ¿ªÇÐÀ» º¯È­½Ã۰í, ¿Ö ÀÌ·¸°Ô ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ´Â °ÍÀϱî?

´Ù¾çÇÑ À¯ÇüÀÇ ÄÜÅ©¸®Æ® ¼¶À¯´Â ¾î¶»°Ô ¼º´ÉÀ» Çâ»ó½Ãų ¼ö Àִ°¡?

ÄÜÅ©¸®Æ®¿¡ »ç¿ëµÇ´Â ¼¶À¯ÀÇ À¯ÇüÀº ÄÜÅ©¸®Æ®ÀÇ ¼º´É Ư¼ºÀ» Á¤ÀÇÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, °­Ã¶ ¼¶À¯´Â ³ôÀº ÀÎÀå °­µµ¿Í ¿ì¼öÇÑ ±Õ¿­ ÀúÇ×¼ºÀ» Á¦°øÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, °øÇ× È°ÁÖ·Î, »ê¾÷¿ë ¹Ù´ÚÀç, ÇÁ¸®Ä³½ºÆ® ÄÜÅ©¸®Æ® ºÎÀç¿Í °°Àº °í°­µµ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ ¼¶À¯´Â ¹Ì¼¼ÇÑ ¼öÁØ¿¡¼­ ±Õ¿­À» ¸Þ¿ì´Â ´É·ÂÀÌ ÀÖ¾î ±Õ¿­ÀÌ ¹ß»ýÇÏ´õ¶óµµ ±¸Á¶Àû ÆÄ±«·Î À̾îÁöÁö ¾Ê°í ±Õ¿­ÀÌ ¾ïÁ¦µÈ »óÅ·ΠÀ¯ÁöµË´Ï´Ù. ÀϹÝÀûÀ¸·Î Æú¸®ÇÁ·ÎÇÊ·»À̳ª ³ªÀϷаú °°Àº Àç·á·Î ¸¸µç ÇÕ¼º ¼¶À¯´Â ³»½Ä¼ºÀÌ ÀÖ°í µµ·Î, ±³·®, ÇØ¾ç ±¸Á¶¹° µî ȯ°æÀû ½ºÆ®·¹½º¿¡ ³ëÃâµÇ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ÄÜÅ©¸®Æ®ÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ´É·ÂÀÌ Àֱ⠶§¹®¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ¾ËÄ®¸® ³»¼º À¯¸® ¼¶À¯´Â Ç¥¸é Ư¼ºÀ» °³¼±ÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇϸç Àå½Ä¿ë ÄÜÅ©¸®Æ®, ÆÄ»çµå, °æ·® °ÇÃàÀÚÀç µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸ñÀç, Ȳ¸¶, ÄÚÄÚ³Ó ²®Áú¿¡¼­ ÃßÃâÇÑ Ãµ¿¬¼¶À¯´Â ¿ì¼öÇÑ ±â°èÀû °­µµ¸¦ À¯ÁöÇϸ鼭 ÄÜÅ©¸®Æ®ÀÇ ´Ü¿­ Ư¼ºÀ» Çâ»ó½ÃŰ´Â ģȯ°æÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¶À¯´Â Áö¼Ó °¡´ÉÇÑ °Ç¼³ ÇÁ·ÎÁ§Æ®¿¡¼­ Á¡Á¡ ´õ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ¼¶À¯ÀÇ ¼±ÅÃÀº ³» ÇÏÁß, ȯ°æ Á¶°Ç¿¡ ´ëÇÑ ³ëÃâ ¹× ¹ÌÀû ¸¶°¨ÀÇ Çʿ伺°ú °°Àº ÇÁ·ÎÁ§Æ® º° ¿ä±¸ »çÇ׿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. °¢ ¼¶À¯ À¯ÇüÀº ÄÜÅ©¸®Æ® ¹Í½ºÀÇ Àü¹ÝÀûÀÎ ¼º´É°ú ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ °íÀ¯ÇÏ°Ô ±â¿©ÇÕ´Ï´Ù.

ÄÜÅ©¸®Æ® ¼¶À¯ÀÇ ÁøÈ­¿¡¼­ Çõ½ÅÀº ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

±â¼ú Çõ½ÅÀº Çö´ë °Ç¼³¿¡¼­ ÄÜÅ©¸®Æ® ¼¶À¯ÀÇ ¿ëµµ¿Í ´É·ÂÀ» Å©°Ô ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù. Ãֱ٠ź¼Ò¼¶À¯ ¹× Çö¹«¾Ï ¼¶À¯¿Í °°Àº ÷´Ü ¼¶À¯ Àç·áÀÇ »ý»ê Ãß¼¼´Â ¼¶À¯ °­È­ ÄÜÅ©¸®Æ®(FRC)ÀÇ °¡´É¼ºÀ» ³ÐÇôÁÖ°í ÀÖ½À´Ï´Ù. ź¼Ò¼¶À¯´Â °¡°ÝÀÌ ºñ½ÎÁö¸¸ ¶Ù¾î³­ °­µµ ´ë Áß·®ºñ¸¦ Á¦°øÇϱ⠶§¹®¿¡ Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ »ê¾÷°ú °°ÀÌ °æ·®È­°¡ Áß¿äÇÑ °í¼º´É ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. È­»ê¾Ï¿¡¼­ ÃßÃâÇÑ Çö¹«¾Ï ¼¶À¯´Â ³»È­Çмº°ú ³»¿­¼ºÀÌ ¶Ù¾î³ª ³»È­ ±¸Á¶¹°À̳ª °¡È¤ÇÑ È¯°æ Á¶°Ç¿¡ ³ëÃâµÇ´Â ÇÁ·ÎÁ§Æ®¿¡ ÀûÇÕÇÑ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ Çõ½ÅÀº ÇÏÀ̺긮µå ¼¶À¯ ½Ã½ºÅÛÀÇ °³¹ßÀÔ´Ï´Ù. ÇÏÀ̺긮µå ¼¶À¯ ½Ã½ºÅÛÀº ÇϳªÀÇ ÄÜÅ©¸®Æ® È¥ÇÕ¹°¿¡ ¿©·¯ À¯ÇüÀÇ ¼¶À¯¸¦ °áÇÕÇÏ¿© °¢°¢ÀÇ ÀåÁ¡À» Ȱ¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, °­Ã¶ ¼¶À¯¿Í ÇÕ¼º ¼¶À¯¸¦ °áÇÕÇÏ¿© ÄÜÅ©¸®Æ®ÀÇ ÀÎÀå °­µµ¿Í À¯¿¬¼ºÀ» ¸ðµÎ Çâ»ó½ÃÄÑ °­¼º°ú À¯¿¬¼ºÀ» ¸ðµÎ ÇÊ¿ä·Î ÇÏ´Â º¹ÀâÇÑ ±¸Á¶¹°¿¡ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÄÜÅ©¸®Æ® ¸ÅÆ®¸¯½º ³»¿¡ ´õ ±ÕÀÏÇÏ°Ô ºÐÆ÷µÈ ¼¶À¯°¡ ¸¸µé¾îÁ® ±¸Á¶¹° Àüü¿¡ °ÉÃÄ ´õ ³ªÀº ¼º´ÉÀ» º¸ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÄÜÅ©¸®Æ®ÀÇ ±â°èÀû Ư¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àüü ÄÜÅ©¸®Æ® »ç¿ë·®À» ÁÙ¿© º¸´Ù Áö¼Ó °¡´ÉÇÑ °ÇÃà °üÇà¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÄÜÅ©¸®Æ® ¼¶À¯ ½ÃÀå È®´ë ¿äÀÎÀº?

ÄÜÅ©¸®Æ® ¼¶À¯ ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¸î °¡Áö ¿äÀÎÀÌ Àִµ¥, ÁÖ·Î ³»±¸¼º°ú º¹¿ø·ÂÀÌ ¶Ù¾î³­ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ±× Áß ÇϳªÀÔ´Ï´Ù. µµ½Ã°¡ È®ÀåµÇ°í ÀÎÇÁ¶ó°¡ ³ëÈÄÈ­µÊ¿¡ µû¶ó ³ôÀº ÇÏÁß, ȯ°æ ¾ÇÈ­ ¹× ÀÏ»óÀûÀÎ ¸¶¸ð¸¦ °ßµô ¼öÀÖ´Â °ÇÃàÀÚÀç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¶À¯ °­È­ ÄÜÅ©¸®Æ®´Â ±âÁ¸ ÄÜÅ©¸®Æ®¿¡ ºñÇØ ³ôÀº °­µµ¿Í ±ä ¼ö¸íÀ» Á¦°øÇÏ¿© ÀæÀº º¸¼ö ¹× À¯Áö º¸¼öÀÇ Çʿ伺À» ÁÙÀÓÀ¸·Î½á ÇØ°áÃ¥À» Á¦°øÇÕ´Ï´Ù. À̴ ƯÈ÷ °í¼Óµµ·Î, ÅͳÎ, ±³·® µî ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ µÎµå·¯Áö°Ô ³ªÅ¸³ª¸ç, ¼ö¸® ºñ¿ë°ú È¥¶õÀÌ ¾öû³ª°Ô Å®´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°èÀûÀ¸·Î Áö¼Ó °¡´ÉÇϰí ģȯ°æÀûÀÎ °ÇÃà °üÇàÀ¸·ÎÀÇ ÀüȯÀº ÄÜÅ©¸®Æ® ¼¶À¯, ƯÈ÷ õ¿¬ ¹× ÀçȰ¿ë ¼ÒÀç¿¡¼­ ÃßÃâÇÑ ¼¶À¯ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °Ç¼³ ÇÁ·ÎÁ§Æ®°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, õ¿¬¼¶À¯ ¹× ÀçȰ¿ë ÇÕ¼º ¼¶À¯¿Í °°Àº ģȯ°æ ¼¶À¯ÀÇ »ç¿ëÀº ź¼Ò ¹ßÀÚ±¹À» ÁÙÀ̰í ÀÚ¿ø È¿À²¼ºÀ» ÃËÁøÇÏ´Â ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ÁßÀåºñ¸¦ ÁöÅÊÇÏ°í ²÷ÀÓ¾ø´Â ±³Åë·®À» °ßµô ¼ö ÀÖ´Â °í¼º´É ¼ÒÀç°¡ ÇÊ¿äÇÑ »ê¾÷ °ÇÃàÀÇ ¼ºÀåµµ ±× ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼­ ÄÜÅ©¸®Æ® ¼¶À¯´Â ÇÊ¿äÇÑ Àμº°ú ³»¸¶¸ð¼ºÀ» Á¦°øÇÏ¿© ¿À·¡ Áö¼ÓµÇ´Â Ç¥¸éÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ¼¶À¯ °­È­ ÄÜÅ©¸®Æ®ÀÇ ÀåÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àú·ÅÇÑ °¡°ÝÀÇ °í¼º´É ¼¶À¯ ¼ÒÀç¿¡ ´ëÇÑ ¿¬±¸¿Í °³¹ßÀº ÁÖ°Å, »ó¾÷ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ ¼¶À¯ °­È­ ÄÜÅ©¸®Æ®ÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. °¡º±°í °­µµ°¡ ³ôÀº Àç·á¸¦ ÇÊ¿ä·Î ÇÏ´Â ¸ðµâ½Ä °ÇÃà Áõ°¡ Ãß¼¼µµ ÄÜÅ©¸®Æ® ¼¶À¯¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(46°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Concrete Fiber Market to Reach US$4.3 Billion by 2030

The global market for Concrete Fiber estimated at US$2.7 Billion in the year 2023, is expected to reach US$4.3 Billion by 2030, growing at a CAGR of 6.9% over the analysis period 2023-2030. Steel Fiber, one of the segments analyzed in the report, is expected to record a 6.8% CAGR and reach US$2.0 Billion by the end of the analysis period. Growth in the Glass Fiber segment is estimated at 6.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$715.8 Million While China is Forecast to Grow at 10.3% CAGR

The Concrete Fiber market in the U.S. is estimated at US$715.8 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.0 Billion by the year 2030 trailing a CAGR of 10.3% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.6% and 6.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Concrete Fiber Market - Key Trends and Drivers Summarized

Why Is Concrete Fiber Revolutionizing Modern Construction?

Concrete fiber is rapidly transforming the construction industry by offering enhanced durability, tensile strength, and crack resistance to concrete structures. Traditionally, concrete is strong in compression but relatively weak in tension, making it prone to cracking under stress. Concrete fibers, which can be made from materials like steel, glass, synthetic polymers, or natural substances, are mixed into the concrete to address this weakness. By distributing fibers throughout the concrete matrix, these reinforcements act to control cracks that may form from shrinkage, temperature changes, or heavy loads. The integration of fibers significantly enhances the toughness of concrete, allowing it to withstand greater stresses without the formation of visible cracks. From high-rise buildings and bridges to pavements and industrial floors, the use of concrete fiber offers structural longevity, reduced maintenance costs, and a higher resistance to impact and wear. The technology has become especially important in infrastructure projects that demand both high durability and cost efficiency. So, how does concrete fiber change the dynamics of construction and why has it gained such traction?

How Do Different Types of Concrete Fibers Enhance Performance?

The type of fiber used in concrete plays a crucial role in defining its performance characteristics. Steel fibers, for example, are known for providing high tensile strength and excellent crack resistance, making them ideal for heavy-duty applications like airport runways, industrial flooring, and precast concrete components. These fibers offer the ability to bridge cracks at a micro level, ensuring that even when cracking occurs, it remains controlled and does not lead to structural failure. Synthetic fibers, typically made from materials like polypropylene or nylon, are frequently used for their resistance to corrosion and ability to improve concrete’s performance in applications exposed to environmental stressors, such as roads, bridges, and marine structures. Glass fibers, which are highly resistant to alkali, are particularly beneficial in enhancing surface properties, and they find extensive use in decorative concrete, facades, and lightweight architectural components. Natural fibers, such as those derived from wood, jute, or coconut husk, offer an eco-friendly alternative that improves concrete’s insulation properties while maintaining good mechanical strength. These fibers are increasingly popular in sustainable construction projects. The choice of fiber depends on the project’s specific requirements, such as load-bearing capacity, exposure to environmental conditions, or the need for aesthetic finishes. Each type of fiber contributes uniquely to improving the overall performance and durability of the concrete mix.

What Role Is Innovation Playing in the Evolution of Concrete Fiber?

Innovation is significantly advancing the applications and capabilities of concrete fiber in modern construction. Recent developments in the production of advanced fiber materials, such as carbon and basalt fibers, have expanded the possibilities of what can be achieved with fiber-reinforced concrete (FRC). Carbon fibers, though costly, provide exceptional strength-to-weight ratios, making them ideal for high-performance applications where weight reduction is critical, such as in the aerospace and automotive industries. Basalt fibers, which are derived from volcanic rock, offer superior chemical and heat resistance, making them a strong choice for fireproof structures or projects exposed to harsh environmental conditions. Another significant innovation is the development of hybrid fiber systems, which combine multiple types of fibers in a single concrete mix to leverage the benefits of each. For instance, combining steel and synthetic fibers can improve both the tensile strength and flexibility of the concrete, optimizing it for complex structures that require both rigidity and flexibility. Advances in manufacturing techniques have also led to the creation of fibers that are more uniformly distributed within the concrete matrix, ensuring better performance across the entire structure. These innovations not only enhance the mechanical properties of the concrete but also reduce the overall amount of concrete required, contributing to more sustainable building practices.

What Factors Are Fueling the Expansion of the Concrete Fiber Market?

The growth in the concrete fiber market is driven by several factors, primarily the increasing demand for more durable and resilient infrastructure. As cities expand and infrastructure ages, the need for construction materials that can withstand heavy loads, environmental degradation, and daily wear has intensified. Fiber-reinforced concrete offers a solution by providing higher strength and longevity compared to traditional concrete, reducing the need for frequent repairs and maintenance. This has been particularly significant in large infrastructure projects such as highways, tunnels, and bridges, where the cost and disruption of repairs can be immense. Moreover, the global shift towards sustainable and green building practices is pushing the adoption of concrete fibers, especially those derived from natural or recycled materials. As construction projects seek to reduce their environmental impact, the use of eco-friendly fibers like natural or recycled synthetic fibers aligns with the goals of reducing carbon footprints and promoting resource efficiency. Another driver is the growth of industrial construction, where high-performance materials are required to support heavy machinery and endure constant traffic. In these settings, concrete fibers provide the necessary toughness and resistance to abrasion, ensuring long-lasting surfaces. Additionally, increasing research into the development of affordable, high-performance fiber materials, coupled with growing awareness of the benefits of fiber-reinforced concrete, has led to broader adoption across residential, commercial, and industrial sectors. The rising trend of modular construction, which requires lightweight yet strong materials, is also bolstering demand for concrete fibers, as they provide the needed strength while reducing material weight.

Select Competitors (Total 46 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â