¼¼°èÀÇ ³»¿­ ÄÚÆÃ ½ÃÀå
Heat Resistant Coatings
»óǰÄÚµå : 1564886
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 193 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,020,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,062,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

³»¿­ ÄÚÆÃ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 102¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 71¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ³»¿­ ÄÚÆÃ ¼¼°è ½ÃÀåÀº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 5.4% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 102¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾×ü ±â¹Ý ÄÚÆÃÀº CAGR 4.6%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 69¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÐ¸» ±â¹Ý ÄÚÆÃ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.2%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ³»¿­ ÄÚÆÃ ½ÃÀåÀº 2023³â 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 23¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 8.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.3%¿Í 4.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 3.9%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ³»¿­ ÄÚÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

³»¿­ ÄÚÆÃÀº Çö´ë »ê¾÷ º¸È£ÀÇ ÇÙ½ÉÀΰ¡?

³»¿­ ÄÚÆÃÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁö°í Àִµ¥, ÀÌ·¯ÇÑ ÄÚÆÃÀÌ Çö´ë ÀÀ¿ë ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀϱî¿ä? ÀÌ·¯ÇÑ ÄÚÆÃÀº ƯÁ¤ Á¦Ç° ¹× ¿ëµµ¿¡ µû¶ó ÀϹÝÀûÀ¸·Î 200 ¡É¿¡¼­ 1000 ¡É ÀÌ»óÀÇ ±ØÇÑ ¿Âµµ¿¡¼­ Ç¥¸éÀ» º¸È£Çϵµ·Ï ¼³°èµÈ Ư¼öÇÏ°Ô Á¦Á¶ µÈ Àç·áÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, Á¦Á¶ ¹× ¿¡³ÊÁö »ý»ê°ú °°Àº »ê¾÷Àº °í¿Â ȯ°æ¿¡ ³ëÃâµÇ´Â Àç·á¿Í ÀåºñÀÇ ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ ³»¿­ ÄÚÆÃ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¸È£ ÃþÀÌ ¾øÀ¸¸é ±â°è ¹× ±¸Á¶ ºÎǰÀÌ °í¿Â¿¡ ³ëÃâµÇ¸é ¿­È­, ºÎ½Ä ¹× °­µµ ÀúÇϰ¡ ¹ß»ýÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀå ¹× ¾ÈÀü À§ÇèÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

³»¿­ ÄÚÆÃÀÇ ÁÖ¿ä ±â´ÉÀº »êÈ­, ¿­ ÇÇ·Î ¹× ºÎ½Ä°ú °°Àº ¿­ ³ëÃâ·Î ÀÎÇÑ À¯ÇØÇÑ ¿µÇâÀ¸·ÎºÎÅÍ Ç¥¸éÀ» º¸È£ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº Á¾Á¾ ½Ç¸®ÄÜ ¼öÁö, ¼¼¶ó¹Í È­ÇÕ¹°, ±Ý¼Ó ¾È·á¿Í °°ÀÌ ºÐÇØµÇÁö ¾Ê°í °í¿­¿¡ °ßµô ¼ö ÀÖ´Â Àç·á·Î ¸¸µé¾îÁý´Ï´Ù. »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÷´Ü ÇÕ±Ý ¹× º¹ÇÕÀç·áÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿°úÀûÀÎ ³»¿­ ÄÚÆÃÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ ±× Ư¼ºÀ» À¯ÁöÇϱâ À§ÇØ º¸È£°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ÀåºñÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí ÀæÀº À¯Áö º¸¼ö ¹× ±³Ã¼ Çʿ伺À» ÁÙÀÓÀ¸·Î½á ºñ¿ëÀ» Å©°Ô Àý°¨ÇÏ°í ´Ù¾çÇÑ °í¿­ ȯ°æ¿¡¼­ ÀÛ¾÷ È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

³»¿­ ÄÚÆÃ ±â¼úÀÌ ¾î¶»°Ô º¯¸ðÇߴ°¡

Àç·á °úÇаú ÄÚÆÃ ±â¼úÀÇ ¹ßÀüÀº ÃÖ±Ù ¸î ³âµ¿¾È ³»¿­ ÄÚÆÃÀÇ ´É·Â°ú ¿ëµµ¸¦ Å©°Ô È®ÀåÇß½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ³»¿­¼º»Ó¸¸ ¾Æ´Ï¶ó ³»½Ä¼º, Àڿܼ± Â÷´Ü ¹× ´Ü¿­°ú °°Àº ´Ù¸¥ ÇýÅÃÀ» Á¦°øÇÏ´Â ´Ù±â´É ÄÚÆÃÀÇ Åº»ýÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ÀÌÁ¦ ¿©·¯ ¿ªÇÒÀ» ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç ¿©·¯ ÃþÀ̳ª ´Ù¸¥ Á¦Ç°ÀÌ ÇÊ¿äÇÏÁö ¾Ê±â ¶§¹®¿¡ º¸È£ °øÁ¤À» ´Ü¼øÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÷´Ü ¼¼¶ó¹Í ±â¹Ý ÄÚÆÃÀº ³»¿­¼º°ú ³»¸¶¸ð¼ºÀÌ ¶Ù¾î³ª Åͺó ºí·¹À̵å, ¹è±â ½Ã½ºÅÛ°ú °°ÀÌ ³ôÀº ½ºÆ®·¹½º Á¶°Ç¿¡¼­ ³»±¸¼ºÀÌ ¿ä±¸µÇ´Â ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù.

³ª³ë±â¼úÀº ÀÌ ºÐ¾ß ±â¼ú Çõ½ÅÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. ³ª³ë ±¸Á¶ÀÇ ÄÚÆÃÀº ¸¶ÀÌÅ©·Î ¼öÁØ¿¡¼­ ¿­ ºÐÆ÷¸¦ °³¼±Çϰí Ç¥¸éÀûÀ» Áõ°¡½ÃÄÑ ³»¿­ ÄÚÆÃÀÇ ³»¿­¼º°ú ±â°èÀû °­µµ¸¦ Çâ»ó½ÃÄÑ ³»¿­ ÄÚÆÃÀÇ ³»¿­¼º°ú ±â°èÀû °­µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. À̸¦ ÅëÇØ ±âÁ¸ Á¦Çü¿¡ ºñÇØ ´õ ¾ã°í °¡º­¿î ÄÚÆÃÀÌ °¡´ÉÇÏ¿© ´õ ³ªÀº º¸È£ ¼º´ÉÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ³ª³ëÈ­ µÈ ÄÚÆÃÀº Á¾Á¾ ´õ ±ÕÀÏÇÏ°Ô µµÆ÷ ÇÒ ¼öÀÖ¾î µµÆ÷ ½Ã°£À» ´ÜÃàÇÏ°í º¸È£ ÃþÀÇ Àϰü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àڱ⠺¹±¸ ¹× »êÈ­ ¹æÁö ±â¼úÀÇ °³¹ßµµ ³»¿­ ÄÚÆÃ¿¡ äÅõDZ⠽ÃÀÛÇÏ¿© ³»±¸¼ºÀ» ´õ¿í Çâ»ó½ÃŰ°í ±â´É ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« µµ¾àÀº ¼º´É ÀúÇÏ ¾øÀÌ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϴ ȯ°æ ģȭÀûÀÎ ÀúÈֹ߼º À¯±âÈ­ÇÕ¹°(VOC) ¹èÇÕÀÇ °³¹ßÀÔ´Ï´Ù. ȯ°æ°ú °Ç°­¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ¸¹Àº »ê¾÷°è°¡ ¼Öº¥Æ® ±â¹Ý ÄÚÆÃ¿¡¼­ ¹þ¾î³ª ¼ö¼º ¹× ºÐ¸» ÄÚÆÃÀ¸·Î ÀüȯÇϸ鼭 ³ôÀº ¼öÁØÀÇ ³»¿­¼ºÀ» Á¦°øÇϸ鼭µµ ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ³»¿­¼º ÄÚÆÃÀ» º¸´Ù È¿°úÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â µ¿½Ã¿¡ Çö´ë »ê¾÷ÀÇ ¿ä±¸¿¡ ºÎÀÀÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ÄÚÆÃÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

³»¿­ ÄÚÆÃÀÌ ºü¸£°Ô äÅõǴ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

³»¿­ ÄÚÆÃÀÇ Ã¤ÅÃÀº ¼º´É ¿ä±¸¿Í ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ³»¿­ ÄÚÆÃÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ´Â ÁÖµÈ ÀÌÀ¯ Áß Çϳª´Â ÃֽŠ»ê¾÷ °øÁ¤ÀÇ º¹À⼺°ú ¿­ °­µµ°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¹ßÀü°ú °°Àº »ê¾÷¿¡¼­´Â ºÎǰÀÌ ±ØÇÑÀÇ °í¿Â¿¡ ³ëÃâµÇ´Â °æ¿ì°¡ ¸¹¾Æ Àç·á°¡ ¿­È­µÇ¾î ¼º´ÉÀÌ ÀúÇ쵃 ¼ö ÀÖ½À´Ï´Ù. ³»¿­ ÄÚÆÃÀ» Àû¿ëÇϸé Á¦Á¶¾÷ü´Â ¿£Áø ºÎǰ, ¹è±â ½Ã½ºÅÛ, Åͺó°ú °°Àº Áß¿äÇÑ ºÎǰÀ» ¿­ ¸¶¸ð ¹× ºÎ½ÄÀ¸·ÎºÎÅÍ º¸È£ÇÏ¿© ÀåºñÀÇ ¾ÈÀü¼º, ¼ö¸í ¹× È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

°æÁ¦ÀûÀÎ Ãø¸é¿¡¼­µµ ³»¿­ ÄÚÆÃÀº À¯Áöº¸¼ö Çʿ伺À» ÁÙÀÌ°í °í°¡ÀÇ ±â°è ¼ö¸íÀ» ¿¬ÀåÇÏ¿© ºñ¿ë Àý°¨ È¿°ú¸¦ °¡Á®´Ù ÁÝ´Ï´Ù. °í¿Â¿¡¼­ ÀÛµ¿ÇÏ´Â »ê¾÷¿ë Àåºñ´Â ¸¶¸ð°¡ °¡¼ÓÈ­µÇ¾î ÀæÀº ¼ö¸® ¹× ±³Ã¼°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ±ØÇÑÀÇ ¿Âµµ¿¡ °ßµô ¼ö ÀÖ´Â ÄÚÆÃÀº ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °¡µ¿ ÁßÁö ½Ã°£, ºÎǰ ±³Ã¼ ¹× ¹ø°Å·Î¿î À¯Áöº¸¼öÀÇ Çʿ伺À» ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ´Â Á¦Á¶ ¹× ¼®À¯È­ÇÐ »ê¾÷°ú °°ÀÌ ´Ü½Ã°£ÀÇ ´Ù¿îŸÀÓÀÌ Å« °æÁ¦Àû ¼Õ½ÇÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

±ÔÁ¦ ¹× ȯ°æÀû ¿äÀεµ ³»¿­ ÄÚÆÃÀÇ »ç¿ëÀ» ´Ã¸®´Â ¹æÇâÀ¸·Î »ê¾÷À» À̲ø°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ´õ¿í ¾ö°ÝÇÑ ¹èÃâ ±âÁذú ȯ°æ ±ÔÁ¦¸¦ ½ÃÇàÇÔ¿¡ µû¶ó, ¾÷°è´Â ¿î¿µ È¿À²¼ºÀ» À¯ÁöÇϸ鼭 ȯ°æ ¹ßÀÚ±¹À» ÁÙÀÏ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ³»¿­ ÄÚÆÃÀº ¿¡³ÊÁö È¿À²À» ³ôÀ̰í À¯ÇØÇÑ ¹èÃâ¹°°ú Æó±â¹°·Î À̾îÁú ¼ö ÀÖ´Â °íÀåÀÇ °¡´É¼ºÀ» ÁÙÀÓÀ¸·Î½á À̸¦ ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ´ë±Ô¸ð µµÀåÀÌ ÀϹÝÀûÀÎ »ê¾÷¿¡¼­ ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ Àú VOC ±âÁØÀ» ÃæÁ·ÇÏ´Â ÆäÀÎÆ®°¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ³»¿­ ÄÚÆÃÀº Çö´ë »ê¾÷ ¿î¿µ¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ºü¸£°Ô äÅõǰí ÀÖ½À´Ï´Ù.

³»¿­ ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

³»¿­ ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀº Àç·á °úÇÐÀÇ ¹ßÀü, »ê¾÷ ¿ä±¸ÀÇ ÁøÈ­, ±ÔÁ¦ ¿ä±¸ Áõ°¡¿Í °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¼ºÀå ¿äÀÎ Áß Çϳª´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿¡³ÊÁö µîÀÇ »ê¾÷¿¡¼­ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌµé »ê¾÷ÀÌ ±â¼úÀÇ ÇѰ踦 ³ÐÈ÷°í ´õ ³ôÀº ¿Âµµ¿¡¼­ ÀÛµ¿ÇÏ´Â ¿£Áø°ú ½Ã½ºÅÛÀ» °³¹ßÇÔ¿¡ µû¶ó °í±Þ ³»¿­ ÄÚÆÃ¿¡ ´ëÇÑ Çʿ伺ÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ƯÈ÷ Á¦Æ® ¿£Áø, Åͺó, °í¼º´É ÀÚµ¿Â÷ ºÎǰ°ú °°Àº ºÐ¾ß¿¡¼­ °í¿­¿¡ ³ëÃâµÇ´Â ºÎǰÀÇ ±¸Á¶Àû ¹«°á¼º°ú ±â´É¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüµµ ½ÃÀåÀ» ÃËÁøÇÏ´Â Å« ¿äÀÎÀÔ´Ï´Ù. ³ª³ë ±â¼ú°ú Àç·á °úÇÐÀÇ Çõ½ÅÀ¸·Î ´õ È¿°úÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ³»¿­ ÄÚÆÃÀÌ °³¹ßµÇ¾î ³»½Ä¼º, ³»¸¶¸ð¼º ¹× ´Ü¿­°ú °°Àº ´Ù±â´É º¸È£ ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í¼º´É ÄÚÆÃÀº ºó¹øÇÑ ÀçµµÆ÷ÀÇ Çʿ伺À» ÁÙ¿© Áߴܾø´Â ¿î¿µ¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡ ½Ã°£°ú ÀÚ¿øÀ» Àý¾à ÇÒ ¼ö ÀÖ½À´Ï´Ù. ´õ ¸¹Àº »ê¾÷ÀÌ Áö¼Ó °¡´ÉÇÑ Á¦Á¶ °øÁ¤À¸·Î ÀüȯÇÔ¿¡ µû¶ó ȯ°æ ģȭÀû ÀÎ Àú VOC Æ÷¹Ä·¯ÀÇ ºÎ»óµµ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ȯ°æ ±ÔÁ¦¿Í ģȯ°æ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸·Î ÀÎÇØ ±âÁ¸ ¼Öº¥Æ® ±â¹Ý Á¦Ç°°ú µ¿ÀÏÇÑ ¼öÁØÀÇ ³»¿­¼ºÀ» °¡Áø ¼ö¼º ¹× ºÐ¸» µµ·á°¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, »ê¾÷ ¹× »ó¾÷ ºÎ¹®ÀÇ ¿¡³ÊÁö È¿À²È­ Ãß¼¼´Â ³»¿­ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÌ »ó½ÂÇϰí Áö¼Ó°¡´É¼ºÀÌ ¿ì¼±½ÃµÇ¸é¼­ »ê¾÷°è´Â º¸´Ù È¿À²ÀûÀ¸·Î ¿î¿µÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ³»¿­ ÄÚÆÃÀº ÀåºñÀÇ ¿­ °ü¸®¸¦ °³¼±ÇÏ°í ¿­ ¼Õ½ÇÀ» ÁÙÀÌ¸ç ±ØÇÑÀÇ ¿Âµµ¿¡ ³ëÃâµÈ ±â°èÀÇ ³»±¸¼ºÀ» Çâ»ó½ÃÄÑ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ´Â ¹ßÀü ¹× Á¦Á¶¿Í °°Àº ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇϸç, È¿À²À» Çâ»ó½ÃŰ´Â °ÍÀº »ó´çÇÑ ºñ¿ë Àý°¨°ú ȯ°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ¾Æ½Ã¾ÆÅÂÆò¾çÀ» Áß½ÉÀ¸·Î ÇÑ ½ÅÈï±¹ ½ÃÀåÀÇ »ê¾÷ È®ÀåÀº ³»¿­ ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ¿Í °°Àº ±¹°¡µéÀÌ »ê¾÷È­¸¦ ÁøÇàÇÔ¿¡ µû¶ó °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ½ÅÈï ½ÃÀåÀº ÀÎÇÁ¶ó ¹× »ê¾÷ »ý»ê¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó °í¿­ ȯ°æ¿¡¼­ Àåºñ¿Í ±¸Á¶¹°À» º¸È£ÇÏ´Â °íµµÀÇ º¸È£ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼°è ½ÃÀå È®´ë¿Í ´õºÒ¾î ³»¿­ ÄÚÆÃÀÇ ±â¼úÀû °íµµÈ­·Î ÀÎÇØ ³»¿­ ÄÚÆÃ ½ÃÀåÀº ±âÁ¸ °æÁ¦±Ç°ú ½ÅÈï °æÁ¦±Ç ¸ðµÎ¿¡¼­ Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÁÖ¸ñ¹Þ´Â 43°³ ±â¾÷)

  • Akzo Nobel NV
  • Axalta Coating Systems
  • Hempel A/S
  • Jotun A/S
  • Kansai Paint Co.
  • KCC Corporation
  • PPG Industries, Inc.
  • RPM International, Inc.
  • The Sherwin-Williams Company
  • Tikkurila Oyj

    ¸ñÂ÷

    Á¦1Àå Á¶»ç ¹æ¹ý

    Á¦2Àå ÁÖ¿ä ¿ä¾à

    • ½ÃÀå °³¿ä
    • ÁÖ¿ä ±â¾÷
    • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ
    • ¼¼°è ½ÃÀå Àü¸Á

    Á¦3Àå ½ÃÀå ºÐ¼®

    • ¹Ì±¹
    • ij³ª´Ù
    • ÀϺ»
    • Áß±¹
    • À¯·´
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • È£ÁÖ
    • Àεµ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿
    • À̶õ
    • À̽º¶ó¿¤
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ±âŸ Áßµ¿
    • ¾ÆÇÁ¸®Ä«

    Á¦4Àå °æÀï

    LSH
  • ¿µ¹® ¸ñÂ÷

    ¿µ¹®¸ñÂ÷

    Global Heat Resistant Coatings Market to Reach US$10.2 Billion by 2030

    The global market for Heat Resistant Coatings estimated at US$7.1 Billion in the year 2023, is expected to reach US$10.2 Billion by 2030, growing at a CAGR of 5.4% over the analysis period 2023-2030. Liquid-Based Coatings, one of the segments analyzed in the report, is expected to record a 4.6% CAGR and reach US$6.9 Billion by the end of the analysis period. Growth in the Powder-Based Coatings segment is estimated at 7.1% CAGR over the analysis period.

    The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 8.2% CAGR

    The Heat Resistant Coatings market in the U.S. is estimated at US$1.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.3 Billion by the year 2030 trailing a CAGR of 8.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.3% and 4.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.9% CAGR.

    Global Heat Resistant Coatings Market - Key Trends and Drivers Summarized

    Are Heat Resistant Coatings the Key to Modern Industrial Protection?

    Heat resistant coatings are becoming increasingly essential across a variety of industries, but what exactly makes these coatings so critical in modern applications? These coatings are specially formulated materials designed to protect surfaces from extreme temperatures, typically ranging from 200°C to over 1000°C, depending on the specific product and application. Industries such as aerospace, automotive, manufacturing, and energy production rely heavily on heat resistant coatings to maintain the integrity of materials and equipment subjected to intense heat environments. Without these protective layers, machinery and structural components could degrade, corrode, or lose their strength when exposed to high temperatures, leading to costly failures and safety hazards.

    The primary function of heat resistant coatings is to shield surfaces from the damaging effects of thermal exposure, which can include oxidation, thermal fatigue, and corrosion. These coatings are often made from materials like silicone resins, ceramic compounds, or metallic pigments that can withstand high heat without breaking down. The growing use of advanced alloys and composites in industrial applications has further driven the need for effective heat resistant coatings, as these materials require protection to retain their properties under extreme conditions. By extending the lifespan of equipment and reducing the need for frequent maintenance or replacement, these coatings offer significant cost savings and improve operational efficiency in a variety of high-heat environments.

    How Has Technology Transformed Heat Resistant Coatings?

    Advances in material science and coating technology have significantly expanded the capabilities and applications of heat resistant coatings in recent years. One of the most important developments has been the creation of multi-functional coatings that not only resist heat but also provide additional benefits, such as corrosion resistance, UV protection, and thermal insulation. These coatings can now serve multiple roles, simplifying the protection process by eliminating the need for multiple layers or different products. For example, advanced ceramic-based coatings offer excellent heat resistance while also improving wear resistance, making them ideal for applications like turbine blades and exhaust systems that require durability under high-stress conditions.

    Nanotechnology is another key driver of innovation in this field. Nano-structured coatings enhance the thermal resistance and mechanical strength of heat resistant coatings by improving the distribution of heat and increasing surface area at a microscopic level. This allows for thinner, lighter coatings that provide superior protection compared to traditional formulations. Furthermore, these nano-enhanced coatings can often be applied more uniformly, reducing application times and improving the consistency of the protective layer. Developments in self-healing and anti-oxidation technologies are also starting to make their way into heat resistant coatings, further enhancing their durability and extending their functional lifespan.

    Another major leap in technology is the development of environmentally friendly, low-VOC (volatile organic compounds) formulations that meet stringent regulatory requirements without sacrificing performance. Many industries are moving away from solvent-based coatings due to environmental and health concerns, and the shift toward water-based and powder coatings is helping to reduce emissions while still delivering high levels of heat resistance. These innovations are not only making heat resistant coatings more effective but also more sustainable, ensuring they can meet the demands of modern industries while aligning with environmental goals.

    Why Are Industries Rapidly Adopting Heat Resistant Coatings?

    The adoption of heat resistant coatings is accelerating across a broad spectrum of industries, driven by both performance needs and regulatory pressures. One of the primary reasons for their growing use is the increasing complexity and heat-intensity of modern industrial processes. In industries such as aerospace, automotive, and power generation, components are frequently exposed to extreme temperatures that can degrade materials and compromise performance. By applying heat resistant coatings, manufacturers can protect critical parts like engine components, exhaust systems, and turbines from heat-induced wear and corrosion, ultimately enhancing the safety, longevity, and efficiency of their equipment.

    From an economic perspective, heat resistant coatings provide significant cost benefits by reducing maintenance needs and extending the operational life of expensive machinery. Industrial equipment that operates at high temperatures often experiences accelerated wear, leading to frequent repairs or replacements. Coatings that can withstand extreme temperatures reduce the need for costly downtime, parts replacement, and labor-intensive maintenance procedures. This is particularly important in sectors such as manufacturing and petrochemicals, where even short periods of downtime can result in significant financial losses.

    Regulatory and environmental factors are also pushing industries toward the increased use of heat resistant coatings. As governments worldwide implement stricter emissions standards and environmental regulations, industries are looking for ways to reduce their environmental footprint while maintaining operational efficiency. Heat resistant coatings help achieve this by allowing for more energy-efficient operations, reducing the likelihood of failures that could result in hazardous emissions or waste. Additionally, coatings that meet low-VOC standards are being widely adopted to ensure compliance with environmental regulations, especially in industries where large-scale coating applications are common. Together, these factors are driving the rapid adoption of heat resistant coatings as essential components of modern industrial operations.

    What Factors Are Fueling the Growth of the Heat Resistant Coating Market?

    The growth in the heat resistant coating market is driven by several factors, each linked to advancements in material science, evolving industrial needs, and increasing regulatory demands. One of the most significant growth drivers is the rising demand for high-performance materials in industries like aerospace, automotive, and energy. As these sectors push the boundaries of technology, developing engines and systems that operate at higher temperatures, the need for advanced heat resistant coatings has skyrocketed. These coatings are critical for maintaining the structural integrity and functionality of components exposed to high heat, particularly in areas like jet engines, turbines, and high-performance automotive parts.

    Technological advancements are another major factor propelling the market. Innovations in nanotechnology and materials science have led to the development of more effective and durable heat resistant coatings, which can now offer multi-functional protection including corrosion resistance, wear resistance, and thermal insulation. These high-performance coatings reduce the need for frequent reapplications, saving time and resources for industries that rely on uninterrupted operations. The rise of environmentally friendly, low-VOC formulations is also a key driver, as more industries shift towards sustainable manufacturing processes. Water-based and powder-based coatings that provide the same level of heat resistance as traditional solvent-based products are being widely adopted, driven by both environmental regulations and consumer demand for greener solutions.

    In addition, the growing trend toward energy efficiency in industrial and commercial sectors is fueling demand for heat resistant coatings. As energy costs rise and sustainability becomes a priority, industries are seeking ways to operate more efficiently. Heat resistant coatings play a crucial role in reducing energy consumption by improving the heat management of equipment, reducing thermal losses, and enhancing the durability of machinery exposed to extreme temperatures. This is particularly important in sectors like power generation and manufacturing, where improving efficiency can lead to significant cost savings and reduced environmental impact.

    Lastly, the expansion of industries in developing regions, particularly in Asia-Pacific, is contributing to the growth of the heat resistant coatings market. As countries like China and India continue to industrialize, their demand for high-performance materials is increasing. These emerging markets are investing heavily in infrastructure and industrial production, which in turn is driving the need for advanced protective coatings to safeguard equipment and structures in high-heat environments. This global expansion, coupled with the increasing technological sophistication of heat resistant coatings, ensures that the market will continue to grow in both established and emerging economies.

    Select Competitors (Total 43 Featured) -

    TABLE OF CONTENTS

    I. METHODOLOGY

    II. EXECUTIVE SUMMARY

    III. MARKET ANALYSIS

    IV. COMPETITION

    (ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
    ¨Ï Copyright Global Information, Inc. All rights reserved.
    PC¹öÀü º¸±â