¼¼°èÀÇ ¹è±â°¡½º ºÐ¼®±â ½ÃÀå
Flue Gas Analyzers
»óǰÄÚµå : 1563986
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 223 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,133,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,399,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹è±â°¡½º ºÐ¼®±â ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 9¾ï 9,850¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 7¾ï 7,090¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è ¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀº 2030³â¿¡´Â 9¾ï 9,850¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â µ¿¾È ¿¬Æò±Õ 3.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀζóÀÎ ¹è±â°¡½º ºÐ¼®±â´Â 4.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 7¾ï 3,840¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÈÞ´ë¿ë ¹è±â°¡½º ºÐ¼®±â ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 8,000¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó

¹Ì±¹ÀÇ ¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀº 2023³â 2¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 6.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 8,300¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 0.9%¿Í 4.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 1.8%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¹è±â°¡½º ºÐ¼®±â ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¹è±â°¡½º ºÐ¼®±â°¡ ȯ°æ ¸ð´ÏÅ͸µ°ú »ê¾÷ È¿À²¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî¿ä?

¹è±â°¡½º ºÐ¼®±â´Â »ê¾÷°è°¡ ¹èÃâ°¡½º¸¦ ¸ð´ÏÅ͸µÇÏ°í ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈ­ÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í Àִµ¥, ¿À´Ã³¯ »ê¾÷ ȯ°æ¿¡¼­ ¹è±â°¡½º ºÐ¼®±â°¡ ¿Ö ÀÌ·¸°Ô Áß¿äÇØÁö°í ÀÖ´Â °ÍÀϱî¿ä? ¹è±â°¡½º ºÐ¼®±â´Â ÀϹÝÀûÀ¸·Î º¸ÀÏ·¯, ¿ë±¤·Î ¹× ±âŸ »ê¾÷ Àåºñ¿¡¼­ ¹èÃâµÇ´Â ¿¬¼Ò °úÁ¤¿¡¼­ ¹èÃâµÇ´Â °¡½ºÀÇ ¼ººÐÀ» ÃøÁ¤ÇÏ´Â ÀåÄ¡ÀÔ´Ï´Ù. ÀÌ ºÐ¼®±â´Â »ê¼Ò(O2), ÀÌ»êȭź¼Ò(CO2), ÀÏ»êȭź¼Ò(CO), ÀÌ»êȭȲ(SO2), Áú¼Ò»êÈ­¹°(NOx) ÀÌ·¯ÇÑ °¡½º¸¦ ¸ð´ÏÅ͸µÇÏ¿© »ê¾÷°è°¡ ¿¬¼Ò È¿À²À» ÃÖÀûÈ­Çϰí ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇϸç À¯ÇØÇÑ ¹èÃâÀ» ÁÙÀÏ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â°¡ »ê¾÷ ¿î¿µ¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ´Â ÁÖ¿ä ÀÌÀ¯ Áß Çϳª´Â ȯ°æ º¸È£¿Í ¿î¿µ È¿À²¼ºÀ» ¸ðµÎ Çâ»ó½Ãų ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿Â½Ç°¡½º ¹èÃâ·®°ú ¿À¿°¹°Áú °¨Ãà¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, ¹è±â°¡½º ºÐ¼®±â´Â »ê¾÷°è°¡ ½Ç½Ã°£À¸·Î ¹èÃâ·®À» ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â ¿¬¼Ò »óÅ¿¡ ´ëÇÑ Çǵå¹éÀ» Á¦°øÇÏ¿© ÀåºñÀÇ È¿À²ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÏ¿© ¿¬·á¸¦ Àý¾àÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨Çϸç ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â ¹ßÀü, È­ÇРó¸®, ¼®À¯ Á¤Á¦ µî ¿¬¼Ò°¡ ¿î¿µ¿¡ ÇʼöÀûÀÎ »ê¾÷¿¡¼­ ±ÔÁ¤ Áؼö¸¦ À¯ÁöÇÏ°í °øÁ¤À» ÃÖÀûÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â´Â ¾î¶»°Ô ÀÛµ¿ÇÏ°í ¹«¾ùÀÌ È¿°úÀûÀϱî¿ä?

¹è±â°¡½º ºÐ¼®±â´Â ¹è±â°¡½º °ü¸®¿¡ ÇʼöÀûÀε¥, ¾î¶»°Ô ÀÛµ¿ÇÏ¸ç »ê¾÷ ¿¬¼Ò °øÁ¤À» ¸ð´ÏÅ͸µÇÏ´Â µ¥ È¿°úÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî¿ä? ¹è±â°¡½º ºÐ¼®±â´Â ±¼¶ÒÀ̳ª ±¼¶Ò¿¡¼­ ¹è±â°¡½º »ùÇÃÀ» äÃëÇÏ°í Æ¯Á¤ °¡½º¸¦ °¨ÁöÇϵµ·Ï ¼³°èµÈ ¼¾¼­¸¦ »ç¿ëÇÏ¿© ±× ¼ººÐÀ» ºÐ¼®ÇÕ´Ï´Ù. ÀÌ ¼¾¼­´Â °¡½º ³óµµ¸¦ Àü±â ½ÅÈ£·Î º¯È¯Çϰí À̸¦ ó¸®ÇÏ¿© ÀÐÀ» ¼ö ÀÖ´Â µ¥ÀÌÅͷΠǥ½ÃÇÕ´Ï´Ù. ÀϺΠºÐ¼®±â´Â Àü±âÈ­ÇÐ ¼¾¼­¸¦ »ç¿ëÇÏ¿© »ê¼Ò³ª ÀÏ»êȭź¼Ò¿Í °°Àº °¡½º¸¦ ÃøÁ¤ÇÏ´Â ¹Ý¸é, ´Ù¸¥ ºÐ¼®±â´Â Àû¿Ü¼± ¼¾¼­¸¦ »ç¿ëÇÏ¿© CO2³ª SO2¸¦ °¨ÁöÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù. °í±ÞÇü ¸ðµ¨¿¡´Â °¡½º ÇÊÅÍ¿Í ³Ã°¢ ½Ã½ºÅÛÀÌ ³»ÀåµÇ¾î ÀÖ¾î °í¿ÂÀ̳ª ¸ÕÁö°¡ ¸¹Àº ȯ°æ¿¡¼­µµ Á¤È®ÇÑ ÃøÁ¤ÀÌ °¡´ÉÇÕ´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â°¡ ¸Å¿ì È¿°úÀûÀÎ ÀÌÀ¯´Â ¿¬¼Ò Áß °¡½º ³óµµ¿¡ ´ëÇÑ Á¤È®ÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î Á¦°øÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¹èÃâ °¡½º¸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÔÀ¸·Î½á ÀÛ¾÷ÀÚ´Â °ø±â ¿¬·á ºñÀ²°ú °°Àº ¿¬¼Ò ¸Å°³ º¯¼ö¸¦ Á¶Á¤ÇÏ¿© º¸ÀÏ·¯, ¿ë±¤·Î ¹× ±âŸ ¿¬¼Ò ÀåºñÀÇ È¿À²À» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¬·á°¡ ´õ ¿ÏÀüÇÏ°Ô ¿¬¼ÒµÇ¾î CO ¹× NOx¿Í °°Àº À¯ÇØ °¡½º ¹ß»ýÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹ßÀü¼Ò¿¡¼­´Â ¹è±â°¡½º ºÐ¼®À» ÅëÇØ ¿¬¼Ò ÃÖÀûÈ­¸¦ ÅëÇØ ¿¬·á ¼Òºñ¿Í ¹èÃâ·®À» Å©°Ô ÁÙ¿© ȯ°æ°ú °æÁ¦ ¸ðµÎ¿¡ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ, ¹è±â°¡½º ºÐ¼®±â´Â ÈÞ´ë°¡ °£ÆíÇÏ°í »ç¿ëÇϱ⠽¬¿ö ´Ù¾çÇÑ È¯°æ¿¡¼­ À¯¿¬ÇÏ°Ô ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº ºÐ¼®±â´Â ½Ã¼³ ³» ¿©·¯ Àå¼Ò¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ´Â ¼ÒÇü ÈÞ´ë¿ë ±â±â·Î ¼³°èµÇ¾î ¿¬¼Ò ÀåºñÀÇ Á¤±âÀûÀÎ Á¡°ËÀÌ ÇÊ¿äÇÑ À¯Áöº¸¼ö ÆÀ¿¡ ÀûÇÕÇÕ´Ï´Ù. °íÁ¤Çü ¶Ç´Â »ó¼³Çü ºÐ¼®±â¸¦ ÀÚµ¿ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀ» ¼öÇàÇÏ¿© ±ÔÁ¦ ´ç±¹¿¡ º¸°íÇϰųª ¿î¿µ Á¶Á¤¿¡ ÇÊ¿äÇÑ ¹èÃâ·® µ¥ÀÌÅ͸¦ Ç×»ó È®º¸ÇÒ ¼ö ÀÖµµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â È޴뼺, Á¤È®¼º, ´ÙÀç´Ù´ÉÇÔÀ» ¸ðµÎ °®Ãß°í ÀÖ¾î Çö´ë »ê¾÷ ¿î¿µ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â´Â ¾î¶»°Ô ¹èÃâ°¡½º Á¦¾î¿Í ¿¡³ÊÁö È¿À²ÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí Àִ°¡?

¹è±â°¡½º ºÐ¼®±â´Â ÇöÀçÀÇ ¹è±â°¡½º ±ÔÁ¦¸¦ °­È­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿¡³ÊÁö È¿À²°ú ȯ°æ Áö¼Ó°¡´É¼ºÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®±â°¡ ¹Ì·¡¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °¡Àå Áß¿äÇÑ ¹æ¹ý Áß Çϳª´Â »ê¾÷°è°¡ ´õ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â °ÍÀÔ´Ï´Ù. ƯÈ÷ CO2, NO2, SO2¿Í °°Àº ¿À¿° ¹°Áú¿¡ ´ëÇØ Àü ¼¼°è Á¤ºÎ´Â ´ë±â Áú ¹× ¹èÃâ °¡½º¿¡ ´ëÇÑ ´õ ¾ö°ÝÇÑ ±âÁØÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â Á¤È®ÇÑ ½Ç½Ã°£ ¹èÃâ·® µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á »ê¾÷°è°¡ ÀÌ·¯ÇÑ ±ÔÁ¤À» ÁؼöÇÏ°í ¹ýÀû Çѵµ ³»¿¡¼­ ¿î¿µÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû ¸ð´ÏÅ͸µÀº ±ÔÁ¤ À§¹ÝÀ¸·Î ÀÎÇÑ ¹ú±Ý ¹× °¡µ¿ Áß´ÜÀÇ À§ÇèÀ» ÁÙÀ̰í, ¹®Á¦¸¦ Á¶±â¿¡ ¹ß°ßÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °³Á¶¸¦ ÇÇÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

¹ý±Ô¸¦ ÁؼöÇÏ´Â °Í ¿Ü¿¡µµ ¹è±â°¡½º ºÐ¼®±â´Â ¿¡³ÊÁö È¿À²À» °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¿¬¼Ò °úÁ¤À» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ¿© ¿î¿µÀÚ°¡ ½Ã½ºÅÛÀ» ¹Ì¼¼ Á¶Á¤ÇÏ°í °úµµÇÑ °ø±â ÈíÀÔ ¹× ºÒ¿ÏÀü ¿¬¼Ò¸¦ ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÃÖÀûÈ­´Â º¸´Ù È¿À²ÀûÀÎ ¿¬·á »ç¿ë, ¿î¿µ ºñ¿ë Àý°¨, ź¼Ò ¹èÃâ·® °¨¼Ò·Î À̾îÁý´Ï´Ù. ¿¹¸¦ µé¾î, ¹ßÀü¼Ò ¹× »ê¾÷¿ë ¿ë±¤·Î¿¡¼­ ¿¬¼Ò °øÁ¤À» ÃÖÀûÈ­ÇÏ¸é ¿¬·á¸¦ Å©°Ô Àý¾àÇϰí ȯ°æ ¹ßÀÚ±¹À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÌ »ó½ÂÇϰí Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¡³ÊÁö È¿À²À» °³¼±ÇÏ´Â µ¥ ÀÖ¾î ¹è±â°¡½º ºÐ¼®±âÀÇ ¿ªÇÒÀº Á¡Á¡ ´õ Ä¿Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â´Â Àü ¼¼°è CO2 ¹èÃâ·® °¨ÃàÀÇ ÇÙ½ÉÀΠź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ±â¼úÀ» ÃËÁøÇÏ´Â µ¥¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, CCS´Â »ê¾÷¿¡¼­ ¹èÃâµÇ´Â CO2¸¦ ȸ¼öÇÏ¿© ÁöÇÏ¿¡ ÀúÀåÇÏ¿© ´ë±â ÁßÀ¸·Î ¹èÃâµÇ´Â °ÍÀ» ¹æÁöÇÏ´Â ±â¼úÀÔ´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â ȸ¼ö ÀüÈÄÀÇ ¹è±â°¡½º ³» CO2 ³óµµ¸¦ ¸ð´ÏÅ͸µÇÏ¿© °øÁ¤ÀÌ È¿À²ÀûÀ̰í ȯ°æ ±âÁØÀ» ÁؼöÇÏ´ÂÁö È®ÀÎÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. »ê¾÷°è¿Í Á¤ºÎ°¡ ÀÌ»êȭź¼Ò Æ÷Áý ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇÔ¿¡ µû¶ó Á¤È®ÇÑ °¡½º ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹è±â°¡½º ºÐ¼®±â´Â ±âÈÄ º¯È­¿¡ ´ëÀÀÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ȯ°æ ±ÔÁ¦ Áؼö, ¿¡³ÊÁö È¿À²¼º ¹× »ê¾÷ °øÁ¤ÀÇ ±â¼ú ¹ßÀü¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÌ ¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ´ë±âÁú°ú ¹èÃâ°¡½º ±ÔÁ¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Àü ¼¼°è Á¤ºÎ¿Í ȯ°æ ±â°üÀº ±âÈÄ º¯È­ ´ëÀÀ°ú ´ë±â ¿À¿°À» ÁÙÀ̱â À§ÇØ »ê¾÷ ¹èÃâ¹°¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¹ßÀü, ¼®À¯ Á¤Á¦, ½Ã¸àÆ® Á¦Á¶, Æó±â¹° ¼Ò°¢ µî ¿¬¼Ò °øÁ¤¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷Àº ÀÌ·¯ÇÑ ±ÔÁ¤À» ÁؼöÇϱâ À§ÇØ ¹èÃâ °¡½º¸¦ ¸é¹ÐÈ÷ ¸ð´ÏÅ͸µÇØ¾ß ÇÕ´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ¿¡ ÇÊ¿äÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇϹǷΠ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©ÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ¿¡³ÊÁö °¡°ÝÀÌ »ó½ÂÇÏ°í »ê¾÷°è°¡ ¿î¿µ ºñ¿ëÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¹è±â°¡½º ºÐ¼®±â´Â ¿¬¼Ò °øÁ¤À» ÃÖÀûÈ­ÇÏ¿© ¿¬·á È¿À²À» °³¼±ÇÏ°í Æó±â¹°À» ÁÙÀÌ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ¹è±â°¡½º ºÐ¼®±â´Â ¿¬¼Ò ¼º´É¿¡ ´ëÇÑ Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á ½Ã½ºÅÛÀ» ¹Ì¼¼ Á¶Á¤ÇÏ¿© ¿¬·á ¼Òºñ¸¦ ÁÙÀÌ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬·á È¿À²ÀÌ ¼öÀͼº°ú Á÷°áµÇ´Â ¹ßÀü°ú °°Àº ºÐ¾ß¿¡¼­´Â ¹è±â°¡½º ºÐ¼®À» ÅëÇØ ¿¬¼Ò¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÌ Å« ÀåÁ¡ÀÔ´Ï´Ù.

ûÁ¤ ¿¡³ÊÁö¿Í Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ ÀüȯÀº ¹è±â°¡½º ºÐ¼®±â¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ź¼Ò ȸ¼ö ¹× ÀúÀå(CCS), Àç»ý °¡´É ¿¡³ÊÁö¿Í °°Àº ģȯ°æ ±â¼ú·ÎÀÇ ÀüȯÀÌ ÁøÇàµÊ¿¡ µû¶ó ¹è±â°¡½º ºÐ¼®±â´Â ¹èÃâ °¡½º¸¦ ¸ð´ÏÅ͸µÇÏ°í »õ·Î¿î ±â¼úÀÌ È¿°úÀûÀ̰í ȯ°æ ±âÁØ¿¡ ºÎÇÕÇÏ´ÂÁö È®ÀÎÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹ÙÀÌ¿À¸Å½º ¹ßÀü¼Ò³ª Æó±â¹° ¹ßÀü¼ÒÀÇ °æ¿ì ¿¬·á °ø±Þ¿ø¿¡ µû¶ó ¹èÃâ·®ÀÌ ´Ù¸£±â ¶§¹®¿¡ ¹è±â°¡½º ºÐ¼®±â´Â ¿¬¼Ò °øÁ¤ÀÌ ±ú²ýÇϰí È¿À²ÀûÀÎÁö È®ÀÎÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, ¹è±â°¡½º ºÐ¼®±â´Â »ê¾÷°è°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î ¼¾¼­ ±â¼ú, µ¥ÀÌÅÍ ºÐ¼® ¹× ÀÚµ¿È­ÀÇ ¹ßÀüÀº ¹è±â°¡½º ºÐ¼®±â ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ¹è±â°¡½º ºÐ¼®±â ¸ðµ¨Àº ´õ Á¤È®ÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× µ¥ÀÌÅÍ ºÐ¼®À» À§ÇØ »ê¾÷ Á¦¾î ½Ã½ºÅÛ°ú ÅëÇÕ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ »ê¾÷°è´Â ¿¬¼Ò ÇÁ·Î¼¼½º °ü¸®¸¦ ÀÚµ¿È­ÇÏ°í ¼öµ¿ °³ÀÔÀ» ÁÙ¿© ¿î¿µ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. °¢ »ê¾÷ ºÐ¾ß¿¡¼­ µðÁöÅÐÈ­ ¹× ½º¸¶Æ® ÆÑÅ丮¿¡ ´ëÇÑ ³ë·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿ø°Ý ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü ¹× µ¥ÀÌÅÍ ±â¹Ý ÅëÂû·ÂÀ» Á¦°øÇϴ ÷´Ü ¹è±â°¡½º ºÐ¼® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½ÃÀåÀÌ ´õ¿í ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(42°³»ç)

  • ABB Ltd.
  • Afriso-Euro-Index GmbH
  • AMETEK, Inc.
  • California Analytical Instruments, Inc.
  • Dragerwerk AG & Co. KGaA
  • Emerson Electric Company
  • Endee Engineers Pvt.
  • ENVEA group
  • Horiba Ltd.
  • Imr Environmental Equipment, Inc.
  • Kane International Ltd.
  • Labsol Enterprises
  • Mru Instruments, Inc.
  • Nova Analytical Systems, Inc.
  • Opsis AB
  • Servomex
  • SICK AG
  • Siemens AG
  • Tekran Instruments Corporation
  • Teledyne Analytical Instruments
  • Testo SE & Co. KGaA
  • Thermo Fisher Scientific, Inc.
  • Vasthi Engineers Pvt Ltd.
  • Wohler Technik GmbH

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Flue Gas Analyzers Market to Reach US$998.5 Million by 2030

The global market for Flue Gas Analyzers estimated at US$770.9 Million in the year 2023, is expected to reach US$998.5 Million by 2030, growing at a CAGR of 3.8% over the analysis period 2023-2030. Inline Flue Gas Analyzers, one of the segments analyzed in the report, is expected to record a 4.1% CAGR and reach US$738.4 Million by the end of the analysis period. Growth in the Portable Flue Gas Analyzers segment is estimated at 2.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$208.0 Million While China is Forecast to Grow at 6.6% CAGR

The Flue Gas Analyzers market in the U.S. is estimated at US$208.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$208.3 Million by the year 2030 trailing a CAGR of 6.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 0.9% and 4.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.8% CAGR.

Global Flue Gas Analyzers Market - Key Trends and Drivers Summarized

Why Are Flue Gas Analyzers Revolutionizing Environmental Monitoring and Industrial Efficiency?

Flue gas analyzers are transforming how industries monitor emissions and optimize energy use, but why are they becoming so crucial in today’s industrial landscape? Flue gas analyzers are devices used to measure the composition of gases emitted from combustion processes, typically from boilers, furnaces, or other industrial equipment. These analyzers provide critical data on levels of oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NO?), and other combustion by-products. By monitoring these gases, industries can optimize combustion efficiency, ensure compliance with environmental regulations, and reduce harmful emissions.

One of the key reasons flue gas analyzers are revolutionizing industrial operations is their ability to enhance both environmental protection and operational efficiency. With increasing regulatory pressure to reduce greenhouse gas emissions and pollutants, flue gas analyzers help industries monitor and control their emissions in real time. They ensure that equipment operates efficiently by providing feedback on combustion conditions, which can lead to fuel savings, reduced operational costs, and minimized environmental impact. In industries such as power generation, chemical processing, and oil refining, where combustion is integral to operations, flue gas analyzers are critical for maintaining compliance and optimizing processes.

How Do Flue Gas Analyzers Work, and What Makes Them So Effective?

Flue gas analyzers are essential in managing emissions, but how do they work, and what makes them so effective in monitoring industrial combustion processes? Flue gas analyzers work by drawing a sample of exhaust gas from the flue or chimney and analyzing its composition using sensors designed to detect specific gases. These sensors convert the gas concentrations into electrical signals, which are then processed and displayed as readable data. Some analyzers use electrochemical sensors for measuring gases like oxygen and carbon monoxide, while others use infrared sensors for detecting CO2 and SO2. Advanced models also incorporate gas filters and cooling systems to ensure accurate measurements in hot and dusty environments.

What makes flue gas analyzers so effective is their ability to provide real-time, precise data on gas concentrations during combustion. By continuously monitoring emissions, these devices help operators adjust combustion parameters, such as air-to-fuel ratios, to optimize the efficiency of boilers, furnaces, and other combustion equipment. This ensures that fuel is burned more completely, reducing the production of harmful gases like CO and NO?. In power plants, for example, optimizing combustion through flue gas analysis can significantly reduce fuel consumption and emissions, resulting in both environmental and economic benefits.

Additionally, flue gas analyzers are portable and easy to use, allowing for flexible monitoring in a variety of settings. Many analyzers are designed to be compact, handheld devices that can be used in multiple locations within a facility, making them ideal for maintenance teams that need to perform regular checks on combustion equipment. Fixed or permanent analyzers can also be integrated into automated systems for continuous monitoring, ensuring that emissions data is always available for regulatory reporting or operational adjustments. This combination of portability, accuracy, and versatility is what makes flue gas analyzers indispensable in modern industrial operations.

How Are Flue Gas Analyzers Shaping the Future of Emission Control and Energy Efficiency?

Flue gas analyzers are not just enhancing current emission control practices—they are shaping the future of energy efficiency and environmental sustainability. One of the most significant ways these analyzers are influencing the future is by supporting industries in meeting stricter environmental regulations. Governments around the world are implementing more rigorous standards for air quality and emissions, particularly for pollutants like CO2, NO?, and SO2. Flue gas analyzers help industries comply with these regulations by providing accurate, real-time data on emissions, ensuring that operations remain within legal limits. This proactive monitoring reduces the risk of fines or shutdowns due to non-compliance and helps industries avoid costly retrofits by identifying issues early.

In addition to regulatory compliance, flue gas analyzers are driving improvements in energy efficiency. By continuously monitoring the combustion process, these devices provide critical insights that allow operators to fine-tune their systems, reducing excess air intake or incomplete fuel combustion. This optimization leads to more efficient fuel use, lowering operating costs and reducing carbon emissions. For example, in power plants or industrial furnaces, optimizing the combustion process can lead to significant fuel savings and a smaller environmental footprint. As energy costs rise and sustainability becomes a priority, the role of flue gas analyzers in improving energy efficiency is expected to grow.

Flue gas analyzers are also playing a critical role in advancing carbon capture and storage (CCS) technologies, which are key to reducing global CO2 emissions. CCS involves capturing CO2 emissions from industrial sources and storing them underground to prevent their release into the atmosphere. Flue gas analyzers are essential for monitoring CO2 levels in flue gases before and after capture, ensuring that the process is efficient and compliant with environmental standards. As industries and governments invest more in carbon capture technologies, the demand for precise gas analysis will continue to rise, making flue gas analyzers a vital tool in the fight against climate change.

What Factors Are Driving the Growth of the Flue Gas Analyzer Market?

Several key factors are driving the rapid growth of the flue gas analyzer market, reflecting the increasing need for environmental compliance, energy efficiency, and technological advancement in industrial processes. One of the primary drivers is the growing focus on air quality and emissions regulations. Governments and environmental agencies worldwide are enforcing stricter limits on industrial emissions to combat climate change and reduce air pollution. Industries that rely on combustion processes, such as power generation, oil refining, cement production, and waste incineration, must monitor their emissions carefully to comply with these regulations. Flue gas analyzers provide the real-time data necessary for continuous monitoring, making them essential for ensuring regulatory compliance.

Another significant factor contributing to the growth of the flue gas analyzer market is the increasing demand for energy efficiency. As energy prices rise and industries seek to minimize operational costs, flue gas analyzers help optimize combustion processes, improving fuel efficiency and reducing waste. By providing precise data on combustion performance, these devices enable companies to fine-tune their systems, reducing fuel consumption and cutting operational costs. In sectors such as power generation, where fuel efficiency is directly tied to profitability, the ability to optimize combustion through flue gas analysis is a major advantage.

The shift toward cleaner energy and sustainability is also driving demand for flue gas analyzers. As industries transition to greener technologies, such as carbon capture and storage (CCS) and renewable energy, flue gas analyzers remain essential for monitoring emissions and ensuring that new technologies are effective and compliant with environmental standards. For example, in biomass and waste-to-energy plants, where emissions can vary depending on the fuel source, flue gas analyzers provide crucial data that ensures the combustion process is clean and efficient. As the global push for sustainability grows, flue gas analyzers are playing a key role in helping industries reduce their carbon footprint.

Finally, advancements in sensor technology, data analytics, and automation are further fueling the growth of the flue gas analyzer market. Newer models of flue gas analyzers are more accurate, durable, and capable of integrating with industrial control systems for real-time monitoring and data analysis. This integration enables industries to automate the management of combustion processes, reducing manual intervention and increasing operational efficiency. As digitalization and smart factory initiatives gain momentum across industries, the demand for advanced flue gas analyzers that offer remote monitoring, predictive maintenance, and data-driven insights is expected to rise, driving further growth in the market.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â