¼¼°èÀÇ ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀå
Floating Power Plants
»óǰÄÚµå : 1563908
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 223 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀº 2030³â±îÁö 29¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 17¾ï ´Þ·¯·Î ÃßÁ¤µÈ ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 8.3%·Î ¼ºÀåÇϰí 2030³â¿¡´Â 29¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºñÀç»ý °¡´É Àü¿øÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.9%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ Á¾·á ½Ã 17¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àç»ý °¡´É Àü¿ø ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 8.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 3,350¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 12.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀº 2023³â 4¾ï 3,350¸¸ ´Þ·¯·Î ÃßÁ¤µÆ½À´Ï´Ù. ¼¼°èÀÇ 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 12.1%·Î ÃßÀ̵Ǹç 2030³â¿¡´Â 7¾ï 2,500¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 4.3%¿Í 7.5%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 5.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

¿Ö ºÎÀ¯½Ä ¹ßÀü¼Ò°¡ ¿¡³ÊÁö »ý¼º°ú Á¢±Ù¿¡ Çõ¸íÀ» ÀÏÀ¸Å°´Â°¡?

ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¿¡³ÊÁöÀÇ »ý»ê,°ø±Þ ¹æ¹ýÀ» º¯ÇõÇϰí ÀÖ½À´Ï´Ù¸¸, ¿Ö Çö´ëÀÇ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ºÒ°¡°áÇÏ°Ô µÇ¾î ÀÖ´Â °ÍÀϱî¿ä? ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¹ÙÁö¼±À̳ª ¹è µîÀÇ ¼ö»ó¿¡ ¼³Ä¡µÇ´Â ¹ßÀü À¯´ÖÀ¸·Î ÇØ»ó¿¡¼­ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¼Ò´Â õ¿¬°¡½º, ž籤, dz·Â, ½ÉÁö¾î ¼ö·Â¹ßÀü µî ´Ù¾çÇÑ ¿¡³ÊÁö¿øÀ» µ¿·Â¿øÀ¸·Î ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¼¼°èÀÇ ¿¡³ÊÁö ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ƯÈ÷ ±âÁ¸ ¹ßÀü¼Ò ¿ëÁö°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­ ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¹ßÀü ¹× ¹èÀüÀ» À§ÇÑ À¯¿¬ÇÏ°í ±âµ¿ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ ¿ø°ÝÁö³ª ¼¶³ª¶ó, ½Å·Ú¼ºÀÌ ³ôÀº ¼ÛÀü¸Á¿¡ ´ëÇÑ ¾×¼¼½º°¡ Á¦ÇÑµÈ Àå¼Ò µî¿¡¼­ À¯¿ëÇÕ´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼Ò°¡ ¿¡³ÊÁö Á¢±Ù¿¡ Çõ¸íÀ» ÀÏÀ¸Å°´Â ÁÖµÈ ÀÌÀ¯ Áß Çϳª´Â À°»ó ÀÎÇÁ¶ó¸¦ »ç¿ëÇÒ ¼ö ¾ø°Å³ª °³¹ß ºñ¿ëÀÌ ³Ê¹« ³ôÀº Áö¿ª¿¡ ºü¸£°í ½±°Ô µµÀÔ ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ±¤´ëÇÑ ÅäÁö¸¦ ÇÊ¿ä·Î ÇÏ´Â ÀüÅëÀûÀÎ ¹ßÀü¼Ò¿Í´Â ´Þ¸®, ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ÇØ¾È¼±°ú ÇØ¾È¼± ±Ùó¿¡ Á¤¹ÚÇÒ ¼ö Àֱ⠶§¹®¿¡ ÅäÁö Ãëµæ ¹× °Ç¼³ÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ» ÅëÇØ ¿¡³ÊÁö °ø±ÞÀÚ´Â ÀÚ¿¬ÀçÇØ¿Í °°Àº ±ä±Þ »óȲ¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇϰųª ¿¡³ÊÁö ¼ö¿äÀÇ ±ÞÁõ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¼°èÀǰ¡ º¸´Ù Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·Î ÇâÇϰí, ÃæºÐÇÑ ¼­ºñ½º¸¦ ¹ÞÁö ¸øÇÑ Áö¿ªÀÇ ¿¡³ÊÁö ºÎÁ·À» ´ëóÇϱâ À§ÇØ, ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ½Å·Ú¼ºÀÌ ³ô°í, È®Àå °¡´ÉÇϰí ÀûÀÀ¼ºÀÌ ÀÖ´Â ¹ßÀü ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¾î¶»°Ô ÀÛµ¿Çմϱî?

ºÎÀ¯½Ä ¹ßÀü¼Ò´Â µ¶Æ¯ÇÑ ¹æ½ÄÀ¸·Î ÀÛµ¿ÇÏÁö¸¸ ¾î¶»°Ô ÀÛµ¿ÇÏ°í ¹«¾ùÀÌ ´Ù¾çÇÑ Áö¿ªÀÇ ¹ßÀü¿¡ È¿°úÀûÀԴϱî? ÀÌ·¯ÇÑ ¹ßÀü¼Ò´Â ±âº»ÀûÀ¸·Î ÀÚü ¿Ï¼ºÇü ¹ßÀü À¯´ÖÀ̸ç, ´ëºÎºÐÀÇ °æ¿ì ¼±¹Ú, ¹ÙÁö¼±, ÇØ¾ç ±¸Á¶¹° µîÀÇ ºÎÀ¯½Ä Ç÷§Æû¿¡ ÀåÂøµÇ¾î ÀÖ½À´Ï´Ù. õ¿¬°¡½º¿Í °°Àº È­¼®¿¬·á¿Í ž籤, dz·Â°ú °°Àº Àç»ý°¡´É ¿¡³ÊÁö µî ´Ù¾çÇÑ À¯ÇüÀÇ ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ºÎÀ¯½Ä °¡½º ¹ßÀü¼Ò´Â õ¿¬ °¡½º¸¦ Àü·ÂÀ¸·Î º¯È¯ÇÏ¿© ¹ßÀüÇÏ´Â °ÍÀ¸·Î, Ç÷§ÆûÀº ÇØ¾È¿¡ Á¤¹ÚÇϰųª ÇØ¾È¼± ±Ùó¿¡ °è·ùµË´Ï´Ù. ¸¶Âù°¡Áö·Î ºÎÀ¯½Ä ž籤 ¹ßÀü¼Ò¿Í dz·Â ÅͺóÀº ±¤´ëÇÑ ¼ö¿ªÀ» ÀÌ¿ëÇÏ¿© ±ÍÁßÇÑ ÅäÁö ÀÚ¿øÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í Àç»ý °¡´É ¿¡³ÊÁö¸¦ Èí¼öÇÕ´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼Ò°¡ ƯÈ÷ È¿°úÀûÀÎ °ÍÀº ±× ±âµ¿¼º°ú ¹ü¿ë¼ºÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¼Ò´Â ÇÑ °÷¿¡ °íÁ¤µÇ¾î ÀÖÁö ¾Ê±â ¶§¹®¿¡ Àü·ÂÀÌ °¡Àå ÇÊ¿äÇÑ Áö¿ªÀ¸·Î À̵¿Çϰųª Àç¹èÄ¡ÇÒ ¼ö ÀÖ¾î º¯µ¿ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¿¡ À¯¿¬ÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀº ºü¸£°í ÀϽÃÀûÀÎ Àü·Â °ø±ÞÀÌ ÇÊ¿äÇÑ ¼¶³ª¶ó, ÇØ¾È µµ½Ã ¶Ç´Â ÀçÇØ Áö¿ª¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¿¡³ÊÁö ¼ö¿ä¿¡ µû¶ó ±Ô¸ð¸¦ È®ÀåÇϰųª Ãà¼ÒÇÒ ¼ö ÀÖÀ¸¹Ç·Î °èÀýÀû ¶Ç´Â º¯µ¿ÀûÀÎ ¿¡³ÊÁö ¼ö¿ä°¡ ÀÖ´Â °÷¿¡ ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ƯÁ¤ °èÀý¿¡ ¿¡³ÊÁö »ç¿ë·®ÀÌ ±ÞÁõÇÏ´Â ¿­´ë Áö¿ª¿¡¼­´Â ºÎÀ¯½Ä ¹ßÀü¼Ò°¡ ¿µ±¸ÀûÀÎ ÀÎÇÁ¶ó ÅõÀÚ ¾øÀÌ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿Âµð¸Çµå Àü¿øÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼ÒÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ÀÌÁ¡Àº À°»ó ¹ßÀü¼Ò¿Í °ü·ÃµÈ ¸¹Àº ±ÔÁ¦ ¹× ȯ°æ ¹®Á¦¸¦ ÇÇÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ÀüÅëÀûÀÎ ¹ßÀü¼Ò °Ç¼³¿¡´Â Á¾Á¾ ÅäÁö »ç¿ë, ±ä ȯ°æ ½É»ç, º¹ÀâÇÑ ½ÂÀÎ ÇÁ·Î¼¼½º°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ÇØ¾È ÇØ¿ª¿¡ À°»ó Á¦¾àÀÌ ÀûÀº °÷¿¡ ¼³Ä¡ÇÒ ¼ö ÀÖ¾î Àü°³ °úÁ¤À» º¸´Ù ºü¸£°í ÇÕ¸®ÀûÀ¸·Î ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¹ßÀü¼Ò´Â ºÎÀ¯½Ä žçÀüÁöÆÇ°ú ÇØ»ó dz·Â Åͺó µîÀÇ Àç»ý °¡´É ±â¼úÀ» µµÀÔÇÒ ¼ö Àֱ⠶§¹®¿¡ º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» ¸ñÇ¥·Î ÇÏ´Â ±¹°¡µé¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µË´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼Ò´Â Àç»ý °¡´É ¿¡³ÊÁö¿Í Áö¼Ó °¡´ÉÇÑ °³¹ßÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô °³Ã´Çϰí Àִ°¡?

ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ´Ü±âÀûÀÎ ¼Ö·ç¼ÇÀÌ ¾Æ´Ï¶ó Àç»ý °¡´É ¿¡³ÊÁö¿Í Áö¼Ó °¡´ÉÇÑ °³¹ßÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â °ÍÀÔ´Ï´Ù. ºÎÀ¯½Ä Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀü¼Ò´Â Àç»ý °¡´É ¿¡³ÊÁö¿Í Áö¼Ó °¡´ÉÇÑ °³¹ßÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â °ÍÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ºÎÀ¯½Ä ž籤 ¹ßÀü¼Ò´Â ¸¹Àº Áö¿ª, ƯÈ÷ Àα¸¹ÐÁýÁö³ª ±âÁ¸ÀÇ Å¾籤 ¹ßÀü ¼³ºñ¸¦ ¼³Ä¡ÇÏ´Â °ø°£ÀÌ ÇÑÁ¤µÇ¾î ÀÖ´Â ±¹°¡µéÀÌ Á÷¸éÇÏ´Â ÅäÁö Á¦¾à¿¡ ´ëÇÑ Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î¼­ ´ëµÎÇØ ¿Ô½À´Ï´Ù ÇÕ´Ï´Ù. Àú¼öÁö¿Í È£¼ö, ¹Ù´Ù¸¦ ÀÌ¿ëÇÔÀ¸·Î½á, ºÎÀ¯½Ä žçÀüÁöÆÇÀº ±ÍÁßÇÑ ÅäÁö ÀÚ¿ø°ú °æÀïÇÏÁö ¾Ê°í ž籤À» ¹Þ¾Æµé¿©, ž籤 ¹ßÀüÀÇ °¡´É¼ºÀ» ´ëÆø È®´ëÇÕ´Ï´Ù.

¸¶Âù°¡Áö·Î ºÎÀ¯½Ä ÇØ¾ç À©µå ÆÊÀº ¹Ì·¡ÀÇ Àç»ý °¡´É ¿¡³ÊÁö ¹Í½ºÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÇØ»ódz·Â¹ßÀü¼Ò´Â Á¾·¡, °íÁ¤½Ä Àú¸é ÅÍºó¿¡ ÀÇÁöÇϰí ÀÖ¾î, ¾èÀº ÇØ¿ª¿¡ ÇÑÁ¤µÇ¾î ÀÖ¾ú½À´Ï´Ù. ±×·¯³ª ºÎÀ¯½Ä dz·Â ÅͺóÀº dz¼ÓÀÌ ºü¸£°í ¾ÈÁ¤µÈ ½ÉÇØ¿¡ ¼³Ä¡ÇÒ ¼ö Àֱ⠶§¹®¿¡ ´õ Å« ¿¡³ÊÁö Ãâ·ÂÀ¸·Î À̾îÁý´Ï´Ù. ÀÌ Áøº¸´Â ƯÈ÷ ÀϺ», ³ë¸£¿þÀÌ, ¹Ì±¹ µî ½ÉÇØ¸¦ °¡Áø ±¹°¡ÀÇ ÇØ¾È¿¡ dz·Â¿¡³ÊÁö °³¹ßÀ»À§ÇÑ ±¤´ë ÇÑ »õ·Î¿î Áö¿ªÀ» ¿­¾îÁÝ´Ï´Ù. º¸´Ù °­·ÂÇÏ°í ½Å·ÚÇÒ ¼ö Àִ dz·ÂÀÚ¿ø¿¡ ´ëÇÑ Á¢±ÙÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ºÎÀ¯½Ä À©µåÆÊÀº ½ÅÀç»ý¿¡³ÊÁö·ÎÀÇ ¼¼°èÀÇ º¯È­¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

½ÅÀç»ý¿¡³ÊÁö ´É·ÂÀ» È®´ëÇÏ´Â °Í ¿Ü¿¡µµ ºÎÀ¯½Ä ¹ßÀü¼Ò´Â Áö¼Ó°¡´ÉÇÑ °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº °³¹ßµµ»ó±¹¿¡¼­´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â¿¡ ´ëÇÑ Á¢±ÙÀÌ Å« °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ±âÁ¸ÀÇ ¹ßÀü ÀÎÇÁ¶ó°¡ ¾ø´Â Áö¿ª¿¡ ¿¡³ÊÁö¸¦ °ø±ÞÇÔÀ¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ´Â È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¼Ò´Â ½Å¼ÓÇÏ°Ô ¹èÄ¡µÇ¾î ¿Âµð¸Çµå·Î Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ¾î °æÁ¦¹ßÀüÀÌ °¡´ÉÇØÁ®, ÇコÄɾ ´ëÇÑ ¾×¼¼½º°¡ °³¼±µÇ°í, ÃæºÐÇÑ ¼­ºñ½º¸¦ ¹ÞÁö ¸øÇÑ Áö¿ªÀÇ »îÀÇ Áú Çâ»óµË´Ï´Ù. °Ô´Ù°¡ Àç»ý°¡´ÉÇÑ ±â¼úÀ» µµÀÔÇÔÀ¸·Î½á ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ÀÌ Áö¿ªÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̸鼭 ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â µ¥ µµ¿òÀ» ÁÖ¸ç ¼¼°èÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ÃæÁ·½Ãų ¼ö .

ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº?

¿¡³ÊÁö ¼ö¿ä, Áö¼Ó°¡´É¼º, ±â¼ú Áøº¸ÀÇ ¼¼°èÀÇ µ¿ÇâÀ» ¹Ý¿µÇÏ´Â ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀÇ ±Þ¼ºÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¿©·¯ °¡Áö°¡ ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÅäÁö ¹× ÀÎÇÁ¶ó°¡ Á¦ÇÑµÈ Áö¿ª¿¡¼­ ½Å·Ú¼º ÀÖ°í À¯¿¬ÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. µµ½ÃÈ­°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ƯÈ÷ ¿¬¾ÈÁö¿ª°ú ¼¶µµ±¹¿¡¼­ Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó À¯¿¬ÇÑ ¹ßÀü¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ±¤´ëÇÑ ÅäÁö³ª ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀÌ Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á ÀÌ ¹®Á¦¿¡ ´ëÇÑ ½Ç¿ëÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ´Â ÅäÁö ÀÚ¿ø¿¡ Á¦¾àÀÌ ÀÖ´Â ±¹°¡¿Í ÀÚ¿¬ ÀçÇØ·ÎºÎÅÍÀÇ ºÎÈï Áö¿ª¿¡ ƯÈ÷ ¸Å·ÂÀûÀÌ¸ç ½Å¼ÓÇÑ Àü·Â ¹èÄ¡°¡ Áß¿äÇÕ´Ï´Ù.

ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©ÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ ¼¼°èÀÇ º¯È­ÀÔ´Ï´Ù. °¢±¹ÀÌ È­¼®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸À» ÁÙÀÌ°í ±¹Á¦ÀûÀÎ ±âÈÄ º¯È­ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥ ºÎÀ¯½Ä ž籤 ¹ßÀü¼Ò³ª ÇØ»ó dz·Â ¹ßÀü¼Ò µî ºÎÀ¯½Ä Àç»ý °¡´É ¿¡³ÊÁö ±â¼úÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÀ¯½Ä Ç÷§ÆûÀº ¹Ì°³¹ß ÇØ¾ç ÀÚ¿ø¿¡¼­ ±ú²ýÇÑ ¿¡³ÊÁö¸¦ Ȱ¿ëÇÒ ¼ö ÀÖÀ¸¸ç ±âÁ¸ ¹ßÀü¼Ò¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Àç»ý °¡´É ±â¼úÀÌ Çâ»óµÇ°í ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ȯ°æ ģȭÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áö°í ºÎÀ¯½Ä ¹ßÀü¼Ò äÅÃÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°³¹ßµµ»óÁö¿ª¿¡¼­ÀÇ ¿¡³ÊÁö ¼ö¿ä Áõ°¡µµ ºÎÀ¯½Ä ¹ßÀü¼ÒÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¾ÆÇÁ¸®Ä«, µ¿³²¾Æ½Ã¾Æ, ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ¸¹Àº ±¹°¡µéÀº Áö¸®Àû Á¦¾à, ÀÎÇÁ¶ó ºÎÁ·, Á¤Á¤ ºÒ¾È µîÀÇ ÀÌÀ¯·Î ±âÁ¸ÀÇ À°»ó ¹ßÀü¼Ò °Ç¼³°ú À¯Áö¿¡ Å« ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ÀÌ·¯ÇÑ Áö¿ª¿¡ ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí À̵¿ °¡´ÉÇϰí È®Àå °¡´ÉÇÑ ¹ßÀü ¹æ¹ýÀ» Á¦°øÇÏ¸ç °æÁ¦ ¹ßÀüÀ» Áö¿øÇÕ´Ï´Ù. ÀÌµé ±¹°¡µéÀÌ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö¿¡ ´ëÇÑ Á¢±ÙÀ» È®´ëÇϰíÀÚ ÇÏ´Â °¡¿îµ¥ ºÎÀ¯½Ä ¹ßÀü¼Ò´Â ¿¡³ÊÁö °¸À» ¸Þ¿ì´Â Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î ¿£Áö´Ï¾î¸µ°ú ÇØ¾ç±â¼úÀÇ ¹ßÀüÀÌ ºÎÀ¯½Ä ¹ßÀü¼Ò¸¦ º¸´Ù È¿À²ÀûÀ̰í Àú·ÅÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. ÇÃ·ÎÆÃ Ç÷§ÆûÀÇ ¼³°è, °è·ù ½Ã½ºÅÛ ¹× Àç»ý °¡´É ¿¡³ÊÁö ÅëÇÕÀÇ Çõ½ÅÀº ÇÃ·ÎÆÃ Ç÷£Æ®ÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀÌ ºñ¿ëÀ» ³·Ãß°í À¯¿¬Çϰí È®Àå °¡´ÉÇÑ ¹ßÀü ¼Ö·ç¼ÇÀ» Ãß±¸ÇÏ´Â ¿¡³ÊÁö °ø±ÞÀÚ¿Í Á¤ºÎ¿¡°Ô ºÎÀ¯ ¹ßÀü¼Ò´Â Á¡Á¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀ̵ǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ºÎÀ¯½Ä ¹ßÀü¼Ò ½ÃÀåÀÇ È®´ë°¡ ÃËÁøµÇ¾î ¼¼°èÀÇ ¿¡³ÊÁö °úÁ¦¿¡ ´ëóÇÏ°í º¸´Ù Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¹Ì·¡·ÎÀÇ ÀüȯÀ» Áö¿øÇϱâ À§ÇÑ Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 41°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Floating Power Plants Market to Reach US$2.9 Billion by 2030

The global market for Floating Power Plants estimated at US$1.7 Billion in the year 2023, is expected to reach US$2.9 Billion by 2030, growing at a CAGR of 8.3% over the analysis period 2023-2030. Non-Renewable Power Source, one of the segments analyzed in the report, is expected to record a 7.9% CAGR and reach US$1.7 Billion by the end of the analysis period. Growth in the Renewable Power Source segment is estimated at 8.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$433.5 Million While China is Forecast to Grow at 12.1% CAGR

The Floating Power Plants market in the U.S. is estimated at US$433.5 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$725.0 Million by the year 2030 trailing a CAGR of 12.1% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.3% and 7.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.0% CAGR.

Global Floating Power Plants Market - Key Trends and Drivers Summarized

Why Are Floating Power Plants Revolutionizing Energy Generation and Access?

Floating power plants are transforming the way energy is produced and delivered, but why are they becoming so essential in modern energy infrastructure? Floating power plants are power generation units installed on water, either on barges or ships, allowing them to provide electricity from offshore locations. These plants can be powered by various energy sources, including natural gas, solar, wind, and even hydropower. As global energy demand rises, especially in regions where land for traditional power plants is scarce, floating power plants offer a flexible, mobile solution for generating and distributing power. They are particularly useful in remote areas, island nations, and places with limited access to reliable power grids.

One of the key reasons floating power plants are revolutionizing energy access is their ability to be deployed quickly and easily in areas where land-based infrastructure is either unavailable or too costly to develop. Unlike conventional power plants, which require significant real estate, floating plants can be anchored offshore or near coastlines, reducing the need for land acquisition and construction. This flexibility allows energy providers to respond rapidly to emergency situations, such as natural disasters, or to meet sudden surges in energy demand. As the world moves toward more sustainable energy sources and looks to address energy shortages in underserved areas, floating power plants are becoming a critical component in providing reliable, scalable, and adaptable power generation solutions.

How Do Floating Power Plants Work, and What Makes Them So Effective?

Floating power plants operate in a unique way, but how do they work, and what makes them so effective in generating electricity for diverse regions? These plants are essentially self-contained power generation units, often mounted on floating platforms such as ships, barges, or offshore structures. They can harness various types of energy, including fossil fuels like natural gas or renewable sources like solar and wind power. For example, a floating gas power plant generates electricity by converting natural gas into power, with the platform either anchored offshore or moored near coastlines. Similarly, floating solar farms or wind turbines use the vast expanse of water to capture renewable energy without the need for valuable land resources.

What makes floating power plants particularly effective is their mobility and versatility. Since these plants are not fixed to one location, they can be moved or redeployed to areas where electricity is most needed, offering a flexible solution to fluctuating energy demands. This is especially beneficial for island nations, coastal cities, or disaster-stricken regions that need a quick, temporary power supply. Additionally, floating plants can be scaled up or down based on energy requirements, making them an ideal solution for locations with seasonal or variable energy demands. For example, in tropical regions where energy use may spike during certain seasons, floating power plants can provide a reliable, on-demand source of electricity without permanent infrastructure investments.

Another critical advantage of floating power plants is their ability to bypass many of the regulatory and environmental challenges associated with land-based power plants. Building a conventional plant often requires significant land use, lengthy environmental reviews, and complex permitting processes. Floating power plants, however, can be installed in coastal waters with fewer land-based constraints, making the deployment process faster and more streamlined. Furthermore, these plants can incorporate renewable technologies, such as floating solar panels or offshore wind turbines, making them an attractive option for countries looking to transition to cleaner, more sustainable energy sources.

How Are Floating Power Plants Shaping the Future of Renewable Energy and Sustainable Development?

Floating power plants are not just a short-term solution—they are shaping the future of renewable energy and sustainable development. One of the most significant ways these plants are influencing the energy landscape is by enabling the deployment of floating renewable energy technologies. Floating solar farms, for example, are emerging as an innovative solution to the land constraints faced by many regions, particularly in densely populated areas or countries with limited space for traditional solar installations. By utilizing reservoirs, lakes, and oceans, floating solar panels capture sunlight without competing for valuable land resources, significantly expanding the potential for solar power generation.

Similarly, floating offshore wind farms are gaining traction as a key component of the future renewable energy mix. Offshore wind farms traditionally rely on fixed-bottom turbines, which are limited to shallow waters. Floating wind turbines, however, can be installed in deeper waters, where wind speeds are higher and more consistent, leading to greater energy output. This advancement opens up vast new areas for wind energy development, particularly off the coasts of countries with deep ocean waters, such as Japan, Norway, and the United States. By allowing access to stronger and more reliable wind resources, floating wind farms are helping drive the global shift toward renewable energy.

In addition to expanding renewable energy capabilities, floating power plants are also playing a crucial role in sustainable development. In many developing nations, access to reliable electricity remains a significant challenge. Floating power plants provide an efficient, scalable solution to address this issue by delivering energy to areas that lack the infrastructure for traditional power generation. These plants can be deployed quickly and provide power on demand, enabling economic development, improving healthcare access, and enhancing the quality of life in underserved regions. Moreover, by incorporating renewable technologies, floating power plants can help these regions meet their energy needs while reducing their carbon footprint, aligning with global sustainability goals.

What Factors Are Driving the Growth of the Floating Power Plant Market?

Several key factors are driving the rapid growth of the floating power plant market, reflecting global trends in energy demand, sustainability, and technological advancements. One of the primary drivers is the increasing demand for reliable, flexible energy solutions in areas with limited land or infrastructure. As urbanization accelerates and populations grow, particularly in coastal regions and island nations, the need for flexible power generation is rising. Floating power plants offer a practical solution to this challenge by providing electricity without requiring large land areas or extensive infrastructure investments. This is particularly appealing to nations with constrained land resources or regions recovering from natural disasters, where quickly deployable power is critical.

Another significant factor contributing to the growth of the floating power plant market is the global shift toward renewable energy. As countries strive to reduce their reliance on fossil fuels and meet international climate goals, floating renewable energy technologies—such as floating solar farms and offshore wind farms—are becoming increasingly important. These floating platforms can harness clean energy from untapped offshore resources, offering a sustainable alternative to traditional power plants. As renewable technologies improve and become more cost-effective, the adoption of floating power plants is expected to accelerate, driven by the need for greener, more sustainable energy solutions.

The rise of energy demand in developing regions is also fueling the growth of floating power plants. Many countries in Africa, Southeast Asia, and Latin America face significant challenges in building and maintaining traditional land-based power plants due to geographical constraints, lack of infrastructure, or political instability. Floating power plants provide a viable solution for these regions, offering a mobile and scalable way to generate electricity and support economic development. As these nations seek to expand access to reliable energy, floating power plants are emerging as a key solution for bridging the energy gap.

Lastly, advancements in engineering and maritime technologies are making floating power plants more efficient and affordable. Innovations in floating platform design, mooring systems, and renewable energy integration have improved the performance and reliability of floating plants. These advancements are driving down costs and making floating power plants an increasingly attractive option for energy providers and governments looking for flexible, scalable power generation solutions. Together, these factors are driving the expansion of the floating power plant market, positioning it as a critical technology for addressing global energy challenges and supporting the transition to a more sustainable energy future.

Select Competitors (Total 41 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â