¼¼°èÀÇ FRP ±×·¹ÀÌÆÃ ½ÃÀå
FRP Grating
»óǰÄÚµå : 1563857
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 196 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,068,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,204,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

FRP ±×·¹ÀÌÆÃ ½ÃÀåÀº 2030³â±îÁö 7¾ï 4,460¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 5¾ï 3,700¸¸ ´Þ·¯·Î ÃßÁ¤µÈ FRP ±Û·¹ÀÌĪ ½ÃÀåÀº 2030³â¿¡´Â 7¾ï 4,460¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 4.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®¿¡½ºÅ׸£ ¼öÁö´Â º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 4.9%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ Á¾·á ½Ã¿¡´Â 3¾ï 8,050¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ºñ´Ò ¿¡½ºÅ׸£ ¼öÁö ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 5.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 4,140¸¸ ´Þ·¯·Î ÃßÁ¤µÈ ¹Ý¸é Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ÀÇ FRP ±×·¹ÀÌÆÃ ½ÃÀåÀº 2023³â 1¾ï 4,140¸¸ ´Þ·¯·Î ÃßÁ¤µÆ½À´Ï´Ù. ¼¼°èÀÇ 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)À» 7.3%·Î 2030³â±îÁö 1¾ï 6,320¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 2.9%¿Í 3.7%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 3.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ FRP ±×·¹ÀÌÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

FRP ±×·¹ÀÌÆÃÀº »ê¾÷¿ë ¹Ù´ÚÀç¿Í ÀÎÇÁ¶ó¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

FRP(¼¶À¯ °­È­ Æú¸®¸Ó) ±×·¹ÀÌÆÃÀº ¶Ù¾î³­ °­µµ, ³»½Ä¼º, °æ·® Ư¼ºÀ¸·Î »ê¾÷¿ë ¹Ù´ÚÀç, ÀÎÇÁ¶ó, °Ç¼³¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. À¯¸® ¹× ź¼Ò¿Í °°Àº ¼¶À¯·Î °­È­µÈ Æú¸®¸Ó ¸ÅÆ®¸¯½º º¹ÇÕÀç·á·Î ¸¸µé¾îÁø FRP ±×·¹ÀÌÆÃ´Â Æ¯È÷ °¡È¤ÇÑ È¯°æ¿¡¼­ °­Ã¶ ¹× ¾Ë·ç¹Ì´½°ú °°Àº ±âÁ¸ Àç·á¿¡ ºñÇØ ¿ì¼öÇÑ ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù. FRP ±×·¹ÀÌÆÃÀº ¼®À¯ ¹× °¡½º, ÇØ¾ç, ¼öó¸®, È­ÇÐó¸® µîÀÇ ¾÷°è¿¡¼­ º¸µµ, Ç÷§Æû, Ȩ ¶Ñ²± µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ºñºÎ½Ä¼ºÀ̱⠶§¹®¿¡ È­ÇоàǰÀ̳ª ½À±â, ¿°¼ö¿¡ ³ëÃâµÇ¸é Á¾·¡ÀÇ ¼ÒÀç°¡ °ð¹Ù·Î ¿­È­ÇØ ¹ö¸®´Â ȯ°æ¿¡µµ ÃÖÀûÀÔ´Ï´Ù.

FRP ±×·¹ÀÌÆÃÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â ³ôÀº °­µµ ´ë Áß·®ºñÀÌ¸ç °­Ã¶°ú ÄÜÅ©¸®Æ®º¸´Ù ÈξÀ °¡º±Áö¸¸ ¹«°Å¿î ÇÏÁßÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¼³Ä¡°¡ ½±°í ºü¸£¸ç »ê¾÷ ÇöÀå¿¡¼­ÀÇ ÀΰǺñ¿Í ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FRP ±×·¹ÀÌÆÃ´Â ºÎ½Ä, Àڿܼ± ³ëÃâ, È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ³»¼ºÀÌ ³ô°í ±âÁ¸ Àç·á¿¡ ºñÇØ À¯Áöº¸¼ö°¡ ÃÖ¼ÒÈ­µÇ°í ¼ö¸íÀÌ ±æ±â ¶§¹®¿¡ Àå±â ÅõÀÚ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ FRPÀÇ ºñÀüµµ¼ºÀº ¹ßÀü¼Ò¿Í ÇØ»ó Ç÷§Æû°ú °°Àº Àü±âÀû À§ÇèÀÌ ¿ì·ÁµÇ´Â »ê¾÷¿¡¼­ÀÇ ¾ÈÀü¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ÀÎÇÁ¶óÀÇ È¿À²¼º, ¾ÈÀü¼º, ±ä ¼ö¸íÀ» ¿ì¼±½ÃÇϰí ÀÖ´Â °¡¿îµ¥, FRP ±×·¹ÀÌÆÃÀº »ê¾÷¿ë ¹Ù´ÚÀç¿Í ¼­Æ÷Æ® ½Ã½ºÅÛÀÇ ¼±ÅÃÀ¸·Î¼­ Á¡Á¡ ÀαⰡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

FRP ±×·¹ÀÌÆÃÀÇ ¼º´ÉÀº ¾î¶² ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ Çâ»óµÇ°í Àִ°¡?

FRP ±×·¹ÀÌÆÃ Á¦Á¶ÀÇ ±â¼úÀû Áøº¸´Â ¼º´É, ³»±¸¼º, ´Ù¸ñÀû¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ »ê¾÷¿ëÀ¸·Î ÃÖÀûÀÇ ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ÀÎ¹ß ¼ºÇü ±â¼ú °³¹ß·Î Áö¼ÓÀûÀÎ ±æÀÌÀÇ FRP¸¦ ¾ÈÁ¤µÈ °­µµ¿Í ǰÁú·Î »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº ¼¶À¯°¡ °ÝÀÚÀÇ °­µµ¸¦ ±Ø´ëÈ­Çϵµ·Ï Á¤·ÄµÇ¾î ´õ Å« ÇÏÁß ÀúÇ×°ú ÀÀ·Â¿¡ ´ëÇÑ ³»¼ºÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ ÀÎ¹ß ¼ºÇüÀÇ FRP ±×·¹ÀÌÆÃÀº ÁßÀåºñ¿Í ±â°è°¡ ¾ö°ÝÇÑ ÇÏÁßÀ» ¿ä±¸ÇÏ´Â ±³Åë·®ÀÌ ¸¹Àº »ê¾÷Áö´ë¿¡¼­ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ¼öÁö ¹èÇÕÀÇ Áøº¸·Î FRP ±×·¹ÀÌÆÃÀÇ ¼º´ÉÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. FRP¿¡ »ç¿ëµÇ´Â ºñ´Ò ¿¡½ºÅ׸£ ¼öÁö¿Í ¿¡Æø½Ã ¼öÁö¿Í °°Àº ÃֽмöÁö´Â ³»È­¼º, ³»¾àǰ¼º, ³»¿­¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °­È­µÈ ¼öÁö·Î ÀÎÇØ FRP ±×·¹ÀÌÆÃ´Â °¡È¤ÇÑ »ê¾÷ ȯ°æ¿¡¼­µµ ³ëÈÄÈ­ ¾øÀÌ °ßµô ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ³­¿¬¼º ¼öÁö´Â È­ÀçÀÇ ¾ÈÀü¼ºÀÌ ÃÖ¿ì¼±µÇ´Â ¼®À¯ ¹× °¡½º µîÀÇ »ê¾÷¿¡¼­ Á¡Á¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ FRP ±×·¹ÀÌÆÃ¿ëÀÇ Æ¯ÁÖ ÄÚÆÃÀ̳ª ¸¶°¨ÀçÀÇ °³¹ß¿¡ ÀÇÇØ ³» ½½¸³¼ºÀÌ Çâ»óµÇ¾î, Á¥Àº »óųª À¯¼º »óÅ¿¡¼­µµ ÀÛ¾÷¿øÀÇ ¾ÈÀü¼ºÀÌ Çâ»óÇϰí ÀÖ½À´Ï´Ù. Ç¥¸é¿¡´Â ÅØ½ºÃ³°¡ ºÙ¾î Áö¸³ÀÌ ³»ÀåµÈ ÄÚÆÃÀº °ßÀηÂÀ» ³ôÀ̵µ·Ï ¼³°èµÇ¾î »ê¾÷ ÇöÀå¿¡¼­ÀÇ ½½¸³À̳ª ³Ñ¾îÁüÀÇ À§ÇèÀ» Àú°¨Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« Áøº¸´Â FRP ±×·¹ÀÌÆÃ¸¦ ¸ðµâ½ÄÀ¸·Î ¼³°è ¹× Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÈ °ÍÀÔ´Ï´Ù. Á¶¸³½Ä FRP ±×·¹ÀÌÆÃ ÆÐ³ÎÀº ½Å¼ÓÇÏ°Ô Á¶¸³ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¼³Ä¡ ½Ã°£ÀÌ ´ÜÃàµÇ°í °øÀå ¿î¿µ¿¡ ÁöÀåÀ» ÁÖÁö ¾Ê½À´Ï´Ù. FRP ±×·¹ÀÌÆÃÀº ÀÌ·¯ÇÑ »ý»ê, Àç·á ¹× ¼³°è ±â¼ú Çõ½ÅÀ» ÅëÇØ ³»±¸¼º, ¾ÈÀü¼º, È¿À²¼ºÀ» Çâ»ó½ÃŰ°í ±¤¹üÀ§ÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ äÅõǾú½À´Ï´Ù.

FRP ±×·¹ÀÌÆÃÀº Áö¼Ó °¡´ÉÇÑ ÀÎÇÁ¶ó¿¡ ¾î¶»°Ô ±â¿©Çմϱî?

FRP ±×·¹ÀÌÆÃÀº ö, ³ª¹«, ÄÜÅ©¸®Æ® µî ±âÁ¸ ¼ÒÀ縦 ´ëüÇÒ ¼ö ÀÖ´Â ¿À·¡ Áö¼ÓµÇ°í À¯Áöº¸¼ö°¡ ÀûÀº ¼ÒÀ縦 Á¦°øÇÔÀ¸·Î½á º¸´Ù Áö¼Ó °¡´ÉÇÑ ÀÎÇÁ¶ó °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. FRP ±×·¹ÀÌÆÃÀÇ ÁÖµÈ Áö¼Ó°¡´É¼ºÀÇ ÇѰ¡Áö ÀåÁ¡Àº ºÎ½Ä¼ºÀÌ °­Çϸç, °¡È¤ÇÑ È­Çй°Áú°ú ÇØ¼ö¿Í °°Àº ºÎ½Ä¼º ¿ä¼Ò¿¡ ³ëÃâµÇ¾îµµ ¿­È­ ¾øÀÌ °ßµô ¼ö ÀÖ½À´Ï´Ù. ÀÌ ³»±¸¼ºÀº ºó¹øÇÑ ±³Ã¼ ¹× ¼ö¸®ÀÇ Çʿ伺À» Å©°Ô ÁÙ¿© ±âÁ¸ Àç·á·Î ¸¸µç ÀÎÇÁ¶ó À¯Áö¿Í °ü·ÃµÈ ÀÚ¿ø, ¿¡³ÊÁö ¹× Æó±â¹°À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. FRP ±×·¹ÀÌÆÃÀº ¼öó¸®, ÇØ¾ç, ¼®À¯È­ÇÐ µî Ç×»ó ½À±â ¹× È­Çй°Áú¿¡ ³ëÃâµÇ´Â ¾÷°è¿¡¼­ ¼ö½Ê³â¿¡ °ÉÃÄ ¾ÈÁ¤ÀûÀÎ ¼­ºñ½º¸¦ Á¦°øÇÏ¿© ȯ°æ°ú °æÁ¦Àû ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ FRP ±×·¹ÀÌÆÃ´Â °æ·®À̱⠶§¹®¿¡ ¿î¼Û ¹× ¼³Ä¡¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö¿Í ¿¬·á¸¦ ÁÙÀ̰í Áö¼Ó°¡´É¼º¿¡ ±â¿©ÇÕ´Ï´Ù. °­Ã¶°ú °°Àº ±âÁ¸ÀÇ ¼ÒÀç´Â ¿î¼Û°ú ¼³Ä¡¿¡ ¹«°Å¿î ±â°è°¡ ÇÊ¿äÇÏ¸ç ´õ ¸¹Àº ¿¡³ÊÁö¸¦ ¼ÒºñÇÏ¸ç ¹èÃâ·®µµ Áõ°¡ÇÕ´Ï´Ù. ¹Ý¸é¿¡ FRP ±×·¹ÀÌÆÃ´Â Á¾Á¾ ¼öµ¿ ¶Ç´Â ÃÖ¼Ò ¼³ºñ·Î ¼³Ä¡ÇÒ ¼ö ÀÖ¾î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ FRP ¼ÒÀç´Â ģȯ°æ ¼öÁö¿Í Àç»ý ¼¶À¯¸¦ »ç¿ëÇÏ¿© Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, ȯ°æ¸é¿¡¼­µµ ¿ì¼öÇÕ´Ï´Ù. °Ç¼³ ¾÷°è¿Í »ê¾÷°è¿¡¼­ Áö¼Ó°¡´É¼ºÀÌ Á¡Â÷ Áß¿ä½ÃµÇ°í ÀÖ´Â °¡¿îµ¥, FRP ±×·¹ÀÌÆÃÀº °í¼º´ÉÀÇ ¿À·¡ Áö¼ÓµÇ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇϸ鼭 ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â ¸Å·ÂÀûÀÎ ¼±ÅÃÀ» Á¦°øÇÕ´Ï´Ù.

FRP ±×·¹ÀÌÆÃÀÇ ¶Ç ´Ù¸¥ Áö¼Ó°¡´É¼ºÀÇ ÀåÁ¡Àº ½ÅÀç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿Í ³ì»ö ÀÎÇÁ¶ó¿¡ ÀûÇÕÇÏ´Ù´Â °ÍÀÔ´Ï´Ù. FRP ±×·¹ÀÌÆÃ´Â ºñÀüµµ¼ºÀÌ°í ³»½Ä¼ºÀÌ ¿ì¼öÇϱ⠶§¹®¿¡ ž籤 ¹ßÀü¼Ò, dz·Â Åͺó ½Ã¼³, ¼ö·Â ¹ßÀü ½Ã¼³ Ç÷§Æû, º¸µµ, ¾ÈÀü ¼³ºñ¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. FRP ±×·¹ÀÌÆÃÀº ½ÅÀç»ý¿¡³ÊÁöȯ°æ¿¡¼­ ½Å·Ú¼ºÀÌ ³ô°í À¯Áöº¸¼ö°¡ ÀûÀº ÀÎÇÁ¶óÀÇ °Ç¼³À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ±×¸°¿¡³ÊÁö »ý»êÀÇ ¼ºÀåÀ» Áö¿øÇÏ°í »ê¾÷°è°¡ Áö¼Ó°¡´É¼ºÀÇ ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï Áö¿ø Çϰí ÀÖ½À´Ï´Ù.

FRP ±×·¹ÀÌÆÃ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

FRP ±×·¹ÀÌÆÃ ½ÃÀåÀÇ ¼ºÀåÀº ³»½Ä¼º Àç·á ¼ö¿ä Áõ°¡, »ê¾÷ ¾ÈÀü ±ÔÁ¦ Áõ°¡, FRP ±â¼úÀÇ Áøº¸ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¼®À¯ ¹× °¡½º, ÇØ¾ç, È­ÇÐó¸® µîÀÇ »ê¾÷¿¡ À־, °¡È¤ÇÑ È¯°æÁ¶°Ç¿¡ °ßµð´Â ³»±¸¼ºÀÌ ÀÖ´Â Àç·á°¡ ¿ä±¸µÇ°í ÀÖ´Â °ÍÀÌ ÁÖµÈ ¿äÀÎÀÇ ÇϳªÀÔ´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼­ °­Ã¶°ú ¸ñÀç¿Í °°Àº ±âÁ¸ÀÇ Àç·á´Â ºÎ½Ä°ú ¸¶¸ð¸¦ ÀÏÀ¸Å°±â ½±°í °í°¡ÀÇ ¼ö¸® ºñ¿ë°ú °¡µ¿ ÁßÁö ½Ã°£À» ÃÊ·¡ÇÕ´Ï´Ù. FRP ±×·¹ÀÌÆÃ´Â ½À±â, È­ÇÐÁ¦Ç° ¹× UV ³ëÃâ¿¡ ´ëÇÑ ¶Ù¾î³­ ÀúÇ×¼ºÀ» ÅëÇØ ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ ÀÎÇÁ¶óÀÇ ¼ö¸íÀ» Å©°Ô ¿¬Àå½ÃŰ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. À¯Áö º¸¼ö ºñ¿ë°ú °¡µ¿ ÁßÁö ½Ã°£À» ÁÙÀÌ´Â Àå±âÀûÀÎ ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ´Â °¡¿îµ¥ FRP ±×·¹ÀÌÆÃ´Â ¼±Åõǰí ÀÖ½À´Ï´Ù.

Á÷Àå ¾ÈÀü°ú ¾ÈÀü ±ÔÁ¤ Áؼö¸¦ °­Á¶ÇÏ´Â °ÍÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿ä¼Ò Áß ÇϳªÀÔ´Ï´Ù. »ê¾÷ ȯ°æ¿¡¼­´Â ¹Ì²ô·¯¿î Ç¥¸é, È­Çй°Áú ³ëÃâ, ÀáÀçÀûÀÎ Àü±âÀû À§Çè µî À§ÇèÇÑ »óȲÀÌ Á¾Á¾ ¹ß»ýÇÕ´Ï´Ù. FRP ±×·¹ÀÌÆÃÀÇ ¹Ì²ô·¯Áö±â ¾î·Á¿î Ç¥¸é°ú ºñÀüµµ¼º Ư¼ºÀº ÀÌ·¯ÇÑ È¯°æ¿¡¼­ÀÇ ¾ÈÀü¼ºÀ» ³ôÀÌ´Â µ¥ ÀÌ»óÀûÀ̸ç, ¹Ì²ô·¯Áö°Å³ª ³Ñ¾îÁö¸ç Àü±â À§ÇèÀÇ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ¼¼°èÀÇ Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº »ê¾÷ ȯ°æ¿¡¼­ ¾ÈÀü ±ÔÁ¦¸¦ °­È­Çϰí ÀÖÀ¸¸ç ¼º´É°ú ³»±¸¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. FRP ±×·¹ÀÌÆÃÀ» ¹Ù´ÚÀç, Åë·Î, ºñ°è¿¡ »ç¿ëÇÔÀ¸·Î½á, ±Ù·ÎÀÚÀÇ ¾ÈÀü¼º°ú ÀÛ¾÷ È¿À²À» È®º¸Çϸ鼭 ±â¾÷ÀÌ ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇÒ ¼ö ÀÖ½À´Ï´Ù.

°Ô´Ù°¡, °¡º±°í °í°­µµÀÇ Àç·á¸¦ »ç¿ëÇÏ´Â ÀÌÁ¡¿¡ ´ëÇÑ ÀÇ½Ä Áõ°¡´Â °Ç¼³ ¹× ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ FRP ±×·¹ÀÌÆÃ Ã¤Åÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. FRP´Â °æ·®À̹ǷΠ¿î¹Ý ¹× ¼³Ä¡°¡ ½±°í Àú·ÅÇϸç Àüü ÇÁ·ÎÁ§Æ®ÀÇ ºñ¿ë°ú ÀÏÁ¤À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÀåÁ¡Àº ÇØ»ó ¼®À¯ ½ÃÃß ½Ã¼³ ¹× ¿ø°ÝÁöÀÇ ¼öó¸® ½Ã¼³°ú °°Àº ¿ø°ÝÁö ¹× Á¢±ÙÀÌ ¾î·Á¿î ÇöÀå¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ´õ ¸¹Àº »ê¾÷ÀÌ FRP ±×·¹ÀÌÆÃÀÇ ¿î¿µ ¹× °æÁ¦Àû ÀÌÁ¡À» ÀνÄÇÔ¿¡ µû¶ó, ±× ä¿ëÀº ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß·Î È®´ëµÉ Àü¸ÁÀÌ°í ½ÃÀå ¼ºÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

FRP ±×·¹ÀÌÆÃÀÇ ÇâÈÄ µ¿ÇâÀº?

FRP ±×·¹ÀÌÆÃÀÇ ¹Ì·¡´Â Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡, ½º¸¶Æ® ÀÎÇÁ¶óÀÇ »ó½Â, ¼º´É Çâ»óÀ» À§ÇÑ »õ·Î¿î º¹ÇÕÀç·áÀÇ °³¹ß µî ¸î °¡Áö »õ·Î¿î µ¿Çâ¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¿Çâ Áß Çϳª´Â °Ç¼³ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ »ç¿ëÀÌ Áß¿äÇÏ´Ù´Â °ÍÀÔ´Ï´Ù. ȯ°æ¿¡ ´ëÇÑ ¿ì·Á°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷°è´Â ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¿À·¡ Áö¼ÓµÇ´Â ¼º´ÉÀ» Á¦°øÇÏ´Â Àç·á¸¦ ã°í ÀÖ½À´Ï´Ù. ÀÌ ¼ö¿ä¿¡ ºÎÀÀÇϱâ À§ÇØ Á¦Á¶¾÷ü´Â Àç»ý ¼¶À¯¿Í ¹ÙÀÌ¿À ¼öÁö¸¦ »ç¿ëÇÏ¿© ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀΠģȯ°æ FRP ±×·¹ÀÌÆÃ¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´ÉÇÑ ´ëü ¼ÒÀç´Â ƯÈ÷ ȯ°æ±ÔÁ¦°¡ °­È­µÈ ºÐ¾ß¿¡¼­ FRP ±×·¹ÀÌÆÃÀÇ ¹Ì·¡¿¡ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ µ¿ÇâÀº ½º¸¶Æ® ±â¼úÀ» ÀÎÇÁ¶ó¿¡ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)ÀÌ ´ëµÎµÇ°í »ê¾÷½Ã½ºÅÛÀÇ ½Ç½Ã°£ °¨½ÃÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Â °¡¿îµ¥, ÀÀ·Â, ¿Âµµ, ºÎÇÏ °¨½Ã¿ë ¼¾¼­¸¦ ³»ÀåÇÑ ½º¸¶Æ® FRP ±×·¹ÀÌÆÃÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº °ÝÀÚ ½Ã½ºÅÛÀÇ »óÅ¿¡ ´ëÇÑ ±ÍÁßÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇϰí, ¿¹Áö º¸ÀüÀ» °¡´ÉÇÏ°Ô Çϰí, ÀáÀçÀûÀÎ ±¸Á¶Àû ¹®Á¦°¡ ½É°¢ÇØÁö±â Àü¿¡ °ËÃâÇÔÀ¸·Î½á ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó ¿¬°áÀÌ ÁøÇàµÊ¿¡ µû¶ó FRP ±×·¹ÀÌÆÃ´Â Áö´ÉÇü »ê¾÷ ½Ã½ºÅÛÀ» °³¹ßÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¸ç ´Ù¾çÇÑ ºÐ¾ßÀÇ È¿À²¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

°Ô´Ù°¡ º¹ÇÕÀç·áÀÇ Áøº¸´Â FRP ±×·¹ÀÌÆÃÀÇ ´É·ÂÀ» Çâ»ó½ÃŰ°í º¸´Ù ±î´Ù·Î¿î ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ź¼Ò¼¶À¯ ¹× ÇÏÀ̺긮µå º¹ÇÕÀç¿Í °°Àº ¼¶À¯ °­È­ Çõ½ÅÀº FRP ±×·¹ÀÌÆÃÀÇ °­µµ, °­¼º ¹× ³»¿­¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ½Å¼ÒÀç´Â ±âÁ¸ÀÇ À¯¸®¼¶À¯ ±â¹Ý °ÝÀڷδ ºÒÃæºÐÇß´ø °íºÎÇÏ ¹× °í¿Â ȯ°æ¿¡¼­ FRP¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç·á °úÇÐÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó FRP ±×·¹ÀÌÆÃÀÇ ¼º´ÉÀÌ ´õ¿í Çâ»óµÇ°í ÃÖ°í ¼öÁØÀÇ ³»±¸¼º°ú °­µµ¸¦ ÇÊ¿ä·Î ÇÏ´Â »ê¾÷¿¡ »õ·Î¿î °¡´É¼ºÀÌ »ý±æ °ÍÀÔ´Ï´Ù.

ÀÌ·¯ÇÑ µ¿Çâ¿¡ ÀÇÇØ FRP ±×·¹ÀÌÆÃÀº »ê¾÷, °Ç¼³, ÀÎÇÁ¶ó ºÐ¾ß¿¡¼­ ±× Á¸Àç°¨À» °è¼Ó ³ô¿©, º¸´Ù Áö¼Ó °¡´ÉÇϰí Áö´ÉÀûÀÎ °í¼º´É ¼Ö·ç¼ÇÀ» Çö´ëÀûÀÎ ¿ëµµ·Î Á¦°øÇØ ³ª°¥ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 46°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global FRP Grating Market to Reach US$744.6 Million by 2030

The global market for FRP Grating estimated at US$537.0 Million in the year 2023, is expected to reach US$744.6 Million by 2030, growing at a CAGR of 4.8% over the analysis period 2023-2030. Polyester Resin, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$380.5 Million by the end of the analysis period. Growth in the Vinyl Ester Resin segment is estimated at 5.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$141.4 Million While China is Forecast to Grow at 7.3% CAGR

The FRP Grating market in the U.S. is estimated at US$141.4 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$163.2 Million by the year 2030 trailing a CAGR of 7.3% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 3.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.6% CAGR.

Global FRP Grating Market - Key Trends and Drivers Summarized

How Is FRP Grating Revolutionizing Industrial Flooring and Infrastructure?

FRP (Fiber Reinforced Polymer) grating is transforming industrial flooring, infrastructure, and construction due to its exceptional strength, corrosion resistance, and lightweight properties. Made from a composite material of a polymer matrix reinforced with fibers, typically glass or carbon, FRP grating offers superior performance compared to traditional materials like steel or aluminum, particularly in harsh environments. FRP grating is used in a wide variety of applications, including walkways, platforms, and trench covers in industries such as oil and gas, marine, water treatment, and chemical processing. Its non-corrosive nature makes it ideal for environments where exposure to chemicals, moisture, or saltwater would quickly degrade traditional materials.

One of the key advantages of FRP grating is its high strength-to-weight ratio, which allows it to support heavy loads while being much lighter than steel or concrete. This makes installation easier and faster, reducing labor costs and downtime in industrial settings. Additionally, FRP grating is highly resistant to corrosion, UV exposure, and chemicals, which makes it an excellent long-term investment as it requires minimal maintenance and provides a longer service life compared to conventional materials. The non-conductive properties of FRP also add a layer of safety in industries where electrical hazards are a concern, such as power plants or offshore platforms. As industries continue to prioritize efficiency, safety, and longevity in infrastructure, FRP grating is becoming an increasingly popular choice for industrial flooring and support systems.

What Technological Advancements Are Enhancing the Performance of FRP Grating?

Technological advancements in the manufacturing of FRP grating have significantly improved its performance, durability, and versatility, making it a go-to material for industrial applications. One of the most notable innovations is the development of pultrusion technology, which allows for the production of continuous lengths of FRP with consistent strength and quality. This method ensures that the fibers are aligned in a way that maximizes the strength of the grating, allowing for greater load-bearing capacity and resistance to stress. Pultruded FRP grating, in particular, has become popular in high-traffic industrial areas where heavy equipment and machinery create demanding load requirements.

Additionally, advancements in resin formulations have further enhanced the performance of FRP grating. Modern resins used in FRP, such as vinyl ester and epoxy resins, provide improved resistance to fire, chemicals, and extreme temperatures. These enhanced resins ensure that FRP grating can withstand harsh industrial environments without degrading over time. Fire-retardant resins, in particular, are increasingly being used in industries such as oil and gas, where fire safety is a top priority. Furthermore, the development of custom coatings and finishes for FRP grating has improved slip resistance, making it safer for workers in wet or oily conditions. Textured surfaces and embedded grit coatings have been designed to enhance traction, reducing the risk of slips and falls in industrial settings.

Another significant advancement is the ability to design and fabricate FRP grating in modular sections, which allows for easy installation and customization on-site. Prefabricated FRP grating panels can be quickly assembled, reducing installation time and disruption to industrial operations. These technological innovations in production, materials, and design have made FRP grating a more durable, safe, and efficient solution for a wide range of industries, driving its adoption in both new construction and retrofit projects.

How Is FRP Grating Contributing to Sustainable Infrastructure?

FRP grating is contributing to the development of more sustainable infrastructure by offering a long-lasting, low-maintenance alternative to traditional materials like steel, wood, or concrete. One of the key sustainability benefits of FRP grating is its corrosion resistance, which allows it to withstand exposure to harsh chemicals, saltwater, and other corrosive elements without deteriorating. This durability significantly reduces the need for frequent replacements or repairs, cutting down on the resources, energy, and waste associated with maintaining infrastructure made from conventional materials. In industries such as water treatment, marine, and petrochemical, where exposure to moisture and chemicals is constant, FRP grating can provide decades of reliable service, minimizing environmental and financial costs over time.

FRP grating also contributes to sustainability through its lightweight nature, which reduces the energy and fuel required for transportation and installation. Traditional materials like steel require heavy machinery for transport and installation, consuming more energy and generating higher emissions. In contrast, FRP grating can often be installed manually or with minimal equipment, further reducing the overall environmental impact. Additionally, FRP materials can be produced using eco-friendly resins and recycled fibers, adding to their environmental credentials. As sustainability becomes an increasingly important focus in the construction and industrial sectors, FRP grating offers an attractive option for reducing the carbon footprint of infrastructure projects while still delivering high-performance and long-lasting solutions.

Another sustainability advantage of FRP grating is its compatibility with renewable energy projects and green infrastructure. It is commonly used in platforms, walkways, and safety features in solar farms, wind turbine installations, and hydroelectric facilities due to its non-conductive, corrosion-resistant properties. By enabling the construction of reliable, low-maintenance infrastructure in renewable energy settings, FRP grating supports the growth of green energy production and helps industries meet their sustainability goals.

What’s Driving the Growth of the FRP Grating Market?

The growth of the FRP grating market is driven by several factors, including increasing demand for corrosion-resistant materials, the rise of industrial safety regulations, and advancements in FRP technology. One of the primary drivers is the need for durable materials that can withstand harsh environmental conditions, particularly in industries such as oil and gas, marine, and chemical processing. In these environments, traditional materials like steel or wood are prone to corrosion and wear, leading to costly repairs and downtime. FRP grating offers a solution with its superior resistance to moisture, chemicals, and UV exposure, which significantly extends the lifespan of infrastructure in these sectors. As industries look for long-term solutions that reduce maintenance costs and downtime, FRP grating is becoming a preferred choice.

The increasing emphasis on workplace safety and compliance with safety regulations is another key factor driving market growth. Industrial environments often involve hazardous conditions, such as slippery surfaces, exposure to chemicals, or potential electrical risks. FRP grating’s non-slip surfaces and non-conductive properties make it ideal for enhancing safety in such environments, reducing the risk of slips, trips, and electrical hazards. Governments and regulatory bodies across the world are tightening safety regulations in industrial settings, leading to higher demand for materials that improve safety without compromising on performance or durability. The use of FRP grating for flooring, walkways, and platforms helps companies comply with these regulations while ensuring worker safety and operational efficiency.

Additionally, the growing awareness of the benefits of using lightweight, high-strength materials is fueling the adoption of FRP grating in construction and infrastructure projects. FRP's lightweight nature makes it easier and cheaper to transport and install, reducing overall project costs and timelines. This advantage is particularly significant in remote locations or difficult-to-access sites, such as offshore oil rigs or remote water treatment facilities. As more industries recognize the operational and financial benefits of FRP grating, its adoption is expanding across a wide range of applications, further driving market growth.

What Future Trends Are Shaping the Development of FRP Grating?

The future of FRP grating is being shaped by several emerging trends, including the increasing focus on sustainability, the rise of smart infrastructure, and the development of new composite materials that enhance performance. One of the most significant trends is the growing emphasis on using sustainable materials in construction and industrial applications. As environmental concerns continue to rise, industries are seeking materials that offer long-lasting performance with minimal environmental impact. In response to this demand, manufacturers are developing eco-friendly versions of FRP grating, using recycled fibers and bio-based resins that reduce the carbon footprint of the material. These sustainable alternatives will likely play an increasingly important role in the future of FRP grating, particularly in sectors where environmental regulations are tightening.

Another key trend is the integration of smart technology into infrastructure. With the rise of the Internet of Things (IoT) and the increasing need for real-time monitoring of industrial systems, smart FRP grating that incorporates sensors for stress, temperature, and load monitoring is becoming a possibility. This technology can provide valuable data on the condition of grating systems, allowing for predictive maintenance and improving safety by detecting potential structural issues before they become critical. As infrastructure becomes more connected, FRP grating could play a role in the development of intelligent industrial systems, improving efficiency and safety across various sectors.

Additionally, advancements in composite materials are enhancing the capabilities of FRP grating, making it suitable for more demanding applications. Innovations in fiber reinforcement, such as the use of carbon fiber or hybrid composites, are boosting the strength, stiffness, and thermal resistance of FRP grating. These new materials enable FRP to be used in high-load or high-temperature environments where traditional glass fiber-based grating may not have been sufficient. As material science continues to evolve, the performance of FRP grating will improve, opening up new opportunities in industries that require the highest levels of durability and strength.

With these trends driving innovation, FRP grating is expected to continue expanding its presence in the industrial, construction, and infrastructure sectors, offering more sustainable, intelligent, and high-performance solutions for modern applications.

Select Competitors (Total 46 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â