¼¼°è ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀå
Synthetic Data Generation
»óǰÄÚµå : 1561829
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 304 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,487,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,463,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ¼¼°è ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 3¾ï 2,390¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ¼¼°è ½ÃÀåÀº 2023-2030³â°£ CAGR 41.8%·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿¡ÀÌÀüÆ® ±â¹Ý ¸ðµ¨¸µÀº CAGR 43.3%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 25¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á÷Á¢ ¸ðµ¨¸µ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 39.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8,510¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 39.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀåÀº 2023³â 8,510¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2023-2030³âÀÇ CAGR 39.2%¸¦ °ßÀÎÇØ 2030³â±îÁö 5¾ï 3,210¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 37.9%¿Í 35.5%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 27.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀå- ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÕ¼º µ¥ÀÌÅÍ »ý¼º: °í±Þ AI¿Í ¸Ó½Å·¯´×À» À§ÇÑ ±æ ¿­±â

ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº AI¿Í ¸Ó½Å·¯´× ¸ðµ¨¿¡¼­ »ç¿ëÇϱâ À§ÇØ Çö½Ç ¼¼°èÀÇ µ¥ÀÌÅ͸¦ ½Ã¹Ä·¹À̼ÇÇÑ Àΰø µ¥ÀÌÅ͸¦ ¸¸µå´Â °úÁ¤ÀÔ´Ï´Ù. Çö½Ç ¼¼°èÀÇ °üÂû°ú »óÈ£ÀÛ¿ë¿¡¼­ ¼öÁýµÇ´Â ÀüÅëÀûÀÎ µ¥ÀÌÅͿʹ ´Þ¸®, ÇÕ¼º µ¥ÀÌÅÍ´Â ½ÇÁ¦ µ¥ÀÌÅÍÀÇ Æ¯¼º°ú ÆÐÅÏÀ» ¸ð¹æÇϱâ À§ÇØ ¾Ë°í¸®ÁòÀ¸·Î »ý¼ºµË´Ï´Ù. ÀÌ ±â¼úÀº ƯÈ÷ ½Ç¼¼°è µ¥ÀÌÅͰ¡ ºÎÁ·Çϰųª ±â¹Ð¼ºÀÌ ³ô°Å³ª ÀÔ¼ö°¡ ¾î·Á¿î ½Ã³ª¸®¿À¿¡¼­ AI ¸ðµ¨ÀÇ ÈÆ·Ã°ú °ËÁõ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °ü¸®µÇ°í È®Àå °¡´ÉÇÑ µ¥ÀÌÅÍ ¼Ò½º¸¦ Á¦°øÇÔÀ¸·Î½á, ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº ¿¬±¸ÀÚ¿Í °³¹ßÀÚ°¡ º¸´Ù °ß°íÇϰí Á¤È®ÇÑ AI ¸ðµ¨À» ±³À°ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ½ÇÁ¦ ¼¼°è ¿ëµµ¿¡¼­ º¸´Ù ¿ì¼öÇÑ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ½À´Ï´Ù. AI¿Í ¸Ó½Å·¯´×ÀÌ °è¼Ó ÁøÇàµÇ°í ÀÖ´Â °¡¿îµ¥, ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº Çõ½ÅÀ» °¡´ÉÇÏ°Ô Çϰí ÀüÅëÀûÀÎ µ¥ÀÌÅÍ ¼öÁý ¹æ¹ýÀÇ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀ» ¾î¶»°Ô °­È­Çϰí Àִ°¡?

±â¼úÀÇ Áøº¸´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÇ ±â´ÉÀ» Å©°Ô Çâ»ó½ÃÄÑ ´õ¿í Á¤±³Çϰí Á¤È®ÇÏ¸ç ³Î¸® Àû¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. »ý¼ºÀû Àû´ë ³×Æ®¿öÅ©(GAN) ¹× ±âŸ °í±Þ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ °³¹ß·Î º¹ÀâÇÑ À̹ÌÁö, µ¿¿µ»ó, ½Ã°è¿­ µ¥ÀÌÅÍ µî ½Ç¼¼°è µ¥ÀÌÅÍ¿Í ¸Å¿ì À¯»çÇÑ °íǰÁú ÇÕ¼º µ¥ÀÌÅ͸¦ »ý¼ºÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÚ¿¬¾ð¾îó¸®(NLP)ÀÇ Áøº¸·Î ¾ð¾î ¹ø¿ª, °¨Á¤ ºÐ¼®, 꺿 µîÀÇ ºÐ¾ß¿¡¼­ AI ¸ðµ¨ ÇнÀ¿¡ ÇʼöÀûÀÎ ÇÕ¼º ÅØ½ºÆ® µ¥ÀÌÅ͸¦ »ý¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ »ý¼º°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ Ç÷§ÆûÀÇ ÅëÇÕÀ» ÅëÇØ ±â¾÷Àº µ¥ÀÌÅÍ »ý¼º ³ë·ÂÀ» ¼Õ½±°Ô È®ÀåÇÒ ¼ö ÀÖ¾î AI ¸ðµ¨ ±³À° ¹× Å×½ºÆ®¿¡ ´ë·®ÀÇ ÇÕ¼º µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ °­È­·Î ¾Ë·ÁÁø ½ÇÁ¦ ¼¼°è µ¥ÀÌÅÍ¿Í °áÇÕµÈ ÇÕ¼º µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â °ÍÀº AI ±³À° µ¥ÀÌÅÍ ¼¼Æ®ÀÇ ´Ù¾ç¼º°ú °ß°í¼ºÀ» Çâ»ó½ÃŰ´Â ÀϹÝÀûÀÎ ¹æ¹ýÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ÀÚÀ²ÁÖÇàÂ÷¿Í ÇコÄɾ¼­ ±ÝÀ¶°ú »çÀ̹öº¸¾È¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¾÷°è¿¡¼­ ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÇ Ã¤¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÇ ÁÖ¿ä ¿ëµµ¿Í ÀÌÁ¡Àº?

ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ »ç¿ëµÇ¸ç AI ¹× ¸Ó½Å·¯´× ¸ðµ¨ÀÇ °³¹ß°ú ¹èÆ÷¸¦ °­È­ÇÏ´Â ¼ö¸¹Àº ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ÇÕ¼º µ¥ÀÌÅÍ´Â ÀÚÀ² ÁÖÇà Â÷·® ÈÆ·Ã¿¡ ÇʼöÀûÀÌ¸ç ½ÇÁ¦ ¼¼°è µ¥ÀÌÅ͸¸À¸·Î´Â ¾î·Á¿î ´Ù¾çÇÑ ¿îÀü ½Ã³ª¸®¿À¿Í ȯ°æÀ» Á¦°øÇÕ´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº ÀÇ·á ¿µ»ó, Áø´Ü ¹× Ä¡·á °èȹÀ» À§ÇÑ AI ¸ðµ¨ÀÇ °³¹ßÀ» Áö¿øÇÏ´Â ¹Ý¸é ±â¹Ð¼ºÀÌ ³ôÀº ½Ç¼¼°è µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê±â ¶§¹®¿¡ ȯÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. ±ÝÀ¶ ºÐ¾ß¿¡¼­´Â ºÎÁ¤ ŽÁö, À§Çè Æò°¡, ¾Ë°í¸®Áò Æ®·¹À̵ù¿¡ ÇÕ¼º µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ±ÝÀ¶±â°üÀº °í°´ µ¥ÀÌÅ͸¦ ¼Õ»ó½ÃŰÁö ¾Ê°í º¸´Ù Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¸ðµ¨À» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÇ ÁÖ¿ä ÀÌÁ¡À¸·Î´Â ´ë±Ô¸ð·Î ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ý¼ºÇÒ ¼ö ÀÖ´Ù´Â °Í, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀÇ Çâ»ó, ½Ç¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÁý¿¡ÀÇ ÀÇÁ¸µµÀÇ Àú°¨, ƯÁ¤ÀÇ ÀÌ¿ë »ç·Ê¿¡ ¸ÂÃá µ¥ÀÌÅ͸¦ ÀÛ¼º ÇÒ ¼ö ÀÖ´Â ÀÏ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º µ¥ÀÌÅ͸¦ »ç¿ëÇÔÀ¸·Î½á ±â¾÷Àº AI ¸ðµ¨ÀÇ °³¹ßÀ» °¡¼ÓÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç ½ÇÁ¦ ¼¼°èÀÇ µ¥ÀÌÅÍ Á¦ÇѰú °ü·ÃµÈ ¹®Á¦¸¦ ±Øº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀ̶õ?

ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀåÀÇ ¼ºÀåÀº ¿©·¯ ¿äÀο¡ ÀÇÇØ ¾ß±âµË´Ï´Ù. AI ¹× ¸Ó½Å·¯´× ¸ðµ¨À» ±³À°Çϱâ À§ÇÑ °íǰÁúÀÇ ´Ù¾çÇÑ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÌ ÀÌ·¯ÇÑ ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â È®À强ÀÌ ³ôÀº ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®¿¡ Áß¿äÇÑ ÃßÁø ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ »ý¼º ¸ðµ¨, NLP, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ±â¼úÀû Áøº¸´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ÅøÀÇ ±â´É°ú Á¢±Ù¼ºÀ» ³ôÀ̱â À§ÇØ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ °ü½É Áõ°¡´Â °í±Þ AI ±â´ÉÀÇ ÇýÅÃÀ» ¹ÞÀ¸¸é¼­ ±â¹Ð Á¤º¸¸¦ º¸È£ÇÏ·Á´Â Á¶Á÷ÀÇ ¿òÁ÷ÀÓÀ¸·Î ÇÕ¼º µ¥ÀÌÅÍ ¼ö¿ä¸¦ ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚÀ²ÁÖÇàÂ÷, ÇコÄɾî, ±ÝÀ¶ µî ´Ù¾çÇÑ ¾÷°è¿¡¼­ AI ¹× ¸Ó½Å·¯´×ÀÇ ¿ëµµ°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­´Â ¸ðµ¨ °³¹ß¿¡ ´ë·®ÀÇ °íǰÁú µ¥ÀÌÅͰ¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍÀÇ ºÎÁ·°ú ÆíÇâÀ» ±Øº¹Çϱâ À§ÇÑ ±ÍÁßÇÑ Åø·Î¼­ ÇÕ¼º µ¥ÀÌÅͰ¡ Àνĵǰí ÀÖ´Â °Íµµ ½ÃÀåÀÇ ¼ºÀåÀ» ÁöÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº µ¥ÀÌÅÍ »ý¼º ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½Å°ú ÇÔ²² ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÁÖ¸ñÀÇ 52»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

JHS
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Synthetic Data Generation Market to Reach US$3.7 Billion by 2030

The global market for Synthetic Data Generation estimated at US$323.9 Million in the year 2023, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 41.8% over the analysis period 2023-2030. Agent-based Modeling, one of the segments analyzed in the report, is expected to record a 43.3% CAGR and reach US$2.5 Billion by the end of the analysis period. Growth in the Direct Modeling segment is estimated at 39.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$85.1 Million While China is Forecast to Grow at 39.2% CAGR

The Synthetic Data Generation market in the U.S. is estimated at US$85.1 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$532.1 Million by the year 2030 trailing a CAGR of 39.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 37.9% and 35.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 27.9% CAGR.

Global Synthetic Data Generation Market - Key Trends and Drivers Summarized

Synthetic Data Generation: Paving the Way for Advanced AI and Machine Learning

Synthetic data generation is the process of creating artificial data that simulates real-world data for use in AI and machine learning models. Unlike traditional data, which is collected from real-world observations and interactions, synthetic data is generated algorithmically to mimic the characteristics and patterns of actual data. This technology plays a crucial role in training and validating AI models, particularly in scenarios where real-world data is scarce, sensitive, or difficult to obtain. By providing a controlled and scalable data source, synthetic data generation allows researchers and developers to train more robust and accurate AI models, leading to better performance in real-world applications. As AI and machine learning continue to advance, synthetic data generation is becoming increasingly important for enabling innovation and overcoming the limitations of traditional data collection methods.

How Are Technological Advancements Enhancing Synthetic Data Generation?

Technological advancements are significantly enhancing the capabilities of synthetic data generation, making it more sophisticated, accurate, and widely applicable. The development of generative adversarial networks (GANs) and other advanced machine learning algorithms has improved the ability to generate high-quality synthetic data that closely resembles real-world data, including complex images, videos, and time-series data. Advances in natural language processing (NLP) have enabled the generation of synthetic text data, which is critical for training AI models in areas such as language translation, sentiment analysis, and chatbots. The integration of synthetic data generation with cloud computing platforms has made it easier for organizations to scale their data generation efforts, providing large volumes of synthetic data for training and testing AI models. Additionally, the use of synthetic data in combination with real-world data, known as data augmentation, has become a common practice for improving the diversity and robustness of AI training datasets. These technological innovations are driving the adoption of synthetic data generation across various industries, from autonomous vehicles and healthcare to finance and cybersecurity.

What Are the Key Applications and Benefits of Synthetic Data Generation?

Synthetic data generation is used in a wide range of applications, offering numerous benefits that enhance the development and deployment of AI and machine learning models. In the automotive industry, synthetic data is critical for training autonomous vehicles, providing diverse driving scenarios and environments that would be challenging to capture through real-world data alone. In healthcare, synthetic data generation supports the development of AI models for medical imaging, diagnosis, and treatment planning, while ensuring patient privacy by eliminating the need for sensitive real-world data. The finance sector leverages synthetic data for fraud detection, risk assessment, and algorithmic trading, allowing financial institutions to develop more accurate and reliable models without compromising customer data. The primary benefits of synthetic data generation include the ability to generate large and diverse datasets, improved data privacy and security, reduced dependency on real-world data collection, and the ability to create data that is tailored to specific use cases. By using synthetic data, organizations can accelerate the development of AI models, reduce costs, and overcome the challenges associated with real-world data limitations.

What Factors Are Driving the Growth in the Synthetic Data Generation Market?

The growth in the Synthetic Data Generation market is driven by several factors. The increasing demand for high-quality, diverse data to train AI and machine learning models is a significant driver, as synthetic data generation provides a scalable solution to meet this need. Technological advancements in generative models, NLP, and cloud computing are also propelling market growth, as these innovations enhance the capabilities and accessibility of synthetic data generation tools. The rising focus on data privacy and security is further boosting demand for synthetic data, as organizations seek to protect sensitive information while still benefiting from advanced AI capabilities. Additionally, the expansion of AI and machine learning applications across various industries, including autonomous vehicles, healthcare, and finance, is contributing to market growth, as these sectors require large volumes of high-quality data for model development. The increasing recognition of synthetic data as a valuable tool for overcoming data scarcity and bias is also supporting the growth of the market. These factors, combined with continuous innovation in data generation technologies, are driving the sustained growth of the Synthetic Data Generation market.

Select Competitors (Total 52 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â