¼¼°èÀÇ ·Îº¿ ºñÀü ½ÃÀå
Robotic Vision
»óǰÄÚµå : 1559650
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 183 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

·Îº¿ ºñÀü ¼¼°è ½ÃÀåÀº 2030³â±îÁö 45¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2023³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ·Îº¿ ºñÀü ¼¼°è ½ÃÀåÀº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 8.1%·Î ¼ºÀåÇϸç 2030³â¿¡´Â 45¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î ±¸¼º ¿ä¼Ò´Â CAGR 7.9%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 34¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï9,400¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ ·Îº¿ ºñÀü ½ÃÀåÀº 2023³â 6¾ï 9,400¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï9,910¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023-2030³âÀÇ CAGRÀº 7.6%ÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.2%¿Í 6.8%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ·Îº¿ ºñÀü ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

·Îº¿ ºñÀüÀ̶õ ¹«¾ùÀÌ¸ç ¿Ö ÀÚµ¿È­¿¡ ÇʼöÀûÀΰ¡? ÀÔ´Ï´Ù. ÀÌ ´É·ÂÀº ·Îº¿ÀÌ °Ë»ç, ºÐ·ù, ÇȾØÇ÷¹À̽º ÀÛ¾÷, ǰÁú °ü¸® µîÀÇ º¹ÀâÇÑ ÀÛ¾÷À» ³ôÀº Á¤¹Ðµµ¿Í È¿À²·Î ¼öÇàÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. »çÀü ÇÁ·Î±×·¡¹ÖµÈ °æ·Î ¹× °íÁ¤µÈ µ¿ÀÛ¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ÀÇ ·Îº¿ °øÇаú´Â ´Þ¸®, ·Îº¿ ºñÀüÀº ÀûÀÀ¼º°ú ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϸç ÃֽŠÀÚµ¿È­ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÔ´Ï´Ù. Á¦Á¶, ÀÚµ¿Â÷, ÀüÀÚ±â±â, ½ÄÀ½·á, ¹°·ù µî Á¤¹Ðµµ, ¼Óµµ, À¯¿¬¼ºÀÌ Á߽õǴ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ý»ê¼º Çâ»ó°ú ½Ç¼ö °¨¼Ò¸¦ ¿ä±¸ÇÏ´Â ±â¾÷ÀÌ ´Ã¾î³²¿¡ µû¶ó ÷´Ü ·Îº¿ ºñÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ Áøº¸´Â ¾î¶»°Ô ·Îº¿ ºñÀü ½ÃÀåÀ» Çü¼ºÇϴ°¡?
±â¼úÀÇ Áøº¸´Â ·Îº¿ ºñÀü ½Ã½ºÅÛÀÇ ±â´ÉÀ» Å©°Ô Çâ»ó½ÃÄÑ º¸´Ù Á¤È®Çϰí, ºü¸£°í, ´Ù¿ëµµ·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀ» ÅëÇØ ·Îº¿Àº º¹ÀâÇÑ ½Ã°¢ µ¥ÀÌÅ͸¦ ¹ÙÅÁÀ¸·Î ÆÐÅÏÀ» ÀνÄÇϰí, ¹°Ã¼¸¦ ºÐ·ùÇϰí, ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. 3D ºñÀü°ú µö·¯´× ¾Ë°í¸®ÁòÀÇ Çõ½ÅÀ» ÅëÇØ ·Îº¿Àº °ø°£ Á¤º¸¸¦ ÀÌÇØÇϰí Á¶¸³ ¹× Æ÷Àå°ú °°Àº ±íÀÌ Áö°¢ÀÌ ÇÊ¿äÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÇØ»óµµ Ä«¸Þ¶ó, Àû¿Ü¼± ¼¾¼­, ºñÇà ½Ã°£(ToF) ¼¾¼­¿Í °°Àº ¼¾¼­ ±â¼úÀÇ ¹ßÀüÀ¸·Î ·Îº¿ ºñÀü ½Ã½ºÅÛÀÇ Á¤È®¼º°ú ¹üÀ§°¡ Çâ»óµÇ¾ú½À´Ï´Ù. ¿¡Áö ÄÄÇ»ÆÃ ¹× ½Ç½Ã°£ ó¸® ±â´ÉÀÇ °³¹ßÀº ·Îº¿ ºñÀüÀÇ ¼º´ÉÀ» ´õ¿í Çâ»ó½Ã۰í ÀÀ´ä ½Ã°£À» ´ÜÃàÇϰí ÁýÁßÀûÀÎ µ¥ÀÌÅÍ Ã³¸®¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê½À´Ï´Ù.

·Îº¿ ºñÀü ½ÃÀå¿¡´Â ¾î¶² °úÁ¦¿Í ±âȸ°¡ Á¸ÀçÇϴ°¡?
·Îº¿ ºñÀü ½ÃÀåÀº °íºñ¿ë, ÅëÇÕ º¹À⼺, Àü¹® Áö½Ä°ú ±â¼úÀÇ Çʿ伺 µî ¿©·¯ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. °í±Þ ºñÀü ½Ã½ºÅÛÀÇ µµÀÔ¿¡´Â Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, Æ®·¹À̴׿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇϸç, Áß¼Ò±â¾÷(SME)¿¡°Ô´Â À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ·Îº¿ ºñÀü ½Ã½ºÅÛÀ» ±âÁ¸ ·Îº¿ Ç÷§Æû ¹× »ê¾÷ ÀÚµ¿È­ ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ´Â °ÍÀº ±â¼úÀûÀ¸·Î ¾î·Æ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ µµÀüÀº ¼ºÀå°ú Çõ½ÅÀ» À§ÇÑ Å« ±âȸÀ̱⵵ ÇÕ´Ï´Ù. ÀÚµ¿Â÷, Á¦¾à, ¹°·ù µî ¾÷°è¿¡¼­ ÀÚµ¿È­ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ·Îº¿ ºñÀü ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸Å´ºÆÑó¸µ, »ç¹°ÀÎÅͳÝ(IIoT), µðÁöÅÐÈ­ ÀÌ´Ï¼ÅÆ¼ºêÀÇ »ó½ÂÀº ·Îº¿ ºñÀü ½Ã½ºÅÛ ½ÃÀå ÀáÀç·ÂÀ» ´õ¿í È®´ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àΰ£°ú ·Îº¿ÀÇ »óÈ£ ÀÛ¿ëÀ» ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ¼öÇàÇϱâ À§ÇØ °í±Þ ºñÀü ±â´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â Çùµ¿ ·Îº¿(ÄÚº¿)ÀÇ Ã¤¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ »õ·Î¿î ¼ºÀåÀÇ ±æÀ» ¿­°í ÀÖ½À´Ï´Ù.

·Îº¿ ºñÀü ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀ̶õ?
·Îº¿ ºñÀü ½ÃÀåÀÇ ¼ºÀåÀº ÀÚµ¿Â÷, ÀÏ·ºÆ®·Î´Ð½º, Á¦¾à µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ÀÇ ÀÚµ¿È­ ¹× ǰÁú °ü¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. AI, ¸Ó½Å·¯´×, 3D ºñÀü, ¼¾¼­ ±â¼ú µîÀÇ ±â¼ú Áøº¸·Î ·Îº¿ ºñÀü ½Ã½ºÅÛÀÇ ±â´É, ¼Óµµ, Á¤¹Ðµµ°¡ Çâ»óµÇ¾î ä¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸Å´ºÆÑ󸵰ú µðÁöÅÐÈ­¿¡ ´ëÇÑ °ü½É Áõ°¡´Â À¯¿¬Çϰí È¿À²ÀûÀÎ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÇ Çʿ伺°ú ÇÔ²² ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹°·ù, ÇコÄɾî, ³ó¾÷ µî Á¤¹Ðµµ¿Í ÀûÀÀ¼ºÀÌ Áß¿äÇÑ ºÐ¾ß¿¡¼­ÀÇ ¿ëµµ È®´ëµµ ·Îº¿ ºñÀü ½Ã½ºÅÛ ¼ö¿ä¸¦ ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ µî¿¡¼­´Â ¾ÈÀü¼º, È¿À²¼º, ¿î¿µ ºñ¿ë Àý°¨ÀÌ Á߽õǰí ÀÖÀ¸¸ç, ·Îº¿ ºñÀü ½ÃÀåÀ» ´õ¿í ÀüÁø½Ã۰í ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 19°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

JHS
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Robotic Vision Market to Reach US$4.5 Billion by 2030

The global market for Robotic Vision estimated at US$2.6 Billion in the year 2023, is expected to reach US$4.5 Billion by 2030, growing at a CAGR of 8.1% over the analysis period 2023-2030. Hardware Component, one of the segments analyzed in the report, is expected to record a 7.9% CAGR and reach US$3.4 Billion by the end of the analysis period. Growth in the Software Component segment is estimated at 8.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$694.0 Million While China is Forecast to Grow at 7.6% CAGR

The Robotic Vision market in the U.S. is estimated at US$694.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$699.1 Million by the year 2030 trailing a CAGR of 7.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.2% and 6.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.3% CAGR.

Global Robotic Vision Market - Key Trends and Drivers Summarized

What Is Robotic Vision and Why Is It Integral to Automation?
Robotic Vision, often referred to as machine vision, is a technology that enables robots to perceive their environment through cameras, sensors, and algorithms that interpret visual information. This capability is crucial for enabling robots to perform complex tasks such as inspection, sorting, pick-and-place operations, and quality control with high accuracy and efficiency. Unlike traditional robotics, which rely on pre-programmed paths and fixed actions, robotic vision allows for adaptability and decision-making in real-time, making it integral to modern automation systems. It is widely used in industries like manufacturing, automotive, electronics, food and beverage, and logistics, where precision, speed, and flexibility are paramount. As businesses increasingly seek to enhance productivity and reduce errors, the demand for advanced robotic vision systems is on the rise.

How Are Technological Advancements Shaping the Robotic Vision Market?
Technological advancements are significantly enhancing the capabilities of robotic vision systems, making them more accurate, faster, and versatile. The integration of artificial intelligence (AI) and machine learning (ML) is enabling robots to recognize patterns, classify objects, and make decisions based on complex visual data. Innovations in 3D vision and deep learning algorithms are allowing robots to understand spatial information and perform tasks that require depth perception, such as assembly and packaging. Additionally, advancements in sensor technology, including high-resolution cameras, infrared sensors, and time-of-flight (ToF) sensors, are improving the accuracy and range of robotic vision systems. The development of edge computing and real-time processing capabilities is further enhancing the performance of robotic vision, enabling faster response times and reducing the need for centralized data processing.

What Challenges and Opportunities Exist in the Robotic Vision Market?
The robotic vision market faces several challenges, including high costs, integration complexities, and the need for specialized knowledge and skills. The implementation of advanced vision systems requires significant investment in hardware, software, and training, which can be a barrier for small and medium-sized enterprises (SMEs). Additionally, integrating robotic vision systems with existing robotic platforms and industrial automation processes can be technically challenging and time-consuming. However, these challenges also present substantial opportunities for growth and innovation. The increasing demand for automation in industries such as automotive, pharmaceuticals, and logistics is driving the need for sophisticated robotic vision solutions. The rise of smart manufacturing, the Industrial Internet of Things (IIoT), and digitalization initiatives are further expanding the market potential for robotic vision systems. Moreover, the growing adoption of collaborative robots (cobots) that require advanced vision capabilities for safe and efficient human-robot interaction is creating new growth avenues.

What Factors Are Driving the Growth of the Robotic Vision Market?
The growth in the Robotic Vision market is driven by several factors, including the rising demand for automation and quality control in various industries such as automotive, electronics, and pharmaceuticals. Technological advancements in AI, machine learning, 3D vision, and sensor technologies are enhancing the capabilities, speed, and accuracy of robotic vision systems, driving their adoption. The increasing focus on smart manufacturing and digitalization, coupled with the need for flexible and efficient automation solutions, is also contributing to market growth. Additionally, the expansion of applications in sectors such as logistics, healthcare, and agriculture, where precision and adaptability are crucial, is boosting the demand for robotic vision systems. The emphasis on safety, efficiency, and reducing operational costs in manufacturing and other sectors is further propelling the robotic vision market forward.

Select Competitors (Total 19 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â