¼¼°èÀÇ ¿©ÀÚ ½Ã½ºÅÛ ½ÃÀå
Excitation Systems
»óǰÄÚµå : 1559512
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 244 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿©ÀÚ ½Ã½ºÅÛ ¼¼°è ½ÃÀå 2030³â±îÁö 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»ó

2023³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è ¿©ÀÚ ½Ã½ºÅÛ ½ÃÀåÀº 2023-2030³â°£ ¿¬Æò±Õ 4.8%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â±îÁö 43¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ µðÁöÅÐ ÄÁÆ®·Ñ·¯´Â CAGR 5.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 37¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ³¯·Î±× ÄÁÆ®·Ñ·¯ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 630¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.6%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¿©ÀÚ ½Ã½ºÅÛ ½ÃÀåÀº 2023³â 8¾ï 630¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 7.6%ÀÇ ¼ºÀå·üÀ» º¸À̸ç 2030³â¿¡´Â 9¾ï 5,200¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 2.9%¿Í 4.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 3.5%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¿©ÀÚ ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¿©ÀÚ ½Ã½ºÅÛÀº ¹ßÀü ¹× Àü±â ½Ã½ºÅÛ¿¡ ¾î¶² Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?

¿©ÀÚ ½Ã½ºÅÛÀº ƯÈ÷ ¹ßÀü¿¡¼­ µ¿±â½Ä ±â°èÀÇ ÀÛµ¿¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ±â°èÀÇ ÀÚ±âÀå Àü·ù¸¦ Á¦¾îÇÏ¿© ¹ßÀü±âÀÇ ¾ÈÁ¤ÀûÀÌ°í ¾ÈÁ¤ÀûÀÎ ±â´ÉÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àü¾Ð Ãâ·ÂÀ» À¯ÁöÇÏ°í ¹ßÀü±âÀÇ ¹«È¿ Àü·ÂÀ» Á¶Á¤ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç Àü·Â¸ÁÀÇ ¾ÈÁ¤¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ±âº»ÀûÀ¸·Î ¿©ÀÚ ½Ã½ºÅÛÀº µ¿±â½Ä ¹ßÀü±â ·ÎÅÍÀÇ ÀÚ±âÀåÀ» Á¦¾îÇϰí Àü¾Ð »ý¼º¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀûÀýÇÑ ¿©±â°¡ ¾øÀ¸¸é ¹ßÀü±â´Â ¾ÈÁ¤ÀûÀÎ Ãâ·ÂÀ» À¯ÁöÇÒ ¼ö ¾ø¾î Àü·Â¸ÁÀÇ ºñÈ¿À²°ú ÀáÀçÀûÀÎ ºÒ¾ÈÁ¤¼ºÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿ª»çÀûÀ¸·Î ¿©ÀÚ ½Ã½ºÅÛÀº ´Ü¼øÇÑ ±â°è ÀåÄ¡¿´Áö¸¸ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÃֽŠ¿©ÀÚ ½Ã½ºÅÛÀº ÷´Ü ÀüÀÚ ÀåÄ¡¿Í ÀÚµ¿È­ ±â´ÉÀ» ÅëÇÕÇÏ¿© ¹ßÀü±âÀÇ µ¿ÀÛÀ» ½Ç½Ã°£À¸·Î Á¶Á¤ÇÏ°í º¸´Ù Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¼ö·Â ¹ßÀü¼Ò, È­·Â ¹ßÀü¼Ò, ¿øÀÚ·Â ¹ßÀü¼Ò ¸ðµÎ¿¡¼­ ¿©ÀÚ ½Ã½ºÅÛÀÇ ¿ªÇÒÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿©ÀÚ ½Ã½ºÅÛÀº ¹ßÀüµÈ Àü·ÂÀÇ Àü¾Ð°ú Á֯ļö¸¦ ¾ÈÁ¤È­½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ÃֽŠ¿©ÀÚ ½Ã½ºÅÛÀº ¹ßÀü±âÀÇ È¿À²À» ³ôÀÌ°í ±â°èÀû ¼Ò¸ð¸¦ ÁÙÀ̸ç Àü·Â¸Á »óȲ º¯È­¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. µ¿±â½Ä ¹ßÀü±âÀÇ ¼º´ÉÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹ßÀü¼ÒÀÇ Àü¹ÝÀûÀÎ È¿À²¼º¿¡ ±â¿©ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕÀ¸·Î Àü·Â¸ÁÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁü¿¡ µû¶ó, ¿©ÀÚ ½Ã½ºÅÛÀÇ Á¤È®ÇÏ°í ¿ªµ¿ÀûÀÎ Á¦¾î ´É·ÂÀº Àü·Â¸ÁÀÇ ½Å·Ú¼º°ú ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â µ¥ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

ÃÖ½ÅÇü ¿©ÀÚ ½Ã½ºÅÛÀÌ Àü·Â¸ÁÀÇ ¾ÈÁ¤¼º°ú È¿À²¼º¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Çö´ëÀûÀÎ ¿©ÀÚ ½Ã½ºÅÛÀÇ Á߿伺Àº Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ°í ¹ßÀü ÀåÄ¡ÀÇ È¿À²À» ÃÖÀûÈ­ÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. »óÈ£ ¿¬°áµÈ Àü·Â¸Á¿¡¼­ Àü¾Ð ¹× Á֯ļö º¯µ¿Àº ¿¬¼âÀûÀ¸·Î ¿µÇâÀ» ¹ÌÃÄ ±¤¹üÀ§ÇÑ Á¤Àü ¹× Àåºñ ¼Õ»óÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©ÀÚ ½Ã½ºÅÛÀº ¹ßÀü±âÀÇ Àü¾Ð Ãâ·ÂÀ» ½Ç½Ã°£À¸·Î Á¦¾îÇÏ¿© ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀÌ°í ºÎÇÏ ¹× ¿ÜºÎ Á¶°ÇÀÇ º¯µ¿¿¡µµ ºÒ±¸ÇÏ°í ¹ßÀü·®ÀÌ Áö¼ÓÀûÀ¸·Î ¾ÈÁ¤ÀûÀ¸·Î À¯ÁöµÇµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ´Â Àü ¼¼°è Àü·Â¸ÁÀÌ º¹ÀâÇØÁö°í dz·ÂÀ̳ª ž籤°ú °°ÀÌ °£ÇæÀûÀΠƯ¼ºÀ¸·Î ÀÎÇØ ºÒ¾ÈÁ¤ÇØÁú ¼ö ÀÖ´Â Àç»ý °¡´É ¿¡³ÊÁö ¿øÀÌ ÅëÇյʿ¡ µû¶ó ƯÈ÷ Áß¿äÇØÁý´Ï´Ù. ÃֽŠ¿©ÀÚ ½Ã½ºÅÛ¿¡´Â °íµµÀÇ ¸ð´ÏÅ͸µ ¹× Á¦¾î ±â´ÉÀÌ Å¾ÀçµÇ¾î ÀÖ¾î ¿î¿µÀÚ°¡ ¹ßÀü±âÀÇ Ãâ·ÂÀ» ½Å¼ÓÇÏ°Ô Á¶Á¤Çϰí ÀÌ·¯ÇÑ º¯µ¿À» º¸Á¤ÇÏ¿© ¼ÛÀü¸ÁÀÇ ¹«°á¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¿©ÀÚ ½Ã½ºÅÛÀº Àüü °èÅëÀÇ Àü¾Ð ·¹º§À» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¹«È¿Àü·Â Á¦¾î¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹«È¿Àü·Â Á¦¾î´Â ¼Õ½ÇÀ» ÁÙÀ̰í Àüü ¼Û¹èÀü¸ÁÀÇ Àü¾Ð ÇÁ·ÎÆÄÀÏÀÇ ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Àü±â ¿¡³ÊÁöÀÇ È¿À²ÀûÀÎ Àü¼ÛÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¹«È¿ Àü·ÂÀ» Á¶Á¤ÇÔÀ¸·Î½á ¿©ÀÚ ½Ã½ºÅÛÀº Àåºñ ¼Õ»ó ¹× ½Ã½ºÅÛ °íÀåÀ¸·Î À̾îÁú ¼ö ÀÖ´Â Àü¾Ð ºÒ¾ÈÁ¤¼ºÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ µÈ ¿©ÀÚ ½Ã½ºÅÛÀÇ µµÀÔÀ¸·Î ¹ßÀü±âÀÇ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× Á¦¾î ´É·ÂÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¤È®µµ°¡ Çâ»óµÇ°í, ÀÀ´ä ½Ã°£ÀÌ ´ÜÃàµÇ°í, °íÀå °¨Áö ´É·ÂÀÌ °­È­µÇ¾î ¼ÛÀü¸ÁÀÇ º¹¿ø·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ ÃֽŠ¿©ÀÚ ½Ã½ºÅÛÀº Àü·Â¸ÁÀÇ ¾ÈÁ¤¼º°ú ¹ßÀü ÀåÄ¡ÀÇ È¿À²ÀûÀÎ ¿î¿µÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Àü·Â »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ È®´ëµÇ´Â ¿©ÀÚ ½Ã½ºÅÛÀÇ ÀÀ¿ë ¹× Çõ½ÅÀº ¹«¾ùÀΰ¡?

¿©ÀÚ ½Ã½ºÅÛÀº °ú°Å¿¡´Â ÁÖ·Î ±âÁ¸ ¹ßÀü¼Ò¿¡ ±¹ÇѵǾî ÀÖ¾úÁö¸¸, ¹ßÀüÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÇöÀç´Â ´õ ±¤¹üÀ§ÇÑ »ê¾÷°ú ±â¼ú¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. dz·Â ¹ßÀü¼Ò ¹× ž籤 ¹ßÀü¼Ò¿Í °°Àº Àç»ý °¡´É ¿¡³ÊÁö ºÐ¾ß¿¡¼­ ¿©ÀÚ ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ °¡º¯ ¿¡³ÊÁö ¿øÀ» ±×¸®µå¿¡ ÅëÇÕÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. dz·Â Åͺó°ú ÅÂ¾ç ±¤ ÀιöÅÍ´Â ÀüÅëÀûÀÎ ÀǹÌÀÇ µ¿±â½Ä ¹ßÀü±â¸¦ »ç¿ëÇÏÁö ¾ÊÁö¸¸ Àç»ý °¡´É ¿¡³ÊÁö¿Í ±âÁ¸ ¹ßÀü±â¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ¹ßÀü ½Ã½ºÅÛÀº ±×¸®µåÀÇ ¾ÈÁ¤¼º°ú Àü·Â ǰÁúÀ» À¯ÁöÇϱâ À§ÇØ ¿©ÀÚ ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. Àç»ý ¿¡³ÊÁöÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿©ÀÚ ½Ã½ºÅÛÀÇ Àü¾Ð ¹× Á֯ļö º¯µ¿À» °ü¸®ÇÏ´Â ±â´ÉÀº ƯÈ÷ Àç»ý ¿¡³ÊÁöÀÇ Ãâ·ÂÀÌ Å©°Ô º¯µ¿ÇÏ´Â ±â°£ µ¿¾È Àü·Â¸ÁÀÇ ±ÕÇüÀ» À¯ÁöÇÏ´Â µ¥ Á¡Á¡ ´õ °¡Ä¡°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿©ÀÚ ½Ã½ºÅÛÀÌ ¼ºÀåÇÒ ¶Ç ´Ù¸¥ ºÐ¾ß´Â ¸¶ÀÌÅ©·Î±×¸®µå ¹× ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·Î, ¾ÈÁ¤¼ºÀ» º¸ÀåÇϱâ À§ÇØ ±¹ºÎÀûÀÎ ¹ßÀüÀ» Á¤¹ÐÇÏ°Ô Á¦¾îÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ò±Ô¸ð ÀÚÀ² Àü·Â¸ÁÀº º´¿ø, ±º»ç ±âÁö, ¿ø°ÝÁöÀÇ »ê¾÷ Ȱµ¿°ú °°Àº Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ Áö¿øÇϱâ À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼­ ¿©ÀÚ ½Ã½ºÅÛÀº µ¿±â½Ä ¹ßÀü±âÀÇ ¼º´ÉÀ» Á¶Á¤ÇÏ´Â µ¥ »ç¿ëµÇ¾î Àü·Â Ãâ·ÂÀÌ Áö¿ª ¼ö¿ä¿Í ÀÏÄ¡ÇÏ°í ºÎÇÏ º¯È­¿¡µµ ºÒ±¸Çϰí Àü¾ÐÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. µðÁöÅÐ Á¦¾î ¹× ÀÚµ¿È­ÀÇ ±â¼ú Çõ½ÅÀº ¿©ÀÚ ½Ã½ºÅÛÀÇ ´É·ÂÀ» Çâ»ó½ÃÄÑ ½Ç½Ã°£ Á¶Á¤, ¿¹Ãø À¯Áö º¸¼ö ¹× °í±Þ ±×¸®µå °ü¸® ±â¼ú°úÀÇ ÅëÇÕÀ» °¡´ÉÇϰÔÇß½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ±×¸®µåÀÇ ºÎ»ó°ú Àü±â ³×Æ®¿öÅ©ÀÇ º¹À⼺À¸·Î ÀÎÇØ ¿ªµ¿ÀûÀÎ ±×¸®µå »óȲ¿¡ ´ëÀÀÇÏ°í ¿©·¯ ¹ßÀü ÀåÄ¡¿¡¼­ ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÒ ¼ö ÀÖ´Â º¸´Ù Á¤±³ÇÑ ¿©ÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¿©ÀÚ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿©ÀÚ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº Àü·Â¸ÁÀÇ º¹À⼺, Àç»ý °¡´É ¿¡³ÊÁöÀÇ ºÎ»ó, Àü·Â¸Á ¾ÈÁ¤¼º °³¼±ÀÇ Çʿ伺 µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿øµ¿·Â Áß Çϳª´Â Àç»ý ¿¡³ÊÁö ¹ßÀüÀ» ´õ ¸¹ÀÌ Æ÷ÇÔÇÏ´Â ºÐ»êÇü ¸ðµ¨·ÎÀÇ Àüȯ¿¡ µû¸¥ Àü ¼¼°è Àü·Â¸Á Çö´ëÈ­ ÃßÁøÀÔ´Ï´Ù. dz·Â ¹× ž籤 ¹ßÀüÀÇ °£ÇæÀûÀΠƯ¼ºÀº Àü·Â¸Á ¾ÈÁ¤¼º¿¡ ¹®Á¦¸¦ ¾ß±âÇÏÁö¸¸, ¿©ÀÚ ½Ã½ºÅÛÀº Àü¾Ð ¹× Á֯ļö º¯µ¿À» ½Ç½Ã°£À¸·Î Á¶Á¤ÇÏ¿© ÇØ°áÃ¥À» Á¦°øÇÕ´Ï´Ù. ´õ ¸¹Àº Àç»ý ¿¡³ÊÁö°¡ ±×¸®µå¿¡ ÅëÇյʿ¡ µû¶ó ÇÏÀ̺긮µå ¹ßÀü¼Ò¸¦ Áö¿øÇÏ°í ¸¶ÀÌÅ©·Î±×¸®µå¸¦ ¾ÈÁ¤È­ÇÒ ¼ö ÀÖ´Â ¿©ÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº ´õ¿í ¾ö°ÝÇÑ ±×¸®µå ½Å·Ú¼º Ç¥ÁØÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½Å±Ô ¹× ±âÁ¸ ¹ßÀü¼Ò¿¡¼­ °í±Þ ¿©ÀÚ ½Ã½ºÅÛÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ±â¼ú ¹ßÀü, ƯÈ÷ µðÁöÅÐ ¿©ÀÚ ½Ã½ºÅÛ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüµµ ½ÃÀå ¼ºÀåÀÇ ÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÃֽŠ¿©ÀÚ ½Ã½ºÅÛ¿¡´Â °í±Þ Á¦¾î ¾Ë°í¸®Áò, ÀÚ°¡ Áø´Ü ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â´ÉÀÌ Å¾ÀçµÇ¾î ÀÖ¾î ¿îÀüÀÚ°¡ ¹ßÀü±â ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ°í °íÀåÀ¸·Î À̾îÁö±â Àü¿¡ ÀáÀçÀûÀÎ ¹®Á¦¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¼±Àº ¹ßÀü¼ÒÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃÄ×À» »Ó¸¸ ¾Æ´Ï¶ó, ¿¹Áöº¸Àü Àü·«À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, °íÈ¿À² ¹ßÀü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ƯÈ÷ ¼ÛÀü¸ÁÀÌ ºÒ¾ÈÁ¤Çϰųª ºÎÇϰ¡ ±Þº¯ÇÏ´Â »óȲ¿¡¼­ ¹ßÀü±âÀÇ µ¿Àû ÀÀ´äÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ¿©ÀÚ ½Ã½ºÅÛÀÌ °³¹ßµÇ¾ú½À´Ï´Ù. »õ·Î¿î ¹ßÀü¼Ò °Ç¼³ ¹× ÀÎÇÁ¶ó Çö´ëÈ­·Î ÀÎÇØ °èÅë ¾ÈÁ¤¼ºÀ» À¯ÁöÇϱâ À§ÇÑ °íµµÀÇ ½Å·Ú¼º°ú ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Â °³¹ßµµ»ó±¹¿¡¼­µµ ¿©ÀÚ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î, ¿¡³ÊÁö ºÎ¹®ÀÇ Áö¼ÓÀûÀÎ Àüȯ, ±â¼ú ¹ßÀü, º¹ÀâÇÏ°í ºÐ»êµÈ ¹ßÀü ȯ°æ¿¡¼­ °èÅë ¾ÈÁ¤¼ºÀ» À¯ÁöÇØ¾ß ÇÏ´Â Áß¿äÇÑ ¿ä±¸·Î ÀÎÇØ ½ÃÀå »óȲÀº Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ÛÀü¸ÁÀÌ »õ·Î¿î ±â¼ú°ú Àç»ý °¡´É ¿¡³ÊÁö¿ø¿¡ ´ëÀÀÇϱâ À§ÇØ ÁøÈ­ÇÏ´Â °¡¿îµ¥, ¿©ÀÚ ½Ã½ºÅÛÀº ¹ßÀüÀÇ ¾ÈÁ¤¼º, È¿À²¼º ¹× ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» °è¼ÓÇÒ °ÍÀÔ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 41°³)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Excitation Systems Market to Reach US$4.3 Billion by 2030

The global market for Excitation Systems estimated at US$3.1 Billion in the year 2023, is expected to reach US$4.3 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2023-2030. Digital Controller, one of the segments analyzed in the report, is expected to record a 5.1% CAGR and reach US$3.7 Billion by the end of the analysis period. Growth in the Analog Controller segment is estimated at 2.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$806.3 Million While China is Forecast to Grow at 7.6% CAGR

The Excitation Systems market in the U.S. is estimated at US$806.3 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$952.0 Million by the year 2030 trailing a CAGR of 7.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 4.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.5% CAGR.

Global Excitation Systems Market - Key Trends and Drivers Summarized

How Are Excitation Systems Revolutionizing Power Generation and Electrical Systems?

Excitation systems play a crucial role in the operation of synchronous machines, particularly in power generation, ensuring the stable and reliable functioning of generators by controlling the field current of the machine. These systems are vital in maintaining the voltage output and regulating the reactive power of generators, which directly impacts the stability of electrical grids. Essentially, excitation systems control the magnetic field in the rotor of a synchronous generator, which is essential for voltage generation. Without proper excitation, generators would be unable to maintain a stable output, leading to inefficiencies and potential instabilities in the power grid. Historically, excitation systems were simple mechanical devices, but with advancements in technology, modern excitation systems now incorporate sophisticated electronics and automation features, allowing for real-time adjustments and more precise control over generator behavior.

In power plants, whether hydropower, thermal, or nuclear, the role of excitation systems cannot be overstated. They help in stabilizing the voltage and frequency of the generated power, which is crucial for maintaining the balance between supply and demand in the grid. Moreover, modern excitation systems are designed to enhance the efficiency of generators, reduce mechanical wear and tear, and ensure quick response to changes in grid conditions. By improving the performance of synchronous generators, these systems contribute to the overall efficiency of power plants and reduce operational costs. As power grids become increasingly complex with the integration of renewable energy sources, the ability of excitation systems to provide precise and dynamic control becomes even more important in ensuring grid reliability and stability.

Why Are Modern Excitation Systems Essential for Grid Stability and Efficiency?

The importance of modern excitation systems lies in their ability to maintain grid stability and optimize the efficiency of power generation units. In an interconnected power grid, fluctuations in voltage or frequency can have cascading effects, potentially leading to widespread blackouts or equipment damage. Excitation systems mitigate this risk by providing real-time control over a generator’s voltage output, ensuring that power generation remains consistent and stable despite fluctuations in load or external conditions. This is particularly important as the global power grid becomes more complex, with the integration of variable renewable energy sources like wind and solar, which can introduce instability due to their intermittent nature. Modern excitation systems are equipped with advanced monitoring and control features that allow operators to quickly adjust generator outputs, compensating for these fluctuations and maintaining grid integrity.

Furthermore, excitation systems play a critical role in controlling reactive power, which is essential for maintaining voltage levels across the grid. Reactive power control is necessary for the efficient transmission of electrical energy, as it reduces losses and improves the stability of the voltage profile throughout the transmission and distribution network. By regulating reactive power, excitation systems help prevent voltage instability, which can lead to equipment damage or even system failures. Additionally, with the introduction of digital and automated excitation systems, the ability to remotely monitor and control generators has improved significantly. These systems offer better accuracy, faster response times, and enhanced fault detection capabilities, contributing to improved grid resilience. In this way, modern excitation systems are indispensable for ensuring both the stability of power grids and the efficient operation of power generation units.

What Are the Expanding Applications and Innovations in Excitation Systems Across the Power Industry?

Excitation systems, once primarily limited to conventional power plants, are now being applied across a broader range of industries and technologies as power generation evolves. In renewable energy sectors such as wind and solar farms, excitation systems are becoming essential for integrating these variable energy sources into the grid. While wind turbines and solar inverters do not use synchronous generators in the traditional sense, hybrid power systems that combine renewable energy with conventional generators rely on excitation systems to maintain grid stability and power quality. As renewable energy penetration increases, the ability of excitation systems to manage voltage and frequency fluctuations becomes increasingly valuable in balancing the grid, particularly during periods of high variability in renewable energy output.

Another area of growth for excitation systems is in microgrids and distributed energy systems, where localized generation requires precise control to ensure stability. These smaller, often autonomous power grids are being developed to support critical infrastructure such as hospitals, military bases, and remote industrial operations, where consistent and reliable power is paramount. In these settings, excitation systems are used to regulate the performance of synchronous generators, ensuring that power output matches local demand and maintaining voltage stability despite changes in load. Innovations in digital control and automation have enhanced the capabilities of excitation systems, enabling real-time adjustments, predictive maintenance, and integration with advanced grid management technologies. Furthermore, the rise of smart grids and the increasing complexity of electrical networks have driven demand for more sophisticated excitation systems that can respond to dynamic grid conditions and ensure optimal performance across multiple generation units.

What Factors Are Driving the Growth of the Excitation Systems Market?

The growth in the excitation systems market is driven by several factors, including the increasing complexity of power grids, the rise of renewable energy, and the need for improved grid stability. One of the most significant drivers is the global push for grid modernization, as power generation shifts towards a more decentralized model that includes a greater mix of renewable energy sources. The intermittent nature of wind and solar power creates challenges for grid stability, and excitation systems provide a solution by helping to regulate voltage and frequency fluctuations in real time. As more renewable energy is integrated into the grid, the demand for excitation systems that can support hybrid power plants and stabilize microgrids is increasing, driving growth in this sector. Moreover, governments and regulatory bodies are mandating stricter grid reliability standards, which further bolsters the need for advanced excitation systems in both new and existing power plants.

Another factor contributing to the market's growth is the advancement of technology, particularly in the realm of digital excitation systems. Modern excitation systems are now equipped with sophisticated control algorithms, self-diagnostic capabilities, and real-time monitoring features, allowing operators to optimize generator performance and anticipate potential issues before they lead to failures. These technological improvements have not only enhanced the reliability and efficiency of power plants but also reduced maintenance costs by enabling predictive maintenance strategies. Additionally, the increasing demand for high-efficiency power generation has led to the development of excitation systems that can improve the dynamic response of generators, especially in situations of grid instability or sudden load changes. The adoption of excitation systems is also expanding in developing regions, where the construction of new power plants and infrastructure modernization is driving the need for advanced, reliable, and cost-effective solutions to maintain grid stability.

In conclusion, the excitation systems market is poised for significant growth due to the ongoing transition in the energy sector, technological advancements, and the critical need for maintaining grid stability in an increasingly complex and decentralized power generation landscape. As power grids evolve to accommodate new technologies and renewable energy sources, excitation systems will continue to play a vital role in ensuring that power generation is stable, efficient, and reliable.

Select Competitors (Total 41 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â