¼¼°èÀÇ ¹ÝµµÃ¼ Ŭ·° ½ÃÀå
Semiconductor Clocks
»óǰÄÚµå : 1556837
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 291 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,015,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,045,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀº 2030³â±îÁö 66¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 51¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2023-2030³â¿¡ CAGR 3.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 66¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¹ßÁø±â´Â CAGR 4.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 34¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °øÁø±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 14¾ï ´Þ·¯, Áß±¹Àº CAGR 7.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀº 2023³â¿¡ 14¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³âÀÇ CAGRÀº 7.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.2%¿Í 2.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹ÝµµÃ¼ Ŭ·° ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹ÝµµÃ¼ Ŭ·°À̶õ ¹«¾ùÀ̸ç ÀüÀÚÁ¦Ç°¿¡ ¹ÌÄ¡´Â ±âº»ÀûÀÎ ¿µÇâ
¹ÝµµÃ¼ Ŭ·°Àº Çö´ë ÀüÀÚÁ¦Ç°¿¡ ÇʼöÀûÀÎ ÄÄÆ÷³ÍÆ®·Î, ½Ã½ºÅÛ ³»¿¡¼­ Á¤È®ÇÑ µ¿±âÈ­¸¦ º¸ÀåÇÏ´Â Áß¿äÇÑ Å¸ÀÌ¹Ö ¼Ö·ç¼Ç ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Å¬·°Àº Á¾Á¾ ÀüÀÚ È¸·Î¿¡ ³»ÀåµÇ¾î ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­¿¡¼­ Åë½Å ÀÎÅÍÆäÀ̽º¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÄÄÆ÷³ÍÆ®ÀÇ µ¿ÀÛÀ» Á¶Á¤ÇÏ´Â µ¥ ÇÊ¿äÇÑ Å¸ÀÌ¹Ö ½ÅÈ£¸¦ Á¦°øÇÕ´Ï´Ù. ¹ÝµµÃ¼ Ŭ·°Àº ´Ü¼øÇÑ ¼öÁ¤ ¹ßÁø±âºÎÅÍ º¹ÀâÇÑ PLL(Phase-Locked Loop) ½Ã½ºÅÛ±îÁö ´Ù¾çÇϸç, ¼ÒºñÀÚ ÀüÀÚ, Åë½Å, ÄÄÇ»ÅÍ ±â±â¿¡¼­ °í¼º´ÉÀ» ±¸ÇöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Å¬·°ÀÇ Á¤È®¼º°ú ¾ÈÁ¤¼ºÀº µð¹ÙÀ̽ºÀÇ ¼º´É, ¿¡³ÊÁö È¿À²¼º ¹× Àü¹ÝÀûÀÎ ½Å·Ú¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

Ŭ·° ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ±â¼ú Çõ½Å
¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀº ÀüÀÚ±â±âÀÇ °í¼ÓÈ­, ¼ÒÇüÈ­, ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ ²÷ÀÓ¾ø´Â ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ÀÇ ±â¼ú Çõ½ÅÀº Á¡Á¡ ´õ ¼ÒÇüÈ­µÇ´Â µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³¿¡ ÀûÇÕÇÑ ´õ ÀÛ°í È¿À²ÀûÀΠŬ·° ºÎǰÀÇ °³¹ß·Î À̾îÁ³½À´Ï´Ù. ¶ÇÇÑ ¼öÁ¤ ¹ßÁø±â ±â¼úÀÇ Çâ»ó°ú MEMS(Micro-Electro-Mechanical Systems) ¹ßÁø±âÀÇ ÅëÇÕÀº ´Ù¾çÇÑ ¹°¸®Àû Á¶°Ç¿¡¼­ ÀÌ·¯ÇÑ Å¸ÀÌ¹Ö ÄÄÆ÷³ÍÆ®ÀÇ Á¤È®µµ¿Í ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ¹ÝµµÃ¼ Ŭ·°ÀÇ ±â´ÉÀû ´É·ÂÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, °ß°í¼º°ú Á¤È®¼ºÀÌ °¡Àå Áß¿äÇÑ ÀÚµ¿Â÷ ¹× »ê¾÷¿ë ÀüÀÚ±â±â¿Í °°Àº Áß¿äÇÑ ºÐ¾ß·Î Àû¿ë ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ ¿ëµµÀ¸·Î Çü¼ºµÇ´Â ½ÃÀå ¿ªÇÐ
¹ÝµµÃ¼ Ŭ·°Àº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ ÆíÀçµÇ¾î ÀÖÀ¸¸ç, Àü ¼¼°è ÀüÀÚÁ¦Ç°ÀÇ ¹ë·ùüÀο¡¼­ ±× Á߿伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼­´Â ½º¸¶Æ®Æù, ÅÂºí¸´, °ÔÀӱ⠵îÀÇ ±â±âÀÇ ±â´É¼º°ú ¿¬°á¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­ ¹ÝµµÃ¼ Ŭ·°Àº ³×Æ®¿öÅ© Àåºñ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Åë½Å ä³ÎÀ» ÅëÇØ µ¥ÀÌÅ͸¦ Á¤È®ÇÏ°Ô ¼Û¼ö½ÅÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º, ƯÈ÷ ³»ºñ°ÔÀ̼Ç, ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS) µî Á¤È®ÇÑ Å¸À̹ÖÀÌ ¾ÈÀü°ú ¼º´É¿¡ ÇʼöÀûÀÎ ºÐ¾ß¿¡¼­ ¹ÝµµÃ¼ Ŭ·°ÀÇ Àû¿ëÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿ëµµÀÇ ´Ù¾çÈ­´Â ¹ÝµµÃ¼ Ŭ·°ÀÇ ¹ü¿ë¼º°ú Çö´ë ÀüÀÚ ¼Ö·ç¼ÇÀÇ ¹ßÀü¿¡ ÀÖÀ¸¸ç, ¹ÝµµÃ¼ Ŭ·°ÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
¹ÝµµÃ¼ Ŭ·° ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÈÞ´ë¿ë ¹× ¿þ¾î·¯ºí ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀº CE(Consumer Electronics) ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ¸·Î ÀÎÇØ ¼ÒÇüÀÇ ¿¡³ÊÁö È¿À²ÀûÀΠŬ·Ï ¼Ö·ç¼Ç °³¹ßÀÌ ÇÊ¿äÇϸç, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ºÎ»ó°ú Á¦Á¶ ¹× ÀÚµ¿Â÷ ºÐ¾ßÀÇ ÀÚµ¿È­ ¹ßÀü°ú °°Àº »ê¾÷ Àü¹ÝÀÇ µðÁöÅÐ Çõ½ÅÀ¸·Î ÀÎÇØ ¹ÝµµÃ¼ Ŭ·Ï ½ÃÀåÀÇ ¼ºÀåÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. µî »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ µðÁöÅÐ Çõ½ÅÀÌ ÁøÇàµÊ¿¡ µû¶ó ¹ÝµµÃ¼ Ŭ·°ÀÌ Á¦°øÇϴ ÷´Ü ŸÀÌ¹Ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¹«°á¼º°ú ¼Óµµ¸¦ À§ÇØ ¸Å¿ì Á¤È®ÇÑ Å¸À̹ÖÀ» ÇÊ¿ä·Î ÇÏ´Â 5G¿Í °°Àº ³×Æ®¿öÅ© ±â¼úÀÇ ¹ßÀüµµ ÀÌ ½ÃÀåÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±âÁذú ȯ°æ º¸È£¿¡ ´ëÇÑ °ü½Éµµ ÇѸòÀ» Çϰí ÀÖÀ¸¸ç, ¿¡³ÊÁö È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀΠŸÀÌ¹Ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ½ÃÀå ȯ°æÀº ¿ªµ¿ÀûÀ¸·Î ¼ºÀåÇϰí ÀÖÀ¸¸ç, ²÷ÀÓ¾ø´Â Çõ½Å°ú È®ÀåÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 51°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Semiconductor Clocks Market to Reach US$6.6 Billion by 2030

The global market for Semiconductor Clocks estimated at US$5.1 Billion in the year 2023, is expected to reach US$6.6 Billion by 2030, growing at a CAGR of 3.7% over the analysis period 2023-2030. Oscillators, one of the segments analyzed in the report, is expected to record a 4.1% CAGR and reach US$3.4 Billion by the end of the analysis period. Growth in the Resonators segment is estimated at 3.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.4 Billion While China is Forecast to Grow at 7.0% CAGR

The Semiconductor Clocks market in the U.S. is estimated at US$1.4 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 7.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.2% and 2.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.0% CAGR.

Global Semiconductor Clocks Market - Key Trends & Drivers Summarized

What Are Semiconductor Clocks and Their Fundamental Impact on Electronics?
Semiconductor clocks, integral components in modern electronic devices, serve as the critical timing solutions that ensure precise synchronization within a system. These clocks, often embedded within electronic circuits, provide the necessary timing signals that coordinate the operations of various components, from microprocessors to communication interfaces. Semiconductor clocks can range from simple quartz oscillators to complex phase-locked loop (PLL) systems, which are essential for achieving high-performance in consumer electronics, telecommunications, and computing machinery. The accuracy and stability of these clocks are pivotal, as they directly affect device performance, energy efficiency, and overall reliability.

Technological Innovations Enhancing Clock Performance
The semiconductor clock market is driven by continual advancements in technology that aim to meet the growing demands for higher speed, miniaturization, and energy efficiency in electronic devices. Innovations in semiconductor fabrication have led to the development of smaller, more efficient clock components that fit increasingly compact device architectures. Moreover, enhancements in crystal oscillator technology and the integration of MEMS (Micro-Electro-Mechanical Systems) oscillators are pivotal in improving the precision and durability of these timing components under varying physical conditions. These technological advancements not only improve the functional capacity of semiconductor clocks but also extend their application range in critical sectors like automotive and industrial electronics, where robustness and precision are paramount.

Market Dynamics Shaped by Broad Applications
Semiconductor clocks are ubiquitous across a wide array of industries, underscoring their importance in the global electronics value chain. In consumer electronics, they are essential for ensuring the functionality and connectivity of devices such as smartphones, tablets, and gaming consoles. In the telecommunications sector, semiconductor clocks play a crucial role in network equipment, facilitating the accurate transmission and reception of data across communication channels. Additionally, their applications in automotive electronics are becoming increasingly significant, particularly in navigation systems and advanced driver-assistance systems (ADAS), where precise timing is critical for safety and performance. The diversification of applications highlights the versatile nature of semiconductor clocks and their critical role in advancing modern electronic solutions.

What Drives the Growth of the Semiconductor Clock Market?
The growth in the semiconductor clock market is driven by several factors. The continuous expansion of the consumer electronics market, with a high demand for portable and wearable devices, necessitates the development of compact, energy-efficient clock solutions. The ongoing digital transformation across industries, including the rise of IoT (Internet of Things) and the increasing automation in manufacturing and automotive sectors, further accelerates the demand for sophisticated timing solutions that semiconductor clocks provide. Additionally, advancements in network technologies, such as 5G, which require extremely precise timing for data integrity and speed, significantly contribute to the growth of this market. Regulatory standards and environmental considerations also play a role, pushing the industry towards more energy-efficient and environmentally friendly timing solutions. Together, these factors ensure a dynamic and growing market landscape for semiconductor clocks, marked by continuous innovation and expansion.

Select Competitors (Total 51 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â