¼¼°èÀÇ À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) ½ÃÀå
Organic Field-Effect Transistors (OFETs)
»óǰÄÚµå : 1556786
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,020,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,062,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À¯±âÀü°èÈ¿°ú Æ®·£Áö½ºÅÍ(OFET) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 25¾ï ´Þ·¯¿¡ µµ´Þ

2023³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ 2023-2030³â¿¡ CAGR 11.3%·Î ¼ºÀåÇßÀ¸¸ç 2030³â¿¡´Â 25¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ NÇü OFET´Â CAGR 11.6%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ Á¾·á ½Ã¿¡´Â 16¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. PÇü OFET ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 10.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 3¾ï 2,300¸¸ ´Þ·¯, Áß±¹Àº CAGR 15.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) ½ÃÀåÀº 2023³â 3¾ï 2,300¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5¾ï 4,050¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023-2030³âÀÇ CAGRÀº 15.3%·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 8.4%¿Í 9.8%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) ½ÃÀå- ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) : À¯¿¬ÇÑ ÀüÀÚÀÇ ¹Ì·¡¸¦ °³Ã´

À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET)´Â ÀüÀÚ ºÐ¾ß¿¡¼­ ȹ±âÀûÀÎ ¹ßÀüÀ» »ó¡ÇÕ´Ï´Ù. À¯±â ¹ÝµµÃ¼ Àç·á¸¦ »ç¿ëÇÏ¸é ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý Æ®·£Áö½ºÅ͸¦ ´ëüÇÏ´Â À¯¿¬ÇÏ°í °¡º±°í ÀáÀçÀûÀ¸·Î Àúºñ¿ë Æ®·£Áö½ºÅͰ¡ ź»ýÇÕ´Ï´Ù. ÀÌ Æ®·£Áö½ºÅÍ´Â À¯¿¬ÇÑ ÀüÀÚ Á¦Ç°, ¿þ¾î·¯ºí µð¹ÙÀ̽º ¹× µð½ºÇ÷¹ÀÌ¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î ±â°èÀû À¯¿¬¼º, Åõ¸í¼º, ÇÃ¶ó½ºÆ½ ¹× Á¾À̸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ±âÆÇ¿¡ Àú¿Â °øÁ¤À¸·Î Á¦Á¶ ÇÒ ¼öÀÖ´Â °íÀ¯ ÇÑ ÀÌÁ¡À» °®Ãß°í ÀÖ½À´Ï´Ù. OFETÀÇ °³¹ßÀº ±âÁ¸ÀÇ ÀüÀÚ Á¦Ç°ÀÌ °­¼º°ú Á¦Á¶ ºñ¿ë¿¡ ÀÇÇØ Á¦ÇѵǾú´ø ºÐ¾ß¿¡¼­ÀÇ ±â¼ú Çõ½ÅÀ» ÃßÁøÇϰí ÀÖÀ¸¸ç, OFET´Â ÀüÀÚ µð¹ÙÀ̽ºÀÇ ¹Ì·¡¿¡ ¸Å¿ì Áß¿äÇÑ ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Çõ½ÅÀº OFET ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϴ°¡?

OFET ½ÃÀåÀº Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ƯÈ÷ Æ®·£Áö½ºÅÍÀÇ ¼º´É°ú ¾ÈÁ¤¼ºÀ» ³ôÀÌ´Â »õ·Î¿î À¯±â Àç·áÀÇ °³Ã´¿¡ ÀÇÇØ Å©°Ô Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. °íÀ̵¿µµ À¯±â ¹ÝµµÃ¼ÀÇ ÇÕ¼º µî Àç·á °úÇÐÀÇ Áøº¸·Î ÀüÇÏ Ä³¸®¾îÀÇ À̵¿µµ°¡ ³ô°í µ¿ÀÛ ¼ö¸íÀÌ ±ä µî Àü±â Ư¼ºÀÌ °³¼±µÈ OFETÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÎ¼â ¹× ÄÚÆÃ °øÁ¤°ú °°Àº Á¦Á¶ ±â¼úÀÇ Çõ½ÅÀ¸·Î OFET¸¦ Àúºñ¿ëÀ¸·Î ´ë·® »ý»êÇÒ ¼ö ÀÖ¾î Æø³ÐÀº ¿ëµµ·Î ÀÌ¿ëÇϱ⠽¬¿öÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ OFET¸¦ À¯¿¬ÇÑ ÀüÀÚ ¹× ¿þ¾î·¯ºí ÀüÀÚ¿¡ ÅëÇÕÇÔÀ¸·Î½á À¯±â ¹°ÁúÀ» ȯ°æ ¿­È­·ÎºÎÅÍ º¸È£ÇÏ´Â »õ·Î¿î µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³ ¹× ĸ½¶È­ ¹æ¹ý¿¡ ´ëÇÑ ¿¬±¸°¡ ÃËÁøµÇ¾î »ó¾÷Àû ÀÌ¿ë °¡´É¼ºÀÌ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù.

OFET°¡ ½ÃÀå¿¡¼­ Á÷¸éÇÏ´Â °úÁ¦¶õ?

OFET´Â ±× °¡´É¼º¿¡µµ ºÒ±¸Çϰí, º¸±Þ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ½Ç¸®Äܰú °°Àº ¹«±â ¹ÝµµÃ¼¿¡ ºñÇØ À¯±â ¹°ÁúÀÇ ¼º´ÉÀÌ »ó´ëÀûÀ¸·Î ³·±â ¶§¹®¿¡ ƯÈ÷ ÀüÇÏ Ä³¸®¾îÀÇ À̵¿µµ¿Í ÀÛµ¿ ¾ÈÁ¤¼º Ãø¸é¿¡¼­ ¿­µîÇÕ´Ï´Ù. ÀÌ ¼º´É Â÷ÀÌ·Î ÀÎÇØ OFETÀÇ °í¼Ó¡¤°íÃâ·Â ÀüÀÚ ±â±â¿¡ÀÇ ÀÀ¿ëÀº Á¦ÇÑµÇ¾î ½Ç¸®ÄÜ¡¤Æ®·£Áö½ºÅÍÀÇ ¿ìÀ§°¡ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¼Ò³ª ½À±â¿¡ ³ëÃâµÇ¸é ¿­È­µÇ±â ½¬¿î À¯±â Àç·á´Â ȯ°æ¿¡ ¹Î°¨Çϱ⠶§¹®¿¡ Å« Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â º¸´Ù °ß°íÇÑ À¯±â Àç·á, ¶Ù¾î³­ ĸ½¶È­ ±â¼ú ¹× ¼º´ÉÀ» ÃÖÀûÈ­Çϱâ À§ÇØ À¯±â¿Í ¹«±â ±¸¼º ¿ä¼Ò¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå Á¢±Ù¹ý¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°¡ ÇÊ¿äÇÕ´Ï´Ù.

¹«¾ùÀÌ OFET ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí Àִ°¡?

À¯±â Àü°è È¿°ú Æ®·£Áö½ºÅÍ(OFET) ½ÃÀåÀÇ ¼ºÀåÀº ¿©·¯ ¿äÀε鿡 ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. À¯¿¬Çϰí Âø¿ë °¡´ÉÇÑ ÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â OFET°¡ À¯¿¬¼º°ú °æ·® Ư¼ºÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ¿ëµµ¿¡ µ¶Æ¯ÇÏ°Ô ÀûÇÕÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ À¯¿¬ÇÑ µð½ºÇ÷¹ÀÌ, ¼¾¼­, ½º¸¶Æ® ÆÐŰ¡ µîÀÇ ¿ëµµ·Î Àúºñ¿ë, ´ë¸éÀûÀÇ ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯±â ¹ÝµµÃ¼ Àç·á¿Í Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î OFETÀÇ ¼º´É°ú È®À强ÀÌ Çâ»óµÇ¾î ±âÁ¸ Æ®·£Áö½ºÅÍ¿¡ ´ëÇÑ °æÀï·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÀÇ·á±â±â³ª ÀÏȸ¿ë ÀüÀÚ±â±â µî Æ´»õ ¿ëµµ¿¡¼­ÀÇ OFETÀÇ ÀÌ¿ë È®´ëµµ ½ÃÀåÀÇ ¼ºÀå¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀΰú º¸´Ù Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£È­ÀûÀÎ ÀÏ·ºÆ®·Î´Ð½º¸¦ Ãß±¸ÇÏ´Â Áö¼ÓÀûÀÎ ¿òÁ÷ÀÓÀÌ °áÇյǾî OFET ½ÃÀåÀÇ ¼ºÀåÀÌ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÁÖ¸ñÀÇ 42»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

JHS
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Organic Field-Effect Transistors (OFETs) Market to Reach US$2.5 Billion by 2030

The global market for Organic Field-Effect Transistors (OFETs) estimated at US$1.2 Billion in the year 2023, is expected to reach US$2.5 Billion by 2030, growing at a CAGR of 11.3% over the analysis period 2023-2030. N-Type OFETs, one of the segments analyzed in the report, is expected to record a 11.6% CAGR and reach US$1.6 Billion by the end of the analysis period. Growth in the P-Type OFETs segment is estimated at 10.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$323.0 Million While China is Forecast to Grow at 15.3% CAGR

The Organic Field-Effect Transistors (OFETs) market in the U.S. is estimated at US$323.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$540.5 Million by the year 2030 trailing a CAGR of 15.3% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.4% and 9.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.0% CAGR.

Global Organic Field-Effect Transistors (OFETs) Market - Key Trends and Drivers Summarized

Organic Field-Effect Transistors (OFETs): Pioneering the Future of Flexible Electronics

Organic Field-Effect Transistors (OFETs) represent a groundbreaking advancement in the field of electronics, utilizing organic semiconducting materials to create flexible, lightweight, and potentially low-cost alternatives to traditional silicon-based transistors. These transistors are essential components in flexible electronics, wearable devices, and displays, offering unique advantages such as mechanical flexibility, transparency, and the ability to be produced through low-temperature processes on a variety of substrates, including plastic and paper. The development of OFETs is driving innovation in areas where conventional electronics are limited by rigidity and manufacturing costs, making them a crucial technology for the future of electronic devices.

How Are Technological Innovations Shaping the OFET Market?

The OFET market is being significantly shaped by continuous technological innovations, particularly in the development of new organic materials that enhance the performance and stability of these transistors. Advances in material science, such as the synthesis of high-mobility organic semiconductors, are leading to OFETs with improved electrical characteristics, such as higher charge carrier mobility and longer operational lifetimes. Additionally, innovations in fabrication techniques, including printing and coating processes, are enabling the mass production of OFETs at a lower cost, making them more accessible for a wide range of applications. The integration of OFETs into flexible and wearable electronics is also driving research into new device architectures and encapsulation methods that protect the organic materials from environmental degradation, further expanding their commercial viability.

What Challenges Do OFETs Face in the Market?

Despite their potential, OFETs face several challenges that could impact their widespread adoption. One of the primary challenges is the relatively lower performance of organic materials compared to inorganic semiconductors like silicon, particularly in terms of charge carrier mobility and operational stability. This performance gap limits the application of OFETs in high-speed and high-power electronics, where silicon transistors continue to dominate. Additionally, the environmental sensitivity of organic materials, which are prone to degradation when exposed to oxygen and moisture, poses a significant hurdle. Addressing these challenges requires ongoing research into more robust organic materials, better encapsulation techniques, and hybrid approaches that combine organic and inorganic components to optimize performance.

What Is Driving Growth in the OFET Market?

The growth in the Organic Field-Effect Transistor (OFET) market is driven by several factors. The increasing demand for flexible and wearable electronics is a major driver, as OFETs are uniquely suited to these applications due to their flexibility and lightweight properties. The growing interest in low-cost and large-area electronics, particularly for applications such as flexible displays, sensors, and smart packaging, is also fueling market growth. Additionally, advancements in organic semiconductor materials and manufacturing techniques are enhancing the performance and scalability of OFETs, making them more competitive with traditional transistors. The expanding use of OFETs in niche applications, such as biomedical devices and disposable electronics, is further contributing to market growth. These factors, combined with the ongoing push for more sustainable and environmentally friendly electronics, are expected to sustain the growth of the OFET market.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â