¼¼°èÀÇ Ç³·Â Åͺó »þÇÁÆ® ½ÃÀå
Wind Turbine Shaft
»óǰÄÚµå : 1551670
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 265 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

dz·Â Åͺó »þÇÁÆ® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 81¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 56¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â dz·Â Åͺó »þÇÁÆ® ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 5.5% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 81¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¹ßÀü±â »þÇÁÆ®´Â CAGR 5.9%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 52¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ÞÀÎ »þÇÁÆ® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 15¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.9%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Ç³·Â Åͺó »þÇÁÆ® ½ÃÀåÀº 2023³â 15¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 17¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 8.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 2.2%¿Í 5.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 3.4%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è dz·Â Åͺó »þÇÁÆ® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

dz·Â Åͺó »þÇÁÆ®´Â ¿¡³ÊÁö º¯È¯ °úÁ¤¿¡¼­ ¾î¶² ±â´ÉÀ» ¼öÇàÇմϱî?

dz·Â Åͺó »þÇÁÆ®´Â Åͺó ºí·¹À̵å¿Í ¹ßÀü±â »çÀÌÀÇ ±â°èÀû ¿¬°á°í¸® ¿ªÇÒÀ» ÇÏ´Â ¿¡³ÊÁö º¯È¯ °úÁ¤ÀÇ ±âº» ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ´ëºÎºÐÀÇ Ç³·Â Åͺ󿡴 Àú¼Ó »þÇÁÆ®¿Í °í¼Ó »þÇÁÆ®ÀÇ µÎ °¡Áö ÁÖ¿ä »þÇÁÆ®°¡ ÀÖ½À´Ï´Ù. Àú¼Ó »þÇÁÆ®´Â ·ÎÅÍ ºí·¹À̵忡 Á÷Á¢ ¿¬°áµÇ¾î ºí·¹À̵å¿Í µ¿ÀÏÇÑ ¼Óµµ(ÀϹÝÀûÀ¸·Î 10 - 60RPM)·Î ȸÀüÇÕ´Ï´Ù. ÀÌ »þÇÁÆ®´Â ȸÀüÇÏ´Â ºí·¹À̵忡 ÀÇÇØ »ý¼ºµÈ ±â°èÀû ¿¡³ÊÁö¸¦ ±â¾î¹Ú½º·Î Àü´ÞÇÏ¿© °í¼Ó »þÇÁÆ®¿¡ Àü´ÞÇÕ´Ï´Ù. °í¼Ó »þÇÁÆ®´Â º¸Åë ºÐ´ç 1,000-1,500rpmÀÇ ÈξÀ ´õ ³ôÀº ¼Óµµ·Î ȸÀüÇÏ¿© ¹ßÀü±â¸¦ ±¸µ¿ÇÏ¿© Àü±â¸¦ »ý»êÇÕ´Ï´Ù. dz·Â Åͺó »þÇÁÆ®ÀÇ È¿À²¼º°ú ½Å·Ú¼ºÀº ÅͺóÀÇ Àü¹ÝÀûÀÎ ¼º´É¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Á¤·Ä ºÒÀÏÄ¡, °úµµÇÑ Áøµ¿, ±â°èÀû °íÀåÀº ¿¡³ÊÁö »ý»êÀÇ »ó´çÇÑ ¼Õ½Ç°ú °ªºñ½Ñ ´Ù¿îŸÀÓÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.

dz·Â Åͺó »þÇÁÆ® ¼³°èÀÇ ¿£Áö´Ï¾î¸µ °úÁ¦¿Í Çõ½ÅÀº ¹«¾ùÀΰ¡?

dz·Â ÅͺóÀÌ Á÷¸éÇÏ´Â ´Ù¾çÇÏ°í °¡È¤ÇÑ È¯°æ Á¶°ÇÀ» °ßµô ¼ö Àִ dz·Â Åͺó »þÇÁÆ®¸¦ ¼³°èÇÏ´Â µ¥´Â ¸î °¡Áö °øÇÐÀû °úÁ¦°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »þÇÁÆ®´Â ³ôÀº ÅäÅ© ÇÏÁß, º¯µ¿Çϴ dz¼Ó, ºÎ½Ä ¹× ¿Âµµ º¯È­¿Í °°Àº ȯ°æÀû ½ºÆ®·¹½º¸¦ °ßµ®³»¾ß ÇÕ´Ï´Ù. Àç·á °úÇÐÀÇ Çõ½ÅÀº ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù. ÃֽŠdz·Â Åͺó »þÇÁÆ®´Â ³»±¸¼º°ú À¯¿¬¼ºÀ» °âºñÇÑ °í°­µµ °­Ã¶ ÇÕ±ÝÀ¸·Î ¸¸µé¾îÁ® °úµµÇÑ ¸¶¸ð ¾øÀÌ Åͺó ÀÛµ¿À¸·Î ÀÎÇÑ ±â°èÀû ½ºÆ®·¹½º¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤¹Ð ´ÜÁ¶ ¹× ¿­Ã³¸® °øÁ¤°ú °°Àº ÷´Ü Á¦Á¶ ±â¼úÀº Åͺó »þÇÁÆ®ÀÇ ÇÇ·Î ÀúÇ×°ú Àü¹ÝÀûÀÎ ½Å·Ú¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. º¹ÇÕÀç·áÀÇ ÅëÇÕÀº ¾ÆÁ÷ µµÀÔ Ãʱ⠴ܰ迡 ÀÖÁö¸¸, ƯÈ÷ À¯Áöº¸¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ´Â °ÍÀÌ Áß¿äÇÑ ÇØ¾ç ÀÀ¿ë ºÐ¾ß¿¡¼­ dz·Â Åͺó »þÇÁÆ®ÀÇ °æ·®È­¿Í È¿À²À» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

dz·Â Åͺó »þÇÁÆ®ÀÇ ¼ö¸í°ú ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ Ç³·Â Åͺó »þÇÁÆ®ÀÇ À¯Áö º¸¼ö´Â ¾î¶»°Ô °ü¸®µË´Ï±î?

dz·Â Åͺó »þÇÁÆ®ÀÇ À¯Áöº¸¼ö´Â Àüü Åͺó ½Ã½ºÅÛÀÇ ¼ö¸í°ú ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. »þÇÁÆ®ÀÇ ¹«°á¼ºÀ» ¼Õ»ó½Ãų ¼ö ÀÖ´Â ¸¶¸ð, ¿ÀÁ¤·Ä ¹× ±âŸ ÀáÀçÀû ¹®Á¦ÀÇ Â¡Èĸ¦ Á¶±â¿¡ °¨ÁöÇϱâ À§Çؼ­´Â Á¤±âÀûÀÎ Á¡°Ë°ú À¯Áöº¸¼ö°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼¾¼­°¡ ÀåÂøµÈ »óÅ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ(CMS)Àº ÅäÅ©, Áøµ¿, ȸÀü ¼Óµµ¿Í °°Àº ÆÄ¶ó¹ÌÅ͸¦ ÃßÀûÇÏ¿© »þÇÁÆ®ÀÇ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ´Â µ¥ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ´Â ¿¹Ãø À¯Áöº¸¼ö Àü·«À» °¡´ÉÇÏ°Ô Çϰí, ÀÏÁ¤ °£°ÝÀÌ ¾Æ´Ñ »þÇÁÆ®ÀÇ ½ÇÁ¦ »óÅ¿¡ µû¶ó À¯Áöº¸¼ö¸¦ °èȹÇÏ¿© ¿¹±âÄ¡ ¾ÊÀº °íÀåÀÇ À§ÇèÀ» ÁÙÀÌ°í »þÇÁÆ®ÀÇ ÀÛµ¿ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ Æ¯¼ö À±È°À¯¿Í ÷´Ü º£¾î¸µ ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© ¸¶Âû°ú ¸¶¸ð¸¦ ÃÖ¼ÒÈ­ÇÏ°í »þÇÁÆ®ÀÇ ³»±¸¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ¸ð´ÏÅ͸µ ¹× À¯Áöº¸¼ö ±â¼úÀº À¯Áöº¸¼ö¸¦ À§ÇÑ Á¢±ÙÀÌ ¾î·Æ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ÇØ»ó dz·Â Åͺ󿡼­ ƯÈ÷ °¡Ä¡°¡ ³ôÀ¸¸ç, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí Áö¼ÓÀûÀÎ ÀÛµ¿À» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

dz·Â Åͺó »þÇÁÆ® ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀº?

dz·Â Åͺó »þÇÁÆ® ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¸î °¡Áö ¿äÀÎÀÌ Àִµ¥, ƯÈ÷ Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ Àüȯ°ú Àü ¼¼°è dz·Â ÅÍºó ¼³Ä¡ Áõ°¡¸¦ µé ¼ö ÀÖ½À´Ï´Ù. dz·Â¿¡³ÊÁö°¡ ¼¼°è ¿¡³ÊÁö ¹Í½º¿¡¼­ ´õ¿í Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇÔ¿¡ µû¶ó »þÇÁÆ®¸¦ Æ÷ÇÔÇÑ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀΠdz·Â Åͺó ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. dz·Â ÅͺóÀÇ ´ëÇüÈ­ Ãß¼¼, ƯÈ÷ ÇØ»ó ȯ°æ¿¡¼­´Â ´õ ³ôÀº ÇÏÁß°ú ´õ °¡È¤ÇÑ ÀÛµ¿ Á¶°Ç¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ´õ °ß°íÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ »þÇÁÆ®ÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. Àç·á ¹× Á¦Á¶ °øÁ¤ÀÇ ±â¼ú ¹ßÀüµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº °¡º±°í °­µµ°¡ ³ôÀº »þÇÁÆ®ÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Àüü ÅͺóÀÇ È¿À²À» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, dz·Â ¹ßÀüÀÇ ±ÕµîÈ­ ¿¡³ÊÁö ºñ¿ë(LCOE) Àý°¨¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÃÖ¼ÒÇÑÀÇ À¯Áöº¸¼ö·Î ¾ÈÁ¤ÀûÀÎ ÀÛµ¿ÀÌ °¡´ÉÇÑ °í¼º´É »þÇÁÆ®ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó È®´ë¸¦ Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥°ú Àμ¾Æ¼ºê´Â ƯÈ÷ dz·Â¿¡³ÊÁö°¡ ºü¸£°Ô È®»êµÇ°í ÀÖ´Â ½ÅÈï ½ÃÀå¿¡¼­ °í¼º´É dz·Â Åͺó »þÇÁÆ®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Wind Turbine Shaft Market to Reach US$8.1 Billion by 2030

The global market for Wind Turbine Shaft estimated at US$5.6 Billion in the year 2023, is expected to reach US$8.1 Billion by 2030, growing at a CAGR of 5.5% over the analysis period 2023-2030. Generator Shaft, one of the segments analyzed in the report, is expected to record a 5.9% CAGR and reach US$5.2 Billion by the end of the analysis period. Growth in the Main Shaft segment is estimated at 4.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 8.9% CAGR

The Wind Turbine Shaft market in the U.S. is estimated at US$1.5 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.7 Billion by the year 2030 trailing a CAGR of 8.9% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.2% and 5.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.4% CAGR.

Global Wind Turbine Shaft Market - Key Trends and Drivers Summarized

What Function Does the Wind Turbine Shaft Serve in the Energy Conversion Process?

The wind turbine shaft is a fundamental component in the energy conversion process, acting as the mechanical link between the turbine blades and the generator. There are two primary shafts in most wind turbine designs: the low-speed shaft and the high-speed shaft. The low-speed shaft is connected directly to the rotor blades, rotating at the same speed as the blades, typically between 10 and 60 RPM. This shaft carries the mechanical energy generated by the rotating blades to the gearbox, where it is then transferred to the high-speed shaft. The high-speed shaft, in turn, rotates at much higher speeds, usually in the range of 1,000 to 1,500 RPM, driving the generator to produce electricity. The efficiency and reliability of the wind turbine shaft are crucial for the overall performance of the turbine, as any misalignment, excessive vibration, or mechanical failure can lead to significant losses in energy production and costly downtime.

What Are the Engineering Challenges and Innovations in Wind Turbine Shaft Design?

Designing a wind turbine shaft that can withstand the varying and often harsh environmental conditions encountered by wind turbines presents several engineering challenges. These shafts must endure high torque loads, fluctuating wind speeds, and environmental stressors such as corrosion and temperature variations, all while maintaining precise alignment and minimizing vibrations. Innovations in material science have played a pivotal role in overcoming these challenges. Modern wind turbine shafts are often made from high-strength steel alloys that offer a combination of durability and flexibility, enabling them to handle the mechanical stresses of turbine operation without excessive wear. Additionally, advanced manufacturing techniques, such as precision forging and heat treatment processes, have improved the fatigue resistance and overall reliability of turbine shafts. The integration of composite materials, although still in the early stages of adoption, holds promise for further reducing the weight and increasing the efficiency of wind turbine shafts, especially in offshore applications where minimizing maintenance is critical.

How Is Maintenance of Wind Turbine Shafts Managed to Ensure Longevity and Performance?

Maintaining the wind turbine shaft is essential for ensuring the longevity and optimal performance of the entire turbine system. Regular inspection and maintenance are required to detect early signs of wear, misalignment, or other potential issues that could compromise the shaft's integrity. Condition monitoring systems (CMS) equipped with sensors are increasingly being used to monitor shaft performance in real-time, tracking parameters such as torque, vibration, and rotational speed. This real-time data allows for predictive maintenance strategies, where maintenance is scheduled based on the actual condition of the shaft rather than fixed intervals, reducing the risk of unexpected failures and extending the operational lifespan of the shaft. Moreover, the use of specialized lubricants and advanced bearing systems helps to minimize friction and wear, further enhancing the durability of the shaft. In offshore wind turbines, where access for maintenance is challenging and costly, these advanced monitoring and maintenance techniques are particularly valuable, helping to minimize downtime and ensure continuous operation.

What’s Fueling the Expansion of the Wind Turbine Shaft Market?

The growth in the wind turbine shaft market is driven by several factors, most notably the global shift towards renewable energy sources and the increasing installation of wind turbines worldwide. As wind energy becomes a more significant part of the global energy mix, there is a rising demand for reliable and efficient wind turbine components, including shafts. The trend towards larger wind turbines, particularly in offshore environments, necessitates the development of stronger and more durable shafts capable of handling higher loads and more extreme operating conditions. Technological advancements in materials and manufacturing processes are also contributing to market growth, as these innovations enable the production of shafts that are both lighter and stronger, improving overall turbine efficiency. Additionally, the increasing focus on reducing the levelized cost of energy (LCOE) for wind power is driving the adoption of high-performance shafts that can operate reliably with minimal maintenance. Government policies and incentives that support the expansion of renewable energy infrastructure are further propelling the demand for advanced wind turbine shafts, particularly in emerging markets where wind energy is rapidly gaining traction.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â