¼¼°èÀÇ ¼öÁú ¼¾¼­ ½ÃÀå
Water Quality Sensors
»óǰÄÚµå : 1551484
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 301 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼öÁú ¼¾¼­ ½ÃÀåÀº 2030³â±îÁö 61¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 44¾ï ´Þ·¯·Î ÃßÁ¤µÈ ¼öÁú ¼¾¼­ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 4.7%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç 2030³â¿¡´Â 61¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ pH ¼¾¼­´Â ºÐ¼® ±â°£ Á¾·á±îÁö º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 4.8%¸¦ ±â·ÏÇÏ¿© 24¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÜ·ù ¿°¼Ò ¼¾¼­ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 3.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 12¾ï ´Þ·¯, Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.8%·Î ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ¼öÁú ¼¾¼­ ½ÃÀåÀº 2023³â 12¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°èÀÇ 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 7.8%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 1.8%¿Í 4.9%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 2.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼öÁú ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

¿Ö ¼öÁú ¼¾¼­´Â ȯ°æ ¸ð´ÏÅ͸µ¿¡ ÇʼöÀûÀΰ¡?

¼öÁú ¼¾¼­´Â ¹° ȯ°æÀÇ °ÇÀü¼ºÀ» ¸ð´ÏÅ͸µÇϰí, ½Ä¼öÀÇ ¾ÈÀüÀ» º¸ÀåÇϰí, Æó¼ö ó¸® °øÁ¤À» °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â pH, ¿ëÁ¸ »ê¼Ò, ʵµ, Àüµµµµ, Áú»ê¿° ¹× Á߱ݼӰú °°Àº ƯÁ¤ ¿À¿°¹°ÁúÀÇ Á¸Àç µî ´Ù¾çÇÑ ÆÄ¶ó¹ÌÅ͸¦ ÃøÁ¤ÇÕ´Ï´Ù. ¼öÁú ¼¾¼­¿¡¼­ ¼öÁýÇÑ µ¥ÀÌÅÍ´Â ¼ö¿ªÀÇ »óŸ¦ Æò°¡Çϰí, ¿À¿°À» °¨ÁöÇϰí, ¹°ÀÌ Àΰ£ÀÇ ¼Òºñ, ³ó¾÷, »ê¾÷ ÀÌ¿ëÀ» À§ÇÑ ±ÔÁ¦ ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ȯ°æ ¹®Á¦¿Í Áö¼Ó °¡´ÉÇÑ ¹° °ü¸®ÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼öÀÖ´Â ¼öÁú ¸ð´ÏÅ͸µÀÇ Á߿伺Àº ±× ¾î´À ¶§º¸ ´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀåÀº ¾î¶»°Ô ¹ßÀüÇØ ¿Ô´Â°¡?

¼öÁú ¼¾¼­ ½ÃÀåÀº ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀ» ³ôÀ̰í, ±ÔÁ¦¸¦ °­È­Çϰí, ¼¾¼­ ±â¼úÀÇ Áøº¸ µîÀ¸·Î Áö³­ ¼ö½Ê³âµ¿¾È Å« ¼ºÀåÀ» ÀÌ·ç¾ú½À´Ï´Ù. óÀ½¿¡´Â ¼öÁú ¸ð´ÏÅ͸µÀº ±âº»ÀûÀÎ ÆÄ¶ó¹ÌÅÍ·Î Á¦ÇѵǾúÀ¸¸ç, Á¤±âÀû »ùÇøµ°ú ½ÇÇè½Ç ºÐ¼®À» ÅëÇÑ ¼öÀÛ¾÷À¸·Î ¼öÇàµÇ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ±×·¯³ª ¼¾¼­ ±â¼úÀÇ ÁøÈ­¿¡ µû¶ó ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ® ¼öÁú º¯È­¿¡ ´ëÇØ º¸´Ù Á¤È®Çϰí Áï°¢ÀûÀÎ ´ëÀÀÀÌ °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. ½º¸¶Æ® ¼¾¼­¿Í IoT Áö¿ø ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ½ÃÀå °³Ã´Àº ½ÃÀåÀ» ´õ¿í È®´ëÇÏ¿© Áö¼ÓÀûÀÎ ÀÚµ¿ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸·Î ¼öÁú ¼¾¼­´Â ³ó¾÷, ¾ç½Ä, °ø¾÷¿ë¼öó¸®, ÁöÀÚüÀÇ ¹°°ü¸® ¹× ȯ°æº¸È£ Ȱµ¿ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù.

¼öÁú ¼¾¼­ÀÇ ÃֽŠÇõ½Å ¹× ¿ëµµÀ̶õ?

¼öÁú ¼¾¼­ ½ÃÀåÀÇ ÁøÈ­¸¦ µÞ¹ÞħÇÏ´Â °ÍÀº ¼öÀÚ¿øÀÇ ¸ð´ÏÅ͸µ°ú °ü¸®¿¡ »õ·Î¿î ±â´ÉÀ» Á¦°øÇÏ´Â ¸î °¡Áö »õ·Î¿î µ¿Çâ°ú Çõ½ÅÀÔ´Ï´Ù. Áß¿äÇÑ µ¿ÇâÀÇ Çϳª´Â ´Ù¾çÇÑ ¼öÁú ÁöÇ¥¸¦ µ¿½Ã¿¡ ÃøÁ¤ÇÒ ¼ö ÀÖ´Â ¸ÖƼÆÄ¶ó¹ÌÅÍ ¼¾¼­ÀÇ °³¹ß·Î ¹°ÀÇ »óŸ¦ º¸´Ù Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ¹«¼± Åë½Å ±â¼ú°úÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ½Ç½Ã°£ µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼¾¼­ µ¥ÀÌÅÍ ºÐ¼®¿¡ AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ´Â °Íµµ Áß¿äÇÑ ±â¼ú Çõ½ÅÀ¸·Î ¿¹Ãø ºÐ¼®°ú ¼öÁú ¹®Á¦ÀÇ Á¶±â ¹ß°ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼¾¼­ÀÇ ¼ÒÇüÈ­¿Í ÇÚµåÇïµå ±â±âÀÇ °³¹ß¿¡ ÀÇÇØ ƯÈ÷ ¿ø°ÝÁö³ª ÀÚ¿øÀÌ ºÎÁ·ÇÑ Áö¿ª¿¡ À־, ¼öÁú ¸ð´ÏÅ͸µÀÌ º¸´Ù °¡±õ°í ÇÕ¸®ÀûÀÎ °ÍÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ À½·á¼ö °ø±Þ ¹× ÀÚ¿¬¼ö¿ª ¸ð´ÏÅ͸µºÎÅÍ »ê¾÷¹è¼ö ¹× ³ó¾÷¹è¼ö °ü¸®¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ·Î ¼öÁú ¼¾¼­ÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº?

¼öÁú ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹° ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¹Ý¿µÇÏ´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¼öÁú ¿À¿°¿¡ ´ëÇÑ ¼¼°èÀÇ °ü½É°ú ´ã¼ö ÀÚ¿øÀ» ¿À¿°À¸·ÎºÎÅÍ º¸È£ ÇÒ Çʿ伺ÀÔ´Ï´Ù. ¼öÁú¿¡ °üÇÑ È¯°æ ±ÔÁ¦¿Í ±âÁØÀÇ ¾ö°ÝÈ­µµ °í±Þ ¸ð´ÏÅ͸µ ±â¼úÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ½ÅÈï±¹À» Áß½ÉÀ¸·Î ÇÑ »ê¾÷ Ȱµ¿ÀÇ È®´ëµµ Å« ¿äÀÎÀ̸ç, »ê¾÷°è´Â ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇÏ°í ¹° ÀÌ¿ëÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ½Å·Ú¼º ³ôÀº ¼öÁú ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÕ´Ï´Ù. °ü°³¸¦ ÃÖÀûÈ­ÇÏ°í ¹° ³¶ºñ¸¦ ÁÙÀÏ Çʿ伺 ¶§¹®¿¡ ³ó¾÷¿¡¼­ ½º¸¶Æ® ¹° °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡µµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ º¸´Ù °ß°íÇϰí Á¤È®ÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ ¼¾¼­ °³Ã´ µî ¼¾¼­ ±â¼úÀÇ Áøº¸°¡ °è¼ÓµÇ°í ÀÖ´Â °Íµµ ÇâÈÄ ¼ö³â°£ ¼öÁú ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 52°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Water Quality Sensors Market to Reach US$6.1 Billion by 2030

The global market for Water Quality Sensors estimated at US$4.4 Billion in the year 2023, is expected to reach US$6.1 Billion by 2030, growing at a CAGR of 4.7% over the analysis period 2023-2030. pH Sensors, one of the segments analyzed in the report, is expected to record a 4.8% CAGR and reach US$2.4 Billion by the end of the analysis period. Growth in the Residual Chlorine Sensors segment is estimated at 3.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 7.8% CAGR

The Water Quality Sensors market in the U.S. is estimated at US$1.2 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 7.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.8% and 4.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.8% CAGR.

Global Water Quality Sensors Market - Key Trends & Drivers Summarized

Why Are Water Quality Sensors Critical for Environmental Monitoring?

Water quality sensors are indispensable tools for monitoring the health of aquatic environments, ensuring the safety of drinking water, and managing wastewater treatment processes. These sensors measure various parameters, such as pH, dissolved oxygen, turbidity, conductivity, and the presence of specific contaminants like nitrates and heavy metals. The data collected from water quality sensors help in assessing the condition of water bodies, detecting pollution, and ensuring that water meets regulatory standards for human consumption, agriculture, and industrial use. As environmental concerns and the need for sustainable water management grow, the importance of accurate and reliable water quality monitoring is more critical than ever.

How Has the Market for Water Quality Sensors Evolved?

The water quality sensors market has seen significant growth over the past few decades, driven by increasing awareness of environmental issues, stricter regulations, and advances in sensor technology. Initially, water quality monitoring was limited to basic parameters, often conducted manually with periodic sampling and laboratory analysis. However, as sensor technology has evolved, real-time monitoring has become possible, enabling more precise and immediate responses to changes in water quality. The development of smart sensors and IoT-enabled monitoring systems has further expanded the market, allowing for continuous, automated data collection and analysis. These advancements have broadened the use of water quality sensors across various industries, including agriculture, aquaculture, and industrial water treatment, as well as in municipal water management and environmental protection efforts.

What Are the Latest Innovations and Applications in Water Quality Sensors?

Several emerging trends and innovations are driving the evolution of the water quality sensors market, offering new capabilities for monitoring and managing water resources. One significant trend is the development of multi-parameter sensors that can simultaneously measure a range of water quality indicators, providing a more comprehensive assessment of water conditions. These sensors are increasingly being integrated with wireless communication technologies, enabling remote monitoring and data transmission in real-time. The use of AI and machine learning algorithms to analyze sensor data is another important innovation, allowing for predictive analytics and early detection of water quality issues. Additionally, the miniaturization of sensors and the development of portable, handheld devices are making water quality monitoring more accessible and affordable, particularly in remote or resource-constrained areas. These innovations are expanding the use of water quality sensors in diverse applications, from monitoring drinking water supplies and natural water bodies to managing industrial effluents and agricultural runoff.

What Factors Are Driving the Growth of the Water Quality Sensors Market?

The growth in the water quality sensors market is driven by several key factors, reflecting the increasing demand for accurate and reliable water monitoring solutions. One of the primary drivers is the growing global concern about water pollution and the need to protect freshwater resources from contamination. Stricter environmental regulations and standards for water quality are also driving the adoption of advanced monitoring technologies. The expansion of industrial activities, particularly in emerging economies, is another significant factor, as industries require reliable water quality monitoring to comply with environmental regulations and optimize their water use. The rising demand for smart water management solutions in agriculture, driven by the need to optimize irrigation and reduce water waste, is also contributing to market growth. Additionally, the ongoing advancements in sensor technology, including the development of more robust, accurate, and cost-effective sensors, are expected to sustain the growth of the water quality sensors market in the coming years.

Select Competitors (Total 52 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â