¼¼°èÀÇ Àüµµ¼º ÄÚÆÃ ½ÃÀå
Electrically Conductive Coatings
»óǰÄÚµå : 1545554
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 223 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àüµµ¼º ÄÚÆÃ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 371¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 243¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àüµµ¼º ÄÚÆÃ ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 6.2% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 371¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °¡ÀüÁ¦Ç° ÀÀ¿ë ºÐ¾ß´Â CAGR 5.9%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 209¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. žçÀüÁö ÀÀ¿ë ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 64¾ï ´Þ·¯, Áß±¹ CAGR 9.3%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Àüµµ¼º ÄÚÆÃ ½ÃÀåÀº 2023³â 64¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 87¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 9.3%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.2%¿Í 5.7%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 3.7%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Àüµµ¼º ÄÚÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Àüµµ¼º ÄÚÆÃÀº ÀüÀÚÁ¦Ç°ÀÇ ±â´ÉÀ» ¾î¶»°Ô Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

Àüµµ¼º ÄÚÆÃÀº ÇʼöÀûÀÎ Àüµµ¼º°ú ÀüÀڱ⠰£¼·(EMI) Â÷Æó¸¦ Á¦°øÇÔÀ¸·Î½á ´Ù¾çÇÑ ÀüÀÚ ÀåÄ¡ÀÇ ±â´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ºñÀüµµ¼º Àç·áÀÇ Ç¥¸é¿¡ µµÆ÷µÇ¾î Àüµµ¼ºÀ» ºÎ¿©Çϰųª ÀüÀÚÆÄ ¹× °íÁÖÆÄ °£¼·À¸·ÎºÎÅÍ ¹Î°¨ÇÑ ºÎǰÀ» º¸È£ÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î Èæ¿¬, Àº, ±¸¸®, Àüµµ¼º Æú¸®¸Ó¿Í °°Àº Àç·á·Î ¸¸µé¾îÁö´Â ÀÌ ÄÚÆÃÀº °¡ÀüÁ¦Ç°, Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄɾî Àåºñ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ½º¸¶Æ®Æù, ÀÇ·á±â±â, ¼¶¼¼ÇÑ Ç×°ø¿ìÁÖ Àåºñ¿Í °°Àº ÀåÄ¡°¡ ¿ÜºÎ ¹× ³»ºÎ Àü±âÀû °£¼·¿¡ ¹æÇعÞÁö ¾Ê°í ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ Àüµµ¼º ÄÚÆÃÀº ÅÍÄ¡ ÆÐ³Î, µð½ºÇ÷¹ÀÌ ¹× LED Á¶¸í °³¹ß¿¡ ¸Å¿ì Áß¿äÇϸç Àü·ù¸¦ °ü¸®Çϰí ÀÌ·¯ÇÑ ºÎǰÀÇ ³»±¸¼º°ú ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

Àüµµ¼º ÄÚÆÃÀº ¾î¶² ±â¼ú Çõ½ÅÀ» ÅëÇØ ±× ±â´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î¿ä?

Àüµµ¼º ÄÚÆÃÀÇ ±â¼ú Çõ½ÅÀº Çö´ë ±â¼ú ÀÀ¿ë ºÐ¾ßÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ź¼Ò³ª³ëÆ©ºê ¹× ±×·¡Çɰú °°Àº ³ª³ë ¼ÒÀç ±â¹Ý ÄÚÆÃÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â Àüµµ¼º°ú À¯¿¬¼ºÀÌ ¶Ù¾î³ª ¿þ¾î·¯ºí ±â¼ú ¹× Ç÷º¼­ºí ÀüÀÚÁ¦Ç°¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¿øÀÚÃþ ÁõÂø¹ý(ALD)°ú °°Àº ÁõÂø ±â¼úÀÇ ¹ßÀüÀ¸·Î Ãʹڸ· ÄÚÆÃÀÇ Á¤¹ÐÇÑ µµÆ÷°¡ °¡´ÉÇØÁ® ¹«°Ô¿Í ºÎÇÇ Áõ°¡¸¦ ÃÖ¼ÒÈ­ÇØ¾ß ÇÏ´Â °í¼º´É ÀüÀÚÁ¦Ç°¿¡ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶¾÷üµéÀº Àüµµ¼ºÀ» ¶³¾î¶ß¸®Áö ¾ÊÀ¸¸é¼­µµ °¡È¤ÇÑ Á¶°ÇÀ» °ßµô ¼ö ÀÖµµ·Ï ÄÚÆÃÀÇ ³»È¯°æ¼ºÀ» Çâ»ó½Ã۴µ¥ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Àüµµ¼º Æú¸®¸Ó¿Í °°Àº º¸´Ù Áö¼Ó°¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ Àç·á¿¡ ´ëÇÑ ¿¬±¸°¡ ÁøÇà ÁßÀ̸ç, ¼º´É ÀúÇÏ ¾øÀÌ Àº°ú °°Àº °í°¡ÀÇ ±Ý¼Ó¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.

Àüµµ¼º ÄÚÆÃÀº ȯ°æ Áö¼Ó°¡´É¼º¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¥±î¿ä?

Àüµµ¼º ÄÚÆÃÀº Àç»ý¿¡³ÊÁö ÀåÄ¡ ¹× ½Ã½ºÅÛÀÇ ±â´É¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃÄÑ È¯°æ Áö¼Ó°¡´É¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÌ·¯ÇÑ ÄÚÆÃÀº žçÀüÁö ÆÐ³Î¿¡ »ç¿ëµÇ¾î Àüµµ¼ºÀ» ³ôÀÌ°í °á°úÀûÀ¸·Î ÅÂ¾ç ¿¡³ÊÁö º¯È¯ÀÇ Àü¹ÝÀûÀÎ È¿À²À» ³ôÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷¿¡¼­´Â Àüµµ¼º ÄÚÆÃÀÌ ´Ù¾çÇÑ ºÎǰ¿¡ »ç¿ëµÇ¾î EMI¸¦ Â÷´ÜÇϰí ÀÚµ¿Â÷ ÀüÀÚ ½Ã½ºÅÛÀÇ È¿À²ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ¼ö¼º ¹èÇÕ ¹× Èֹ߼º À¯±â È­ÇÕ¹°(VOC) °¨¼Ò¿Í °°ÀÌ ÀÌ·¯ÇÑ ÄÚÆÃÁ¦¿¡ µ¶¼ºÀÌ ³·Àº Àç·á¸¦ »ç¿ëÇÏ´Â ¹æÇâÀ¸·ÎÀÇ ÀüȯÀº º¸´Ù ģȯ°æÀûÀÎ Á¦Á¶ °øÁ¤À» ÇâÇÑ ¾÷°è Àü¹ÝÀÇ ¿òÁ÷ÀÓÀ» ¹Ý¿µÇÕ´Ï´Ù. ÀÌ´Â ÀüÀÚÁ¦Ç° Á¦Á¶¿¡ ÀÖ¾î »ýÅÂÇÐÀû ¹ßÀÚ±¹À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ¼¼°è ±ÔÁ¦ ±âÁØ¿¡µµ ºÎÇÕÇÕ´Ï´Ù.

Àüµµ¼º ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â Ãß¼¼´Â ¹«¾ùÀΰ¡?

ÀüÀÚ±â±âÀÇ ´ëÁßÈ­, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ºÎ»ó, EMI Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ Æ®·»µå°¡ Àüµµ¼º ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ÀåÄ¡°¡ »óÈ£ ¿¬°áµÇ°í ´õ ¶È¶ÈÇØÁü¿¡ µû¶ó ÀåÄ¡ ¿ÀÀÛµ¿À» ¹æÁöÇÏ°í »ç¿ëÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ È¿°úÀûÀÎ EMI Â÷Æó ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬°áµÇ´Â ±â±âÀÇ ¼ö°¡ Å©°Ô Áõ°¡ÇÏ°í ´õ ³ôÀº Á֯ļö Àü¼ÛÀ» ¼ö¹ÝÇÏ´Â 5G ±â¼úÀÇ È®ÀåÀº ´õ¿í °ß°íÇϰí È¿°úÀûÀÎ Àüµµ¼º ÄÚÆÃÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ »ê¾÷ÀÇ Àü±â ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº ÀÌ·¯ÇÑ Ã·´Ü ÀÚµ¿Â÷ÀÇ ÀüÀÚ±â ȯ°æÀ» °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀ̱⠶§¹®¿¡ ÀÌ·¯ÇÑ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Å·Ú¼º°ú ¼º´ÉÀÌ ÃÖ¿ì¼±½ÃµÇ´Â Ç×°ø¿ìÁÖ ¹× ±º»ç ºÐ¾ßÀÇ ¹ßÀüÀº Àüµµ¼º ÄÚÆÃ ±â¼úÀÇ ÇѰ踦 °è¼Ó ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Àü¹ÝÀûÀ¸·Î °íǰÁúÀÇ Çõ½ÅÀûÀÎ Àüµµ¼º ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ°í ¹Ì·¡ ±â¼ú °³¹ß¿¡¼­ Àüµµ¼º ÄÚÆÃÀÇ Á߿伺À» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 46°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electrically Conductive Coatings Market to Reach US$37.1 Billion by 2030

The global market for Electrically Conductive Coatings estimated at US$24.3 Billion in the year 2023, is expected to reach US$37.1 Billion by 2030, growing at a CAGR of 6.2% over the analysis period 2023-2030. Consumer Electronics Application, one of the segments analyzed in the report, is expected to record a 5.9% CAGR and reach US$20.9 Billion by the end of the analysis period. Growth in the Solar Application segment is estimated at 7.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$6.4 Billion While China is Forecast to Grow at 9.3% CAGR

The Electrically Conductive Coatings market in the U.S. is estimated at US$6.4 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$8.7 Billion by the year 2030 trailing a CAGR of 9.3% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 5.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.7% CAGR.

Global Electrically Conductive Coatings Market - Key Trends and Drivers Summarized

How Are Electrically Conductive Coatings Enhancing Electronic Device Functionality?

Electrically conductive coatings are key in advancing the functionality of a wide array of electronic devices by providing essential conductivity or electromagnetic interference (EMI) shielding. These coatings are applied to the surface of non-conductive materials to impart electrical conductivity or to shield sensitive components from electromagnetic and radio-frequency interference. Commonly made from materials like graphite, silver, copper, and even conductive polymers, these coatings are essential in consumer electronics, aerospace, automotive, and healthcare devices. Their application ensures that devices such as smartphones, medical equipment, and sensitive aerospace instruments function without disruption from external or internal electrical interference. Additionally, electrically conductive coatings are crucial in the development of touch panels, displays, and LED lighting, where they help in managing electrical currents and improving the durability and performance of these components.

What Innovations Are Enhancing the Functionality of Electrically Conductive Coatings?

Innovation in electrically conductive coatings is rapidly evolving to meet the demands of modern technology applications. One of the most significant advancements is the development of nanomaterial-based coatings, such as carbon nanotubes and graphene. These materials offer superior conductivity and flexibility, making them ideal for wearable technology and flexible electronics. Additionally, advances in deposition techniques such as atomic layer deposition (ALD) allow for the precise application of ultra-thin coatings, which is essential for high-performance electronics that require minimal added weight and material bulk. Manufacturers are also focusing on enhancing the environmental resistance of these coatings to ensure they can withstand harsh conditions without degradation in conductivity, which is particularly important in automotive and aerospace applications. Furthermore, ongoing research into more sustainable and cost-effective materials, such as conductive polymers, aims to reduce reliance on expensive metals like silver, without compromising performance.

How Do Electrically Conductive Coatings Impact Environmental Sustainability?

Electrically conductive coatings contribute to environmental sustainability by enabling the increased functionality and efficiency of renewable energy devices and systems. For example, these coatings are used in solar panels to enhance electrical conductivity and, consequently, the overall efficiency of solar energy conversion. In electric vehicles, conductive coatings are used in various components to shield against EMI, ensuring that the vehicle’s electronic systems operate efficiently, which is crucial for maximizing range and battery life. Additionally, the shift towards using less toxic materials in these coatings, such as water-based formulations or the reduction of volatile organic compounds (VOCs), reflects an industry-wide move towards more environmentally friendly manufacturing processes. This not only helps reduce the ecological footprint of producing electronic devices but also aligns with global regulatory standards aimed at minimizing environmental impact.

What Trends Are Driving Growth in the Electrically Conductive Coatings Market?

Several key trends are driving the growth of the electrically conductive coatings market, including the proliferation of electronic devices, the rise of the Internet of Things (IoT), and increasing awareness of EMI shielding solutions. As more devices become interconnected and smarter, the need for effective EMI shielding solutions escalates to prevent device malfunction and ensure user safety. The expansion of 5G technology, which involves a massive increase in the number of connected devices and transmission of higher frequencies, also necessitates more robust and effective conductive coatings. Additionally, the automotive industry’s shift towards electric and hybrid vehicles is boosting demand for these coatings, as they are critical for managing the electromagnetic environment of these advanced vehicles. Moreover, ongoing advancements in aerospace and military applications, where reliability and performance are paramount, continue to push the boundaries of conductive coating technologies. These trends collectively fuel the demand for high-quality, innovative electrically conductive coatings, securing their importance in future technological developments.

Select Competitors (Total 46 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â