¼¼°èÀÇ µ¥ÀÌÅÍ Áغñ ½ÃÀå
Data Preparation
»óǰÄÚµå : 1544072
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 194 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,263,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,789,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µ¥ÀÌÅÍ Áغñ ½ÃÀåÀº 2030³â±îÁö 225¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 68¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ µ¥ÀÌÅÍ Áغñ ½ÃÀåÀº 2023-2030³â CAGR 18.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 225¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ BSFI ÃÖÁ¾ »ç¿ëÀº CAGR 19.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 111¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼Ò¸Å ÃÖÁ¾ »ç¿ë ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 16.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 17.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µ¥ÀÌÅÍ Áغñ ½ÃÀåÀº 2023³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 34¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGRÀº 17.8%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß °¢°¢ 16.2%¿Í 16.2%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ Áغñ ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µ¥ÀÌÅÍ Áغñ¶õ ¹«¾ùÀ̸ç, ¿Ö µ¥ÀÌÅÍ ºÐ¼® ±âÃʰ¡ µÇ´Â°¡?

µ¥ÀÌÅÍ Áغñ´Â µ¥ÀÌÅÍ ºÐ¼® ¿öÅ©Ç÷ο쿡¼­ Áß¿äÇÑ ÇÁ·Î¼¼½ºÀ̸ç, ¿ø½Ã µ¥ÀÌÅ͸¦ Á¤¸®, Á¤¸®ÇÏ°í ºÐ¼®¿¡ ÀûÇÕÇÑ Çü½ÄÀ¸·Î º¯È¯ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¼öÁýµÈ µ¥ÀÌÅÍ´Â Á¾Á¾ ¿À·ù, ºÒÀÏÄ¡, Áߺ¹, ºÒ¿ÏÀü¼º µîÀ» Æ÷ÇÔÇϰí ÀÖÀ¸¸ç, ÀûÀýÈ÷ ó¸®ÇÏÁö ¾ÊÀ¸¸é ºÐ¼® °á°ú¿¡ ¿Ö°îÀ» ÃÊ·¡ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÌ ´Ü°è´Â ÇʼöÀûÀÔ´Ï´Ù. È¿°úÀûÀÎ µ¥ÀÌÅÍ Áغñ´Â µ¥ÀÌÅÍÀÇ Ç°ÁúÀ» Çâ»ó½Ã۰í ÈÄ¼Ó ºÐ¼®ÀÌ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ ÀÛ¾÷¿¡´Â ¿À·ù¸¦ ¼öÁ¤Çϰųª °ü·Ã ¾ø´Â µ¥ÀÌÅ͸¦ »èÁ¦ÇÏ´Â µ¥ÀÌÅÍ Å¬·»Â¡, ¼­·Î ´Ù¸¥ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ °áÇÕÇÏ´Â µ¥ÀÌÅÍ ÅëÇÕ, µ¥ÀÌÅ͸¦ ÀçÆ÷¸ËÇϰųª À籸¼ºÇÏ´Â µ¥ÀÌÅÍ º¯È¯ µî ´Ù¾çÇÑ ÀÛ¾÷ÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ÇÁ·Î¼¼½º´Â µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ±â¾÷°ú ºÐ¼®°¡µéÀÌ ÀÇ¹Ì ÀÖ°í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®À» È¿À²ÀûÀ¸·Î µµÃâÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

µ¥ÀÌÅÍ Áغñ´Â ºòµ¥ÀÌÅÍ¿Í ºÐ¼®ÀÇ È¿°ú¸¦ ¾î¶»°Ô Çâ»ó½Ãų ¼ö Àִ°¡?

ºòµ¥ÀÌÅÍ ½Ã´ë¿¡ ±â¾÷ÀÌ Ã³¸®ÇØ¾ß ÇÏ´Â µ¥ÀÌÅÍÀÇ ¾ç, À¯Çü, ¼Óµµ°¡ ±Þ°ÝÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Áغñ Åø¿Í ±â¼úÀº ºÐ¼® ÇÁ·Î¼¼½º¿¡ µé¾î°¡±â Àü¿¡ µ¥ÀÌÅͼ¼Æ®°¡ ±ú²ýÇϰí, Àß Á¤¸®µÇ°í, ÀûÀýÇÏ°Ô ±¸Á¶È­µÇ¾î ÀÖ´ÂÁö È®ÀÎÇÔÀ¸·Î½á ÀÌ·¯ÇÑ º¹À⼺À» °ü¸®ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °í±Þ ºÐ¼®°ú ¸Ó½Å·¯´×ÀÇ ºÎ»óÀ¸·Î °íǰÁú µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿ä±¸°¡ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Áغñ´Â ºÐ¼® ¾Ë°í¸®Áò¿¡ ÅõÀԵǴ µ¥ÀÌÅͼ¼Æ®¿¡ ÆíÇâÀ̳ª ÀÌ»ó ¡Èİ¡ ¾ø¾î À߸øµÈ °á·ÐÀ» µµÃâÇÒ °¡´É¼ºÀÌ ¾ø´ÂÁö È®ÀÎÇÕ´Ï´Ù. ¶ÇÇÑ Àß ÁغñµÈ µ¥ÀÌÅʹ ó¸® ½Ã°£°ú ÇÊ¿äÇÑ ¸®¼Ò½º¸¦ ÁÙ¿© ºÐ¼® ÇÁ·Î¼¼½ºÀÇ ¼Óµµ¸¦ Å©°Ô Çâ»ó½ÃÄÑ Àü¹ÝÀûÀÎ ¾÷¹« È¿À²¼ºÀ» ³ôÀ̰í, ±â¾÷ÀÌ ½ÃÀå º¯È­¿Í ³»ºÎ ¿ä±¸¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

µ¥ÀÌÅÍ Áغñ¿Í °ü·ÃÇÏ¿© Á¶Á÷ÀÌ Á÷¸éÇÑ °úÁ¦´Â?

µ¥ÀÌÅÍÀÇ Á߿伺¿¡µµ ºÒ±¸ÇÏ°í µ¥ÀÌÅÍ Áغñ¿¡´Â ¸î °¡Áö ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ±¸Á¶È­µÈ µ¥ÀÌÅͺ£À̽º, ºñÁ¤Çü ÅØ½ºÆ® ÆÄÀÏ, ½Ç½Ã°£ µ¥ÀÌÅÍ ½ºÆ®¸²ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ÀϰüµÈ µ¥ÀÌÅͼ¼Æ®·Î ¸¸µå´Â °ÍÀº ¾î·Á¿î ÀÏÀÔ´Ï´Ù. °¢ ¼Ò½º´Â ¼­·Î ´Ù¸¥ ó¸® ±â¼úÀ» ÇÊ¿ä·Î ÇϹǷΠÁغñ °úÁ¤ÀÌ º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸³´Ï´Ù. ¶ÇÇÑ Áغñ ´Ü°è Àü¹Ý¿¡ °ÉÃÄ µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú Àϰü¼ºÀ» À¯ÁöÇÏ´Â °ÍÀº ƯÈ÷ ¼û°ÜÁø Áߺ¹, ´©¶ôµÈ °ª, ºÎÁ¤È®ÇÑ Ç׸ñÀÌ Æ÷Ç﵃ ¼ö ÀÖ´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ´Ù·ê ¶§ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ Áغñ¿¡ »ç¿ëµÇ´Â Åø¿Í ÇÁ·Î¼¼½ºµµ ¼º´ÉÀ» ÀúÇϽÃŰ°Å³ª ºñ¿ëÀ» ºÒ±ÕÇüÀûÀ¸·Î Áõ°¡½ÃŰÁö ¾Ê°í È®ÀåÇØ¾ß ÇÕ´Ï´Ù.

µ¥ÀÌÅÍ Áغñ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

µ¥ÀÌÅÍ Áغñ ½ÃÀåÀÇ ¼ºÀåÀº Àü·«Àû ÀÇ»ç°áÁ¤°ú ºñÁî´Ï½º °ü¸®¿¡¼­ µ¥ÀÌÅÍÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀ» ¹Ý¿µÇÏ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ±â¾÷ÀÌ µðÁöÅÐ Àüȯ¿¡ Âø¼öÇÔ¿¡ µû¶ó Áõ°¡ÇÏ´Â º¹ÀâÇÑ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ µ¥ÀÌÅÍ Áغñ ÅøÀÇ Çʿ伺ÀÌ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼® ¹× ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º Ç÷§ÆûÀÇ È®»êµµ µ¥ÀÌÅÍ Áغñ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀÌ ÃÖÀûÀÇ ¼º´ÉÀ» ¹ßÈÖÇϱâ À§Çؼ­´Â ±ú²ýÇϰí Á¤È®ÇÑ µ¥ÀÌÅͰ¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× Á¤È®¼º¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ ±â¾÷Àº ÄÄÇöóÀ̾𽺸¦ ÁؼöÇϱâ À§ÇØ °í±Þ µ¥ÀÌÅÍ Áغñ Åø¿¡ ÅõÀÚÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. ÀÚµ¿È­ ¹× ÀΰøÁö´É°ú °°Àº ±â¼úÀÇ ¹ßÀüÀ¸·Î µ¥ÀÌÅÍ Áغñ ÅøÀº ´õ¿í Á¤±³ÇØÁö°í »ç¿ëÀÚ Ä£È­ÀûÀÌ µÇ¾î ±â¼úÀû ¹è°æÀÌ ¾ø´Â »ç¿ëÀÚµµ º¹ÀâÇÑ µ¥ÀÌÅÍ Áغñ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀÇ ¹ÎÁÖÈ­´Â µ¥ÀÌÅÍÀÇ Àü·«Àû °¡Ä¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó µ¥ÀÌÅÍ Áغñ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» º¸ÀåÇÏ°í µ¥ÀÌÅÍ Á᫐ ºñÁî´Ï½º °üÇàÀ» °­È­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÓÀ» °­Á¶ÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Data Preparation Market to Reach US$22.5 Billion by 2030

The global market for Data Preparation estimated at US$6.8 Billion in the year 2023, is expected to reach US$22.5 Billion by 2030, growing at a CAGR of 18.6% over the analysis period 2023-2030. BSFI End-Use, one of the segments analyzed in the report, is expected to record a 19.0% CAGR and reach US$11.1 Billion by the end of the analysis period. Growth in the Retail End-Use segment is estimated at 16.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 17.8% CAGR

The Data Preparation market in the U.S. is estimated at US$1.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.4 Billion by the year 2030 trailing a CAGR of 17.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.2% and 16.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.8% CAGR.

Global Data Preparation Market - Key Trends and Drivers Summarized

What Is Data Preparation and Why Is It Fundamental to Data Analysis?

Data preparation is a critical process in the data analysis workflow, involving the cleaning, organizing, and transforming of raw data into a format suitable for analysis. This step is essential because data collected from various sources often contains errors, inconsistencies, redundancies, and incompleteness that can skew analysis results if not properly addressed. Effective data preparation enhances the quality of data, ensuring that subsequent analyses are accurate and reliable. It involves various tasks such as data cleansing, where errors are corrected or irrelevant data is removed; data integration, where data from different sources is combined; and data transformation, where data is reformatted or restructured. These processes are vital for making data analysis-ready, helping businesses and analysts to derive meaningful and actionable insights efficiently.

How Does Data Preparation Enhance the Effectiveness of Big Data and Analytics?

In the era of big data, the volume, variety, and velocity of data that organizations need to handle have increased dramatically. Data preparation tools and techniques play a pivotal role in managing this complexity by ensuring that data sets are clean, well-organized, and structured properly before they enter any analytical process. With the rise of advanced analytics and machine learning, the demand for high-quality data has never been more critical. Data preparation ensures that the datasets fed into analytical algorithms are free from biases and anomalies that could lead to incorrect conclusions. Moreover, well-prepared data can significantly speed up the analysis process by reducing processing time and resources required, thereby enhancing overall operational efficiency and enabling businesses to respond more swiftly to market changes or internal demands.

What Challenges Do Organizations Face in Data Preparation?

Despite its importance, data preparation poses several challenges, primarily due to the diverse sources and formats of data that organizations collect today. Integrating data from structured databases, unstructured text files, and real-time data streams into a cohesive dataset can be daunting. Each source may require different handling techniques, making the preparation process complex and time-consuming. Additionally, maintaining the accuracy and consistency of data throughout the preparation phase is a significant challenge, especially when dealing with large volumes of data that may contain hidden duplicates, missing values, or incorrect entries. There's also the issue of scalability; as data volumes grow, the tools and processes used for data preparation must also scale without compromising performance or increasing costs disproportionately.

What Drives the Growth in the Data Preparation Market?

The growth in the data preparation market is driven by several factors, reflecting the expanding role of data in strategic decision-making and operational management. As more organizations embark on digital transformation initiatives, the need for robust data preparation tools that can handle increasing volumes of complex data becomes crucial. The proliferation of data analytics and business intelligence platforms has also heightened the demand for data preparation solutions, as these platforms require clean, accurate data to function optimally. Furthermore, regulatory pressures concerning data privacy and accuracy are compelling businesses to invest in advanced data preparation tools to ensure compliance. Technological advancements, such as automation and artificial intelligence, are making data preparation tools more sophisticated and user-friendly, enabling users without technical backgrounds to perform complex data preparation tasks. This democratization of data processing capabilities, along with the growing awareness of the strategic value of data, ensures sustained growth in the data preparation market, highlighting its critical role in enhancing data-centric business practices.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â