¼¼°èÀÇ ³ª³ëÆ÷Åä´Ð½º ½ÃÀå
Nanophotonics
»óǰÄÚµå : 1542757
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 173 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

³ª³ëÆ÷Åä´Ð½º ¼¼°è ½ÃÀå, 2030³â±îÁö 1Á¶ 1,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 1,161¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ³ª³ëÆ÷Åä´Ð½º ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 1Á¶ 1,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â°£ÀÇ ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 37.8%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ LED´Â CAGR 41.5%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 4,577¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, OLED ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 39.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 348¾ï ´Þ·¯, Áß±¹Àº CAGR 34.6%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ³ª³ëÆ÷Åä´Ð½º ½ÃÀåÀº 2023³â 348¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1,425¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â°£ÀÇ ºÐ¼® ±â°£ µ¿¾È 34.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 34.1%¿Í 30.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 23.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ³ª³ëÆ÷Åä´Ð½º ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

³ª³ëÆ÷Åä´Ð½º´Â ¹«¾ùÀ̸ç, ¿Ö ´Ù¾çÇÑ »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?
³ª³ëÆ÷Åä´Ð½º´Â ³ª³ë¹ÌÅÍ ´ÜÀ§ÀÇ ºû¿¡ ´ëÇÑ ¿¬±¸¿Í Á¶ÀÛ¿¡ °üÇÑ °ÍÀ¸·Î, ³ª³ë Å©±âÀÇ Àç·á¿Í ºûÀÇ »óÈ£ ÀÛ¿ë¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ ±â¼úÀº ³ª³ë ÀÔÀÚ¿Í ³ª³ë ±¸Á¶ÀÇ °íÀ¯ ÇÑ Æ¯¼ºÀ» Ȱ¿ëÇÏ¿© ¹úÅ© Àç·á·Î´Â ºÒ°¡´ÉÇÑ ¹æ½ÄÀ¸·Î ºûÀ» Á¶ÀÛÇÕ´Ï´Ù. ºûÀÇ ¹æÇâ, »ö»ó ¹× À§»ó°ú °°Àº ±âº» Ư¼ºÀ» Á¦¾îÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ³ª³ëÆ÷Åä´Ð½º´Â IT ¹× Åë½Å¿¡¼­ ÀÇ·á¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù. º¸´Ù È¿À²ÀûÀΠžçÀüÁö, ¹ß±¤´ÙÀÌ¿Àµå(LED), ±¤ÄÄÇ»ÅÍÀÇ °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ±â¼úÀº Áúº´À» °¨ÁöÇϰí Á¶Á÷°øÇÐÀÇ »õ·Î¿î ¹æ¹ýÀ» ¸¸µé¾î³»´Â µ¥¿¡µµ ¸Å¿ì Áß¿äÇϸç, ¿©·¯ ºÐ¾ß¿¡ °ÉÃÄ Áß¿äÇÑ Çõ½ÅÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Àç·á °úÇÐÀÇ ¹ßÀüÀº ³ª³ë Æ÷Åä´Ð½ºÀÇ ÀÀ¿ëÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?
³ª³ëÆ÷Åä´Ð½ºÀÇ ¹ßÀüÀº Àç·á °úÇÐ, ƯÈ÷ µ¶Æ¯ÇÑ ±¤ÇРƯ¼ºÀ» °¡Áø Àç·áÀÇ °³¹ß ¹× ÇÕ¼º¿¡ ´ëÇÑ È¹±âÀûÀÎ ¹ßÀü¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ±×·¡ÇÉ, ¾çÀÚÁ¡, ±¤°áÁ¤°ú °°Àº Àç·á´Â ÀÌ·¯ÇÑ ¹ßÀüÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ±×·¡ÇÉÀº ¶Ù¾î³­ Àü±â Àüµµ¼º°ú ¿­ Àüµµ¼ºÀ» º¸¿© Ãʰí¼Ó ±¤ °ËÃâ±â ¹× ±¤ º¯Á¶±â¿¡ ´ëÇÑ ÀÀ¿ëÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ¾çÀÚÁ¡Àº ±âÁ¸ µð½ºÇ÷¹ÀÌ ±â¼úÀ» ´É°¡ÇÏ´Â ¼ø¼öÇÏ°í ¼±¸íÇÑ »ö»óÀ¸·Î ÀÎÇØ µð½ºÇ÷¹ÀÌ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¤ °áÁ¤Àº ºûÀÇ È帧À» Á¦¾îÇÒ ¼ö ÀÖ¾î Â÷¼¼´ë ±¤¼¶À¯ ¹× ȸ·Î °³¹ßÀÇ ÇÙ½ÉÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ³ª³ë ±¤¼ÒÀÚÀÇ ¼º´É°ú ±â´ÉÀ» Çâ»ó½ÃÄÑ ±â¼ú°ú Åë½Å ½Ã½ºÅÛ¿¡¼­ °¡´ÉÇÑ °ÍÀÇ ÇѰ踦 ¶Ù¾î³ÑÀ» ¼ö ÀÖ½À´Ï´Ù.

³ª³ëÆ÷Åä´Ð½º ºÐ¾ßÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â Æ®·»µå´Â ¹«¾ùÀΰ¡?
ÇöÀç ³ª³ëÆ÷Åä´Ð½º ºÐ¾ß´Â ¸î °¡Áö Æ®·»µå°¡ Çü¼ºµÇ°í ÀÖÀ¸¸ç, °¢ Æ®·»µå´Â ³ª³ëÆ÷Åä´Ð½º ºÐ¾ßÀÇ ¼ºÀå°ú ÀÀ¿ë¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±¤´ë¿ª ¹× ÀúÀü·Â Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±¤Åë½Å ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ µµÆÄ°ü, º¯Á¶±â, ½ºÀ§Ä¡¿Í °°Àº ³ª³ëÆ÷Åä´Ð½º ºÎǰÀÇ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ °æ¿ì, º¸´Ù ¿¡³ÊÁö È¿À²ÀûÀ̰í ÄÄÆÑÆ®ÇÑ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¿ä±¸´Â ½º¸¶Æ®Æù, TV µîÀÇ Á¦Ç°¿¡ ³ª³ëÆ÷Åä´Ð ¼ÒÀÚ¸¦ ÅëÇÕÇÏ´Â °ÍÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¿Í ³ª³ëÆ÷Åä´Ð½ºÀÇ À¶ÇÕÀº ÀÇ·á Áø´Ü ¹× Ä¡·á ºÐ¾ß¿¡¼­ Çõ½ÅÀûÀÎ Á¢±Ù¹ýÀ» À̲ø¾î³»°í ÀÖÀ¸¸ç, ³ª³ë ±¸Á¶ Àç·á¸¦ »ç¿ëÇÏ¿© °í°¨µµ À̹Ì¡ ½Ã½ºÅÛ ¹× Ç¥Àû Ä¡·á ¿ëµµ¸¦ ¸¸µé°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ³ª³ëÆ÷Åä´Ð½ºÀÇ ¿ëµµ¸¦ È®´ëÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ Çõ½ÅÀÇ ¹ßÆÇÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

³ª³ëÆ÷Åä´Ð½º ½ÃÀåÀÇ ¼ºÀåÀ» À̲ô´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
³ª³ëÆ÷Åä´Ð½º ½ÃÀåÀÇ ¼ºÀåÀº Åë½Å, ÄÄÇ»ÆÃ, ¿¡³ÊÁö ºÐ¾ß¿¡¼­ »ç¿ëµÇ´Â ±¤¼ÒÀÚÀÇ °íÈ¿À²È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ³ª³ë±¸Á¶¸¦ »ó¾÷Àû ±Ô¸ð·Î Àúºñ¿ëÀ¸·Î »ý»êÇÒ ¼ö ÀÖ´Â Á¦Á¶±â¼úÀÇ ¹ßÀüµµ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¿Í µ¥ÀÌÅÍ ¾ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ´Â Åë½Å ºÐ¾ßÀÇ È®´ë·Î ÀÎÇØ ´õ ºü¸£°í È¿À²ÀûÀÎ ±¤ºÎǰÀÇ °³¹ßÀÌ Áö¼ÓÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °íÈ­Áú µð½ºÇ÷¹ÀÌ¿Í ÀüÀÚ±â±âÀÇ °í¼ÓÈ­ µî ±â´É¼ºÀÌ Çâ»óµÈ ÷´Ü ±â¼úÀ» ¼±È£ÇÏ´Â ¼ÒºñÀÚ ÇൿÀº ³ª³ëÆ÷Åä´Ð½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ª³ë±â¼ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº Çаè¿Í »ê¾÷°èÀÇ Çù·Â°ú ÇÔ²² ÀÌ ºÐ¾ßÀÇ Çõ½Å°ú ÀÀ¿ëÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(17°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nanophotonics Market to Reach US$1.1 Trillion by 2030

The global market for Nanophotonics estimated at US$116.1 Billion in the year 2023, is expected to reach US$1.1 Trillion by 2030, growing at a CAGR of 37.8% over the analysis period 2023-2030. LED, one of the segments analyzed in the report, is expected to record a 41.5% CAGR and reach US$457.7 Billion by the end of the analysis period. Growth in the OLED segment is estimated at 39.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$34.8 Billion While China is Forecast to Grow at 34.6% CAGR

The Nanophotonics market in the U.S. is estimated at US$34.8 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$142.5 Billion by the year 2030 trailing a CAGR of 34.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 34.1% and 30.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 23.8% CAGR.

Global Nanophotonics Market - Key Trends & Drivers Summarized

What Is Nanophotonics and Why Is It Revolutionizing Various Industries?
Nanophotonics involves the study and manipulation of light at the nanometer scale, focusing on the interaction between nanoscale materials and light. This technology leverages the unique properties of nanoparticles and nanostructures to manipulate light in ways that are impossible with bulk materials. By enabling control over the fundamental properties of light, such as its direction, color, and phase, nanophotonics is transforming fields ranging from telecommunications to healthcare. It plays a crucial role in the development of more efficient solar cells, light-emitting diodes (LEDs), and optical computers. The technology is also pivotal in creating new ways of detecting diseases and engineering tissues, making it a critical innovation across multiple disciplines.

How Are Advancements in Material Science Enhancing Nanophotonics Applications?
The progression of nanophotonics is heavily dependent on breakthroughs in material science, particularly in the development and synthesis of materials with unique optical properties. Materials such as graphene, quantum dots, and photonic crystals are at the forefront of these advancements. Graphene, for example, exhibits exceptional electrical and thermal conductivity and is being explored for ultra-fast photodetectors and optical modulators. Quantum dots are used in displays for their pure and vibrant colors, which surpass the capabilities of traditional display technologies. Photonic crystals can control the flow of light and are key in developing next-generation optical fibers and circuits. These materials enhance the performance and functionality of nanophotonic devices, pushing the boundaries of what's possible in technology and communication systems.

What Trends Are Shaping the Future of the Nanophotonics Field?
Several trends are currently shaping the nanophotonics field, each playing a vital role in its growth and application. The increasing demand for high-bandwidth and low-power communication systems is driving the development of nanophotonic components like waveguides, modulators, and switches, which are essential for optical communication systems. The push towards more energy-efficient and compact devices in consumer electronics is fostering the integration of nanophotonic elements in products such as smartphones and TVs. Additionally, the convergence of biotechnology with nanophotonics is leading to innovative approaches in medical diagnostics and treatment, using nanostructured materials to create highly sensitive imaging systems and targeted therapy applications. These trends are not only expanding the applications of nanophotonics but are also setting the stage for future innovations.

What Drives the Growth of the Nanophotonics Market?
The growth in the nanophotonics market is driven by several factors, including the rising demand for higher efficiency in photonic devices used in communication, computing, and energy sectors. Advances in manufacturing techniques that allow for the production of nanostructures at a commercial scale at reduced costs are also critical. Additionally, the expansion of the telecommunications sector, with increasing needs for data transmission speed and volume, continues to push the envelope for faster and more efficient optical components. Consumer behavior that increasingly leans towards advanced technology with enhanced functionalities, such as high-definition displays and faster electronic devices, further fuels the demand for nanophotonics. Moreover, governmental support for research and development in nanotechnologies, along with collaborations between academic institutions and industry, is pivotal in driving innovations and applications in this field.

Select Competitors (Total 17 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â