¼¼°èÀÇ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå
Edge Analytics
»óǰÄÚµå : 1528078
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 804 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,009,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,027,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2030³â±îÁö 699¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

2023³â¿¡ 131¾ï ´Þ·¯·Î ÃßÁ¤µÈ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 27.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 699¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿§Áö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 25.4%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 479¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 31.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 89¾ï ´Þ·¯, Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 33.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2023³â 89¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 27¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 33.8%ÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 20.5%¿Í 24.5%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¾à 24.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå- ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿§Áö ¾Ö³Î¸®Æ½½º¶õ ¹«¾ùÀΰ¡?

¿§Áö ¾Ö³Î¸®Æ½½º´Â Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ ÀúÀå¼Ò·ÎÀÇ Àü¼Û¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í µ¥ÀÌÅͰ¡ »ý¼ºµÈ ³×Æ®¿öÅ©ÀÇ ¿¡Áö¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â µ¥ÀÌÅÍ ºÐ¼® ±â¹ýÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ½Ç½Ã°£ ºÐ¼®°ú ÀÇ»ç °áÁ¤ÀÌ Áß¿äÇÑ ½Ã³ª¸®¿À¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Á¦Á¶¾÷¿¡¼­ ¿§Áö ¾Ö³Î¸®Æ½½º´Â »ý»ê ¶óÀÎ Àåºñ¿¡¼­ Á÷Á¢ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ºñÁ¤»ó ¹× ºñÈ¿À²À» Áï½Ã °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½ºÀÇ ÁÖ¿ä ÀÌÁ¡Àº ±âÁ¸ Ŭ¶ó¿ìµå ºÐ¼®¿¡ ºñÇØ ´ë±â ½Ã°£À» Å©°Ô ÁÙÀ̰í Áï°¢ÀûÀÎ ÀλçÀÌÆ®°ú ´ëÀÀÀ» Á¦°øÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ Áï°¢ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®´Â ÀÚÀ² ÁÖÇà Â÷·®, ½º¸¶Æ® ±×¸®µå, ½Ç½Ã°£ ±³Åë °ü¸® µî 1ms¸¦ ´ÙÅõ´Â ¿ëµµ¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

°¡ÀåÀÚ¸® ºÐ¼®Àº IoT¿Í »ê¾÷ ¿ëµµÀ» ¾î¶»°Ô °­È­Çմϱî?

»ç¹°ÀÎÅͳÝ(IoT)°ú »ê¾÷ºÐ¾ß¿¡¼­ ¿§Áö ¾Ö³Î¸®Æ½½º´Â ¿î¿µ È¿À²¼º°ú ¿¹Áöº¸Àü ±â´ÉÀ» °­È­ÇÔÀ¸·Î½á ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼ö½Ê¾ï ´ëÀÇ IoT ÀåÄ¡°¡ ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â µ¿¾È ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ Áß¾Ó ¼­¹ö·Î Àü¼ÛÇϰí ó¸®ÇÏ´Â °ÍÀº ´ë¿ªÆø, Áö¿¬ ¹× ºñ¿ë Á¦¾àÀ¸·Î ÀÎÇØ ½ÇÇöÇÒ ¼ö ¾ø½À´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º´Â µð¹ÙÀ̽º ¶Ç´Â ±ÙóÀÇ ÄÄÇ»ÆÃ µð¹ÙÀ̽º¿¡¼­ ·ÎÄ÷Πµ¥ÀÌÅ͸¦ ó¸®ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ°í ±â¾÷ÀÌ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ½Å¼ÓÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ¿¹Áö º¸ÀüÀº ±â°è ¼¾¼­°¡ ¼Ò½º¿¡¼­ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í °íÀåÀ» ¹Ì¸® ¿¹ÃøÇÔÀ¸·Î½á ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí Àåºñ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÇöÁöÈ­µÈ µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀº ¿¬°üµÈ ó¸®µÈ µ¥ÀÌÅ͸¸ Áß¾Ó ¼­¹ö·Î ´Ù½Ã º¸³»Áö¹Ç·Î Àü¼Û ºñ¿ëÀ» ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½ºÀ» ÀüÁø½ÃŰ´Â ±â¼ú Çõ½ÅÀ̶õ?

±â¼úÀÇ Áøº¸´Â ¿§Áö ¾Ö³Î¸®Æ½½º ºÐ¾ß¸¦ ²÷ÀÓ¾øÀÌ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °í±Þ ºÐ¼® ¾Ë°í¸®ÁòÀ» ó¸®ÇÒ ¼ö ÀÖ´Â º¸´Ù °­·ÂÇÑ ¿¡Áö ÄÄÇ»ÆÃ Çϵå¿þ¾î °³¹ßÀº Áß¿äÇÑ ÃßÁø·Â Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, AI¿Í ¸Ó½Å·¯´×ÀÇ Áøº¸´Â ¿§Áö ¾Ö³Î¸®Æ½½º¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¸´Ù º¹ÀâÇÑ µ¥ÀÌÅÍ Ã³¸® ¹× ÀÇ»ç °áÁ¤À» ¿¡Áö¿¡¼­ ¼öÇàÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. °¡º­¿î ¸Ó½Å·¯´× ¸ðµ¨ ¹× °£¼ÒÈ­µÈ µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ°ú °°Àº ¼ÒÇÁÆ®¿þ¾î °³¹ßÀº ´Ù¾çÇÑ ÀåÄ¡ ¹× Ç÷§Æû¿¡ ´ëÇÑ ¹èÆ÷ ¹× È®ÀåÀ» ¿ëÀÌÇÏ°Ô ÇÏ¿© ¿§Áö ¾Ö³Î¸®Æ½½º ±¸ÇöÀ» ÃËÁøÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ Çõ½ÅÀº ¿¡Áö¿¡¼­ÀÇ µ¥ÀÌÅÍ ¹«°á¼º°ú ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϱâ À§ÇÑ º¸¾È ÇÁ·ÎÅäÄÝÀ» °­È­ÇÏ´Â °ÍÀÔ´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ±ÞÈ®´ëÀÇ ¿øµ¿·ÂÀº?

¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀº ¿¡Áö µð¹ÙÀ̽ºÀÇ ±â´É°ú ¿ëµµÀ» È®ÀåÇÑ ±â¼ú Çõ½ÅÀ» Æ÷ÇÔÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ¾ß±âµË´Ï´Ù. ¾÷°è Àü¹Ý¿¡ °ÉÃÄ IoT µð¹ÙÀ̽ºÀÇ º¸±ÞÀÌ ÁøÇàµÊ¿¡ µû¶ó ¿¡Áö¿¡ ¸¹Àº ¾çÀÇ µ¥ÀÌÅͰ¡ À¯ÀԵǰí Áß¾Ó ½Ã½ºÅÛ°ú µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â °ß°íÇÑ ºÐ¼® ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ÀÇ·á ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ¹× ¹°·ù ÃßÀû°ú °°Àº Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â ½Ç½Ã°£ ÀÇ»ç °áÁ¤ÀÌ ÇÊ¿äÇϹǷΠ¿§Áö ¾Ö³Î¸®Æ½½ºÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚÀÇ Çൿµµ º¯È­Çϰí ÀÖÀ¸¸ç, º¸´Ù ÀÎÅÍ·¢Æ¼ºêÇϰí ÀÀ´ä¼ºÀÌ ³ôÀº ±â¼úÀÌ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º´Â µ¥ÀÌÅÍ Ã³¸®¿Í ÀÀ´ä ½Ã°£À» °¡¼ÓÈ­ÇÏ¿© À̸¦ Áö¿øÇÕ´Ï´Ù. °Ô´Ù°¡ Á¦Á¶¾÷, ¼Ò¸Å¾÷, Åë½Å µîÀÇ ºÐ¾ß¿¡¼­´Â µðÁöÅÐ º¯ÇõÀÌ ÁøÇàµÇ°í ÀÖ¾î ±â¾÷ÀÌ ¾÷¹«ÀÇ ÃÖÀûÈ­¿Í °í°´ °æÇèÀÇ Çâ»óÀ» ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ ¿§Áö ¾Ö³Î¸®Æ½½º ¼ö¿ä´Â ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀÎÀº ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ±Þ¼ºÀå°ú Æø³ÐÀº º¸±ÞÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(Àü 139°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Edge Analytics Market to Reach US$69.9 Billion by 2030

The global market for Edge Analytics estimated at US$13.1 Billion in the year 2023, is expected to reach US$69.9 Billion by 2030, growing at a CAGR of 27.1% over the analysis period 2023-2030. Edge Analytics Solutions, one of the segments analyzed in the report, is expected to record a 25.4% CAGR and reach US$47.9 Billion by the end of the analysis period. Growth in the Edge Analytics Services segment is estimated at 31.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$8.9 Billion While China is Forecast to Grow at 33.8% CAGR

The Edge Analytics market in the U.S. is estimated at US$8.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.7 Billion by the year 2030 trailing a CAGR of 33.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 20.5% and 24.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 24.0% CAGR.

Global Edge Analytics Market - Key Trends & Drivers Summarized

What Is Edge Analytics, and Why Is It Gaining Momentum?

Edge analytics is a method of data analysis that processes data at the edge of the network where the data is generated, rather than relying on transmission back to a centralized data repository. This approach is particularly valuable in scenarios where real-time analytics and decision-making are crucial. For instance, in manufacturing, edge analytics can process data directly from equipment on the production line to immediately detect anomalies or inefficiencies. The primary advantage of edge analytics is its ability to provide immediate insights and responses, significantly reducing latency compared to traditional cloud analytics. This immediate data processing is critical in applications like autonomous vehicles, smart grids, and real-time traffic management, where every millisecond counts.

How Does Edge Analytics Enhance IoT and Industrial Applications?

In the realm of the Internet of Things (IoT) and industrial sectors, edge analytics plays a pivotal role by enhancing operational efficiency and predictive maintenance capabilities. With billions of IoT devices generating voluminous data, sending all this data to a central server for processing is not feasible due to bandwidth, latency, and cost constraints. Edge analytics addresses these challenges by processing data locally on the device or a nearby computing device, allowing businesses to leverage real-time data insights to make quick decisions. For example, in predictive maintenance, sensors on machinery can analyze data at the source to predict failures before they occur, thus minimizing downtime and extending the life of the equipment. This localized data processing capability ensures that only relevant, processed data is sent back to central servers, reducing transmission costs and improving efficiency.

What Are the Technological Innovations Driving Edge Analytics Forward?

Technological advancements are continually shaping the field of edge analytics. The development of more powerful edge computing hardware capable of handling sophisticated analytics algorithms is one key driver. Additionally, advancements in AI and machine learning are integral to edge analytics, as these technologies allow for more complex data processing and decision-making to be executed on the edge. Software developments, such as lightweight machine learning models and streamlined data management systems, also facilitate the implementation of edge analytics by making it easier to deploy and scale across various devices and platforms. Another significant innovation includes the enhancement of security protocols to protect data integrity and privacy at the edge, which is crucial for compliance with global data protection regulations.

What Drives the Rapid Expansion of the Edge Analytics Market?

The growth in the edge analytics market is driven by several factors, including technological innovations that have expanded the capabilities and applications of edge devices. The increasing proliferation of IoT devices across industries has created a massive influx of data at the edge, necessitating robust analytics solutions that can operate independently of central systems. Additionally, the need for real-time decision-making in critical applications, such as healthcare monitoring systems and logistics tracking, compels the adoption of edge analytics. Consumer behavior has also shifted, favoring more interactive and responsive technologies, which edge analytics supports by facilitating faster data processing and response times. Moreover, the ongoing digital transformation in sectors like manufacturing, retail, and telecommunications further fuels the demand for edge analytics, as businesses seek to optimize operations and enhance customer experiences. These drivers collectively propel the edge analytics market towards rapid growth and broader adoption.

Select Competitors (Total 139 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â