¼¼°èÀÇ HTS(High Throughput Screening) ½ÃÀå
High Throughput Screening (HTS)
»óǰÄÚµå : 1514052
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 273 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 7,997,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 23,992,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ HTS(High Throughput Screening) ½ÃÀåÀº 2030³â±îÁö 453¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»ó

2023³â¿¡ 404¾ï ´Þ·¯·Î Æò°¡µÈ ¼¼°èÀÇ HTS(High Throughput Screening) ½ÃÀåÀº ºÐ¼®±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGR 1.6%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 453¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ HTS ¼Ò¸ðǰ ¹× ½Ã¾àÀº CAGR 3.7%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ Á¾·á ½Ã 169¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. HTS ¼Ò¸ðǰ ¹× ½Ã¾à ºÎ¹® ºÐ¼® ±â°£ Áß CAGR ¼ºÀå·üÀº 6.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 106¾ï ´Þ·¯, Áß±¹Àº CAGR 5.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ HTS(High Throughput Screening) ½ÃÀåÀº 2023³â 106¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 113¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGRÀº 5.9%·Î Àü¸ÁµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ -2.4%¿Í 1.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR-1.1% Á¤µµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ HTS(High Throughput Screening) ½ÃÀå-ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

HTS(High Throughput Screening)Àº ½Å¾àÀ¸·Î ¹ßÀüÇÒ ¼ö ÀÖ´Â ¸®µå È­ÇÕ¹°À» È®ÀÎÇϱâ À§ÇÑ È¿À²ÀûÀÎ Á¢±Ù¹ýÀ» Á¦°øÇϸç, ÀǾàǰ °³¹ß ¹× Çмú ¿¬±¸ÀÇ ±âÃʰ¡ µÇ´Â ¹æ¹ýÀÌ µÇ¾ú½À´Ï´Ù. ÀÚµ¿È­, °í±Þ ¼ÒÇÁÆ®¿þ¾î ¹× dzºÎÇÑ È­ÇÕ¹° ¶óÀ̺귯¸®¸¦ Ȱ¿ëÇÔÀ¸·Î½á HTS´Â ÁÖ·Î ¼¼Æ÷ ³» °úÁ¤¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ»ÇÏ´Â ´Ü¹éÁú°ú °°Àº »ý¹°ÇÐÀû Ç¥Àû¿¡ ´ëÇÑ ¸¹Àº È­ÇÕ¹°À» ½Å¼ÓÇÏ°Ô Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. 1980³â´ë ÈĹݿ¡ µµÀÔµÈ HTS´Â ÁÖ¿ä Á¦¾à»çÀÇ Ãµ¿¬¹° ½ºÅ©¸®´×À» ½Å¼ÓÇÏ°Ô ÇÔÀ¸·Î½á °¢±¤À» ¹Þ°í, ÀÓ»ó Áø´ÜÀ̳ª »ê¾÷ »ý¸í°øÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÀÀ¿ëÀÌ È®»êµÇ°í ÀÖ½À´Ï´Ù. ¼ö¹é¸¸ÀÇ È­ÇÕ¹°À» ½Å¼ÓÇÏ°Ô Ã¼ÁúÇϰí ÀáÀçÀûÀÎ Ä¡·á È¿°ú¸¦ °¡Áø È­ÇÕ¹°À» È®ÀÎÇÏ´Â ´É·ÂÀº ¾à¹°ÀÇ ¼Óµµ¸¦ °¡¼ÓÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ½ºÅ©¸®´× ¹æ¹ýÀº ´ÙÀç´Ù´ÉÇϰí in vitro¿Í in vivo ¸ðµÎ¿¡¼­ È­ÇÕ¹°À» Æò°¡ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Ç¥Àû¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Áö½Ä ¾øÀ̵µ ¼¼Æ÷ ¹× »ý¸®Àû Á¾Á¡ÀÇ Á¶ÀýÀÚ¸¦ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù.

HTS´Â Áúº´ °æ·Î ¹× â¾à Ç¥ÀûÀ¸·Î¼­ÀÇ Á߿伺À¸·ÎºÎÅÍ È¿¼Ò¸¦ Ç¥ÀûÀ¸·Î ÇÒ ¶§ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. Ű³ª¾ÆÁ¦¿Í °°Àº È¿¼Ò´Â ¾Ï°ú ¿°Áõ¼º ÁúȯÀ» Æ÷ÇÔÇÑ ¸¹Àº ¼¼Æ÷³» °úÁ¤°ú Áúº´¿¡ °ü¿©Çϸç, HTS Ä·ÆäÀο¡¼­ ÀÚÁÖ Ç¥ÀûÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ½ºÅ©¸®´×¿¡¼­ ÁÖµÈ °ËÃâ ¹æ¹ýÀº Á¾Á¾ Çü±¤ ±â¹Ý ºÐ¼®¹ýÀ» »ç¿ëÇÏÁö¸¸, ÀÌ´Â °í°¨µµÀÓ¿¡µµ ºÒ±¸ÇÏ°í °£¼·À̳ª À§¾ç¼ºÀ» ÀÏÀ¸Å°±â ½±½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ HTS ºÐ¼®Àº °á°ú¸¦ À߸ø ¸¸µå´Â ÀÀÁý¹°À» ÇÇÇϱâ À§ÇØ ¼¼Á¦¸¦ ÷°¡ÇÏ´Â µî Ưº°ÇÑ °í·Á »çÇ×À¸·Î ¼³°èµÇ¾ú½À´Ï´Ù. ÀÏ´Ü ºÐ¼®ÀÌ °³¹ßµÇ°í À¯È¿¼ºÀÌ È®ÀεǸé, HTS´Â ÃֽŠÀÚµ¿È­ Ç÷§ÆûÀ» »ç¿ëÇÏ¿© 1Â÷ ½ºÅ©¸®´× Çü½ÄÀ¸·Î È®ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ´Ü°è¿¡¼­´Â ·Îº¿ °øÇÐ, ÷´Ü ¾×ü ó¸® ÀåÄ¡, °í°¨µµ °ËÃâ±â°¡ ÅëÇÕµÇ¾î ½ºÅ©¸®´×ÀÌ È¿À²ÀûÀ̰í È¿°úÀûÀ¸·Î ¼öÇàµË´Ï´Ù. È÷Æ® È­ÇÕ¹°ÀÇ ½Äº°ºÎÅÍ ¸®µå È­ÇÕ¹°ÀÇ ÃÖÀûÈ­±îÁöÀÇ °úÁ¤¿¡¼­´Â È­ÇÕ¹°ÀÇ Èí¼ö, ºÐÆ÷, ´ë»ç, ¹è¼³(ADME), µ¶¼º µîÀÇ ÁÖ¿ä ¾à¹° Ư¼ºÀ» Á¶»çÇÒ Çʿ䰡 ÀÖÀ¸¸ç, â¾àÀÇ Ãʱ⠴ܰ迡¼­ HTSÀÇ Áß¿äÇÑ ¿ªÇÒÀÌ °­Á¶µË´Ï´Ù.

HTSÀÇ ÁøÈ­´Â ±â¼úÀû, °úÇÐÀû Áøº¸¿¡ ÀÇÇØ ±× ¼ö¹ýÀÌ Çü¼ºµÇ¾î ±× ¿µÇâ·Â°ú È¿À²ÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀ¸·Î µ¥ÀÌÅÍ ºÐ¼® ´É·ÂÀÌ °­È­µÇ¾î º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ º¸´Ù ±í°Ô ÇØ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸¶ÀÌÅ©·ÎĨ ±â¹ÝÀÇ ½Ã½ºÅÛ°ú ³ª³ë¸®ÅÍ ºÐÁÖ ±â¼úÀÇ Ã¤¿ë°ú °°Àº ºÐ¼® ±â¼úÀÇ Çõ½ÅÀº ½ºÅ©¸®´×ÀÇ Á¤È®¼ºÀ» ³ôÀ̰í ÇÊ¿äÇÑ ¸®¼Ò½º¸¦ ÁÙÀÔ´Ï´Ù. HTSÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â ÀÚµ¿È­¿Í ·Îº¿ °øÇÐÀÇ Áøº¸, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º°øÇаú ³ª³ë±â¼úÀÇ ÀÌ¿ë, ¸ÂÃãÇü ÀÇ·á ¼ö¿ä Áõ°¡ µîÀ» µé ¼ö ÀÖÀ¸¸ç, HTS´Â µ¶ÀÚÀûÀÎ ¹ÙÀÌ¿À¸¶Ä¿¸¦ µ¿Á¤ÇÏ¿© ¸ÂÃãÇü Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. °Ô´Ù°¡ »ý¹°Á¦Á¦¿Í Ư¼öÀǾàǰÀÇ È®´ë, ÁöÁöÀûÀÎ ±ÔÁ¦È¯°æ, â¾àÀÚ±Ý Áõ°¡ µîÀÌ HTSÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Çмú°è¿Í Á¦¾à¾÷°è¿ÍÀÇ Çù·Â°ü°èµµ ºÒ°¡°áÇϸç Áö½Ä±³È¯À» ÃËÁøÇϰí HTS ±â¼úÀÇ ±¸ÇöÀ» °­È­ÇÔÀ¸·Î½á ¼¼°èÀÇ °Ç°­À§±â¿Í È¿°úÀûÀÎ ÀǾàǰÀÇ ½Å¼ÓÇÑ °³¹ßÀ̶ó´Â »çȸÀû ¿ä±¸¿¡ ºÎÀÀ À§¿¡¼­ ƯÈ÷ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 41°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global High Throughput Screening (HTS) Market to Reach US$45.3 Billion by 2030

The global market for High Throughput Screening (HTS) estimated at US$40.4 Billion in the year 2023, is expected to reach US$45.3 Billion by 2030, growing at a CAGR of 1.6% over the analysis period 2023-2030. HTS Consumables / Reagents, one of the segments analyzed in the report, is expected to record a 3.7% CAGR and reach US$16.9 Billion by the end of the analysis period. Growth in the HTS Consumables/Reagents segment is estimated at 6.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$10.6 Billion While China is Forecast to Grow at 5.9% CAGR

The High Throughput Screening (HTS) market in the U.S. is estimated at US$10.6 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$11.3 Billion by the year 2030 trailing a CAGR of 5.9% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of -2.4% and 1.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately -1.1% CAGR.

Global High Throughput Screening (HTS) Market - Key Trends and Drivers Summarized

High Throughput Screening (HTS) has become a cornerstone methodology in pharmaceutical development and academic research, providing an efficient approach to identifying lead compounds that might evolve into new drugs. Utilizing automation, sophisticated software, and extensive chemical libraries, HTS facilitates the rapid evaluation of numerous compounds against biological targets, mainly proteins, which play critical roles in cellular processes. Introduced in the late 1980s, HTS gained prominence by expediting natural product screenings at major pharmaceutical companies and has expanded its application across various sectors including clinical diagnostics and industrial biotechnology. The ability to quickly sift through millions of compounds and identify those with potential therapeutic effects is invaluable in accelerating the pace of drug discovery. This screening method is versatile, allowing both in vitro and in vivo settings to assess compounds, thereby enabling the discovery of modulators of cellular or physiological endpoints without prior detailed knowledge of the target.

HTS is particularly effective in targeting enzymes due to their significance in disease pathways and as drug targets. Enzymes like kinases, which are involved in many cellular processes and diseases, including cancer and inflammatory disorders, are frequent targets in HTS campaigns. The primary detection methods in these screenings often use fluorescence-based assays, which, despite their high sensitivity, are prone to interference and false positives. To mitigate these issues, HTS assays are designed with specific considerations, such as the inclusion of detergents to avoid aggregates that cause misleading results. Once an assay is developed and validated, HTS can be scaled to a primary screening format using modern automation platforms. This phase integrates robotics, sophisticated liquid handling devices, and sensitive detectors, ensuring that the screenings are conducted efficiently and effectively. The process from hit identification to lead optimization involves scrutinizing compounds for key drug properties such as absorption, distribution, metabolism, excretion (ADME), and toxicity, underscoring HTS's critical role in the early stages of drug discovery.

The evolution of HTS continues with technological and scientific advancements shaping its methodologies and increasing its impact and efficiency. The integration of artificial intelligence and machine learning enhances data analysis capabilities, allowing for a deeper interpretation of complex datasets. Innovations in assay technology, such as the adoption of microchip-based systems and nanoliter dispensing technologies, are refining the precision and reducing the resource requirements of screenings. The major drivers of growth in HTS include advancements in automation and robotics, the use of microfluidics and nanotechnology, and the increasing demand for personalized medicine, which relies on HTS for identifying unique biomarkers and developing tailored therapies. Moreover, the expansion of biologics and specialty pharmaceuticals, along with supportive regulatory environments and increased funding for drug discovery, are bolstering the adoption of HTS. Collaborations between academia and the pharmaceutical industry are also vital, facilitating knowledge exchange and enhancing the implementation of HTS technologies, particularly critical in responding to global health crises and the public demand for rapid development of effective medications.

Select Competitors (Total 41 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â