¼¼°èÀÇ ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛ ½ÃÀå
Superconducting Magnetic Energy Storage (SMES) Systems
»óǰÄÚµå : 1514035
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 264 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 1,024¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â 594¾ï ´Þ·¯·Î Æò°¡µÈ ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛ ½ÃÀåÀº 2030³â¿¡´Â 1,024¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGRÀº 8.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 161¾ï ´Þ·¯, Áß±¹Àº CAGR 11.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛ ½ÃÀåÀº 2023³â 161¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 222¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ºÐ¼® ±â°£ 2023³âºÎÅÍ 2030³â±îÁö CAGRÀº 11.6%·Î Àü¸ÁµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 5.7%¿Í 6.3%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛ ½ÃÀå-ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES) ½Ã½ºÅÛÀº ¿¡³ÊÁö º¸Á¸°ú Ȱ¿ë ¹æ¹ýÀ» ¼¼°èÀûÀ¸·Î Å©°Ô ¹Ù²Ü ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ Á¤±³ÇÑ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. SMES ½Ã½ºÅÛÀº ÃÊÀüµµ Àç·á·Î ¸¸µé¾îÁø ÄÚÀÏ¿¡ Á÷·ù Àü·ù(DC)¸¦ Èê·Á¼­ ¹ß»ýÇÏ´Â ÀÚ±âÀå¿¡ ¿¡³ÊÁö¸¦ ÃàÀûÇÔÀ¸·Î½á ÀÌ·¯ÇÑ Àç·á¿¡¼­ º¼ ¼ö ÀÖ´Â Àü±â ÀúÇ× Á¦·Î¶ó´Â µ¶Æ¯ÇÑ Æ¯¼ºÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¡³ÊÁö¸¦ ¼Õ½ÇÇÏÁö ¾Ê°í ¹«±âÇÑÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖ¾î °íÈ¿À²ÀÇ ¿¡³ÊÁö º¸Á¸ ¼ö´ÜÀÌ µË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¿ÜºÎ Àü¿øÀ¸·ÎºÎÅÍÀÇ ±³·ù(AC)¸¦ Á÷·ù·Î º¯È¯ÇÔÀ¸·Î½á ÀÛµ¿ÇÏ¿© ÃÊÀüµµ ÄÚÀÏ¿¡ ÅëÀüÇÏ¿© ÀúÀå ¸Åü·Î¼­ ±â´ÉÇÏ´Â °ß°íÇÑ ÀüÀÚ±âÀåÀ» ¹ß»ý½Ãŵ´Ï´Ù. ÃÊÀüµµ »óŸ¦ À¯ÁöÇÏ·Á¸é Àç·á¸¦ ÀÓ°è ¿Âµµ ÀÌÇÏ·Î ³Ã°¢½ÃÄÑ ÀúÇ×ÀÌ 0ÀÌ µÇµµ·Ï ÇÏ¿© ¿¡³ÊÁö ¼Õ½ÇÀÌ ¾øµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù.

¿£µå Åõ ¿£µå È¿À²ÀÌ 100%¿¡ °¡±î¿î SMES ½Ã½ºÅÛÀÇ È¿À²ÀÇ ³ôÀÌ´Â ÀϹÝÀûÀ¸·Î È¿À²ÀÌ ³·Àº ¸®Æ¬ À̿ ÀüÁö³ª ¾ç¼ö½Ä ¼ö·Â ¹ßÀü ½Ã½ºÅÛ µî, ´Ù¸¥ ¿¡³ÊÁö ÀúÀå ¿É¼Ç¿¡ ºñÇØ Å« ÀÌÁ¡À» º¸¿©ÁÝ´Ï´Ù. SMES ½Ã½ºÅÛÀº Á¤È®ÇÑ Àü·Â °ü¸®°¡ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÀûÇÕÇÑ ±Þ¼ÓÇÑ Ãæ¹æÀüÀÌ °¡´ÉÇϸç ÀÀ´ä ½Ã°£ÀÌ ºü¸¨´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ SMES´Â ¹ÝµµÃ¼ Á¦Á¶ ¹× ÀÇ·á ½Ã¼³°ú °°Àº °æ¹ÌÇÑ ¿¡³ÊÁö È¿À² °³¼±¿¡¼­µµ »ó´çÇÑ ºñ¿ë Àý°¨°ú ¿î¿µ °³¼±À¸·Î À̾îÁö´Â ȯ°æ¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. SMES ½Ã½ºÅÛÀº ÃàÀûµÈ ¿¡³ÊÁö¸¦ ½Å¼ÓÇÏ°Ô ¹æÃâÇÒ ¼ö Àֱ⠶§¹®¿¡ ƯÈ÷ ž籤À̳ª dz·Â°ú °°Àº °£ÇæÀûÀÎ ½ÅÀç»ý ¿¡³ÊÁö¿ø°ú ÅëÇÕÇÑ °æ¿ì ºÎÇÏ ºÒ±ÕÇüÀ» °ü¸®Çϰí Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» È®º¸Çϱ⿡ ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀÔ´Ï´Ù.

SMES ½Ã½ºÅÛÀº ±× °¡´É¼º¿¡µµ ºÒ±¸ÇÏ°í º¸±ÞÀ» ¹æÇØÇÏ´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÃÊÀüµµ Àç·áÀÇ °íºñ¿ë°ú ÃÊÀüµµ À¯Áö¸¦ À§ÇÑ ±ØÀú¿Â ³Ã°¢ ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ º¹ÀâÇÑ ÀÎÇÁ¶ó°¡ Ãʱâ ÅõÀÚ¿Í ¿î¿µ¿¡ »ó´çÇÑ ºñ¿ëÀ» µéÀÌ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ SMES ½Ã½ºÅÛÀÇ È®À强Àº ÀÌ·¯ÇÑ ³ôÀº ºñ¿ë°ú »ç¿ëÇÏ´Â ÃÊÀüµµ Àç·á¿¡ ÇÊ¿äÇÑ º¹ÀâÇÑ Á¦Á¶ °øÁ¤¿¡ ÀÇÇØ Á¦ÇѵǴ °ÍÀÌ ÇöÀçÀÔ´Ï´Ù. ±×·¯³ª, ÇöÀç ÁøÇà ÁßÀÎ °í¿Â ÃÊÀüµµÃ¼ °³¹ßÀÇ Áøº¸´Â ÀÌ·¯ÇÑ ºñ¿ëÀ» Àý°¨Çϰí, º¸´Ù ±¤¹üÀ§ÇÑ ÀÀ¿ëÀ» À§ÇÑ SMES ½Ã½ºÅÛÀÇ ½ÇÇö °¡´É¼ºÀ» Çâ»ó½Ãų °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á°¡ °í¿Â¿¡¼­ ÀÛµ¿Çϵµ·Ï ¼³°èµÇ°í ´ë±Ô¸ð·Î Á¦Á¶µÉ ¼ö ÀÖ°Ô µÇ¸é SMES ±â¼úÀº ¿¡³ÊÁö ÀúÀå¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ´õ¿í Áö¼Ó °¡´ÉÇϰí È¿À²ÀûÀÎ ¼¼°è ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. °í¼º´É Àü·Â°ü¸®¿Í ½ÅÀç»ý ¿¡³ÊÁö¿ø°úÀÇ ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ´õºÒ¾î, ±ÔÁ¦³ª Á¤ºÎÀÇ Áö¿øÃ¥µµ SMES ½Ã½ºÅÛ ½ÃÀå ¼ºÀå°ú º¸±ÞÀ» µÞ¹ÞħÇÒ °èȹÀÔ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÁÖ¸ñÀÇ 23»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Superconducting Magnetic Energy Storage (SMES) Systems Market to Reach US$102.4 Billion by 2030

The global market for Superconducting Magnetic Energy Storage (SMES) Systems estimated at US$59.4 Billion in the year 2023, is expected to reach US$102.4 Billion by 2030, growing at a CAGR of 8.1% over the analysis period 2023-2030.

The U.S. Market is Estimated at US$16.1 Billion While China is Forecast to Grow at 11.6% CAGR

The Superconducting Magnetic Energy Storage (SMES) Systems market in the U.S. is estimated at US$16.1 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$22.2 Billion by the year 2030 trailing a CAGR of 11.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.7% and 6.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.2% CAGR.

Global Superconducting Magnetic Energy Storage (SMES) Systems Market - Key Trends and Drivers Summarized

Superconducting Magnetic Energy Storage (SMES) systems represent a sophisticated approach to energy storage that could significantly transform how energy is preserved and utilized globally. By storing energy in the magnetic field created by the flow of direct current (DC) through a coil made from superconducting materials, SMES systems harness the unique property of zero electrical resistance found in these materials. This allows for energy to be stored indefinitely without loss, providing a highly efficient means of energy conservation. The system operates by converting alternating current (AC) from an external source to DC, which energizes the superconducting coil, generating a robust electromagnetic field that acts as the storage medium. Maintaining the superconducting state involves cooling the material below a critical temperature to ensure zero resistance and, consequently, no energy loss.

The high efficiency of SMES systems, with end-to-end efficiencies approaching 100%, marks a significant advantage over other energy storage options such as lithium-ion batteries or pumped hydroelectric systems, which typically show lower efficiencies. SMES systems stand out for their rapid response times, capable of quick charging and discharging that suits applications requiring precise power management. These characteristics make SMES particularly valuable in settings such as semiconductor manufacturing or medical facilities, where even slight improvements in energy efficiency can lead to substantial cost savings and operational enhancements. The ability of SMES systems to quickly release stored energy makes them an ideal solution for managing load imbalances and ensuring the stability of power grids, particularly when integrated with intermittent renewable energy sources like solar and wind.

Despite their potential, SMES systems face several challenges that hinder their widespread adoption. The high cost of superconducting materials and the complex infrastructure required for cryogenic cooling systems to maintain superconductivity contribute to significant initial investment and operational costs. Moreover, the scalability of SMES systems is currently limited by these high costs and the complex manufacturing processes required for the superconducting materials used. However, ongoing advancements in the development of high-temperature superconductors hold promise for reducing these costs and improving the feasibility of SMES systems for broader applications. If these materials can be engineered to function at higher temperatures and manufactured on a larger scale, SMES technology could revolutionize energy storage, contributing to a more sustainable and efficient global energy infrastructure. The growing demand for high-performance power management and the integration with renewable energy sources, along with supportive regulatory and government incentives, are poised to drive the growth and acceptance of SMES systems in the market.

Select Competitors (Total 23 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â