¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ½ÃÀå
Automotive Castings
»óǰÄÚµå : 1513893
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 162 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,171,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,515,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 2,184¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â 1,333¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ½ÃÀåÀº 2023-2030³â µ¿¾È ¿¬Æò±Õ 7.3% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2,184¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾Ð·Â ´ÙÀÌij½ºÆÃÀº CAGR 7.4%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 1,221¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áø°ø ´ÙÀÌij½ºÆÃ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 347¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.8%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ½ÃÀåÀº 2023³â 347¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 522¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 10.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 4.5%¿Í 5.9%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 5.4%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ

ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç°Àº ÀÚµ¿Â÷ Á¦Á¶¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇÏ¸ç ¿£Áø ºí·Ï, º¯¼Ó±â ÄÉÀ̽º, ¼­½ºÆæ¼Ç ºÎǰ ¹× ´Ù¾çÇÑ ±¸Á¶ ¿ä¼ÒÀÇ ±âº» ºÎǰÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ÁÖÁ¶Ç°Àº ¿ëÀ¶µÈ ±Ý¼ÓÀ» ±ÝÇü¿¡ ºÎ¾î ƯÁ¤ ÇüÅÂ¿Í ±¸Á¶¸¦ ¸¸µé°í, À̸¦ Á¤¹ÐÇÑ »ç¾ç¿¡ ¸Â°Ô °¡°øÇÏ´Â ¹æ½ÄÀ¸·Î Á¦Á¶µË´Ï´Ù. ÀÌ °øÁ¤À» ÅëÇØ ´Ù¸¥ Á¦Á¶ ¹æ¹ýÀ¸·Î´Â ¾î·Á¿î º¹ÀâÇÑ ÇüŸ¦ Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ÁÖÁ¶¿¡ »ç¿ëµÇ´Â ÀϹÝÀûÀÎ Àç·á·Î´Â ¾Ë·ç¹Ì´½, ö, °­Ã¶, ¸¶±×³×½· µîÀÌ ÀÖÀ¸¸ç, °¢ Àç·á´Â °­µµ, ¹«°Ô, ¿­ÀüµµÀ² µî ƯÁ¤ ¿ä±¸»çÇ׿¡ µû¶ó ¼­·Î ´Ù¸¥ Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¾Ë·ç¹Ì´½Àº °¡º±°í ¿­ÀüµµÀ²ÀÌ ¿ì¼öÇÏ¿© ¿£Áø ºí·Ï°ú ½Ç¸°´õ Çìµå¿¡ ÀûÇÕÇÕ´Ï´Ù. ³»±¸¼º°ú °­µµ·Î À¯¸íÇÑ Ã¶°ú °­Ã¶ ÁÖ¹°Àº ÀϹÝÀûÀ¸·Î Å©·©Å© »þÇÁÆ®³ª ¼­½ºÆæ¼Ç ¾Ï°ú °°Àº ¹«°Å¿î ÇÏÁßÀ» ÁöÅÊÇÏ´Â ºÎǰ¿¡ »ç¿ëµË´Ï´Ù. ¸¶±×³×½· ÁÖ¹°Àº ´ú ÀϹÝÀûÀÌÁö¸¸, ±ØµµÀÇ °æ·®È­°¡ ÇʼöÀûÀÎ ÀÀ¿ë ºÐ¾ß¿¡ »ç¿ëµË´Ï´Ù.

ÃÖ±Ù ¸î ³â µ¿¾È ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ½ÃÀåÀº ±â¼ú ¹ßÀü°ú ÁøÈ­ÇÏ´Â »ê¾÷ µ¿ÇâÀÇ ¿µÇâÀ» Å©°Ô ¹Þ°í ÀÖ½À´Ï´Ù. ¿¬ºñ Çâ»ó°ú ¹è±â°¡½º ¹èÃâ·® °¨¼Ò¸¦ À§ÇÑ ÀÚµ¿Â÷ °æ·®È­°¡ ÃßÁøµÇ¸é¼­ ³ôÀº °­µµ ´ë Áß·®ºñ¸¦ °¡Áø ¾Ë·ç¹Ì´½ ¹× ¸¶±×³×½· ÁÖ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °í¾Ð ´ÙÀÌij½ºÆÃ, Àú¾Ð ´ÙÀÌij½ºÆÃ, Áø°ø ´ÙÀÌij½ºÆÃ°ú °°Àº ÁÖÁ¶ ±â¼úÀÇ Çõ½ÅÀº ÁÖÁ¶ ºÎǰÀÇ Ç°Áú°ú Á¤¹Ðµµ¸¦ ³ôÀ̰í, ´Ù°ø¼ºÀ» ÁÙÀ̰í, ±â°èÀû Ư¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °í¾Ð ´ÙÀÌij½ºÆÃÀº ¿ì¼öÇÑ Ä¡¼ö Á¤È®µµ¸¦ °¡Áø °æ·® ºÎǰÀ» ´ë·®À¸·Î »ý»êÇÏ´Â µ¥ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÄÄÇ»ÅÍ Áö¿ø ¼³°è(CAD) ¹× ½Ã¹Ä·¹ÀÌ¼Ç µµ±¸¸¦ »ç¿ëÇÏ¿© ÁÖÁ¶ °øÁ¤À» ÃÖÀûÈ­Çϰí Àç·áÀÇ È帧°ú ÀÀ°í ÆÐÅÏÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÏ¿© °áÇÔ ¹× Àç·á ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀ» ÅëÇØ ¿£Áö´Ï¾î´Â ÁÖÁ¶ °øÁ¤À» °¡»óÀ¸·Î ½Ã¹Ä·¹À̼ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ¾î ¹°¸®Àû ½ÃÁ¦Ç°ÀÇ Çʿ伺À» ÁÙÀÌ°í °³¹ß Áֱ⸦ ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)ÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó ¹èÅ͸® ÇÏ¿ì¡, Àü±â ¸ðÅÍ ºÎǰ, °æ·® ¼¨½Ã ºÎǰ¿ë Ư¼ö ÁÖÁ¶Ç°ÀÇ °³¹ßÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, EV´Â ÃÖ¼ÒÇÑÀÇ ¹«°Ô¸¦ À¯ÁöÇϸ鼭 ¾ö°ÝÇÑ ¾ÈÀü ¹× ¼º´É ±âÁØÀ» ÃæÁ·ÇØ¾ß ÇÏ´Â °íÀ¯ÇÑ ºÎǰÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÷´Ü ÁÖÁ¶ ±â¼ú ¹× Àç·á°¡ ÇʼöÀûÀÔ´Ï´Ù. ÷´Ü ÁÖÁ¶±â¼ú°ú ¼ÒÀç°¡ ÇʼöÀûÀÔ´Ï´Ù.

ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç° ½ÃÀåÀÇ ¼ºÀåÀº ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í Àִµ¥, 3D »÷µå ÇÁ¸°ÆÃ ¹× ·¡Çǵå ÇÁ·ÎÅäŸÀÌÇΰú °°Àº ÁÖÁ¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü´Â º¹ÀâÇÑ °æ·® ºÎǰÀ» º¸´Ù È¿À²ÀûÀ¸·Î »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾î ÃֽŠÀÚµ¿Â÷ÀÇ ¾ö°ÝÇÑ ¼º´É Ç¥ÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, 3D »÷µå ÇÁ¸°ÆÃÀº µðÁöÅÐ ¸ðµ¨¿¡¼­ Á÷Á¢ º¹ÀâÇÑ ¸ð·¡ ÁÖÇüÀ» ¸¸µé ¼ö ÀÖ¾î ¸®µå ŸÀÓÀ» Å©°Ô ´ÜÃàÇÏ°í º¸´Ù À¯¿¬ÇÑ ¼³°è ¹Ýº¹À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àü±âÂ÷¿Í ÇÏÀ̺긮µå ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷¿ë ÁÖÁ¶Ç°ÀÇ ´ëÀÀ °¡´ÉÇÑ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â °íÀ¯ÇÑ ÆÄ¿öÆ®·¹ÀÎ ¹× ±¸Á¶Àû ¿ä±¸»çÇ׿¡ ¸Â´Â »õ·Î¿î ºÎǰ ¼¼Æ®°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ »ê¾÷ÀÇ Áö¼Ó°¡´É¼º°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÁÖÁ¶ ÀÛ¾÷¿¡¼­ ÀçȰ¿ë °¡´ÉÇÑ Àç·á¿Í ȯ°æ ģȭÀûÀÎ »ý»ê °øÁ¤ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁÖÁ¶ °øÀåµéÀº ȯ°æ ¹ßÀÚ±¹À» ÁÙÀ̱â À§ÇØ Æó¼â ·çÇÁ ÀçȰ¿ë ½Ã½ºÅÛ ¹× Àú¹èÃâ »ý»ê ±â¼ú äÅÃÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ½ÅÈï ½ÃÀå¿¡¼­ ÀÚµ¿Â÷ Á¦Á¶ÀÇ ¼¼°è È®ÀåÀº ÀÎÇÁ¶ó ¹× »ý»ê´É·Â¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿¡ ÈûÀÔ¾î ÁÖÁ¶ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî ÀÚµ¿Â÷ »ê¾÷ÀÇ ÁøÈ­Çϴ ȯ°æ ¼Ó¿¡¼­ ½ÃÀå »óȲÀº °­·ÂÇÑ ¼ºÀå°ú Áö¼ÓÀûÀÎ °ü·Ã¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 26°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automotive Castings Market to Reach US$218.4 Billion by 2030

The global market for Automotive Castings estimated at US$133.3 Billion in the year 2023, is expected to reach US$218.4 Billion by 2030, growing at a CAGR of 7.3% over the analysis period 2023-2030. Pressure Die Casting, one of the segments analyzed in the report, is expected to record a 7.4% CAGR and reach US$122.1 Billion by the end of the analysis period. Growth in the Vacuum Die Casting segment is estimated at 8.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$34.7 Billion While China is Forecast to Grow at 10.8% CAGR

The Automotive Castings market in the U.S. is estimated at US$34.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$52.2 Billion by the year 2030 trailing a CAGR of 10.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.5% and 5.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.4% CAGR.

Automotive Castings - Key Trends and Drivers

Automotive castings play a crucial role in the manufacturing of vehicles, serving as fundamental components in engine blocks, transmission cases, suspension parts, and various structural elements. Castings are produced by pouring molten metal into molds to create specific shapes and structures, which are then machined to precise specifications. This process allows for the production of complex geometries that are difficult to achieve with other manufacturing methods. Common materials used in automotive castings include aluminum, iron, steel, and magnesium, each offering different properties that cater to specific requirements such as strength, weight, and thermal conductivity. Aluminum, for example, is favored for its light weight and good thermal properties, making it ideal for engine blocks and cylinder heads. Iron and steel castings, known for their durability and strength, are typically used in heavier load-bearing components like crankshafts and suspension arms. Magnesium castings, while less common, are used in applications where extreme weight reduction is essential.

In recent years, the automotive castings market has been significantly influenced by technological advancements and evolving industry trends. The push towards lightweight vehicles to improve fuel efficiency and reduce emissions has driven the demand for aluminum and magnesium castings, which offer high strength-to-weight ratios. Innovations in casting techniques, such as high-pressure die casting, low-pressure die casting, and vacuum die casting, have enhanced the quality and precision of cast components, reducing porosity and improving mechanical properties. High-pressure die casting, for instance, is widely used for producing large volumes of lightweight components with excellent dimensional accuracy. Additionally, the adoption of computer-aided design (CAD) and simulation tools has optimized the casting process, allowing for better prediction of material flow and solidification patterns, thereby minimizing defects and material wastage. These tools enable engineers to simulate and refine the casting process virtually, reducing the need for physical prototypes and accelerating development cycles. The increasing integration of electric vehicles (EVs) has also spurred the development of specialized castings for battery housings, electric motor components, and lightweight chassis parts. EVs require unique components that must meet stringent safety and performance standards while maintaining minimal weight, making advanced casting techniques and materials essential.

The growth in the automotive castings market is driven by several factors. Advances in casting technologies, such as 3D sand printing and rapid prototyping, are enabling manufacturers to produce complex and lightweight components more efficiently, meeting the stringent performance standards of modern vehicles. 3D sand printing, for instance, allows for the creation of intricate sand molds directly from digital models, significantly reducing lead times and enabling more flexible design iterations. The rising demand for electric and hybrid vehicles is expanding the addressable market for automotive castings, as these vehicles require a new set of components tailored to their unique powertrains and structural requirements. Additionally, the automotive industry's shift towards sustainability and regulatory compliance is promoting the use of recyclable materials and eco-friendly production processes in casting operations. Foundries are increasingly adopting closed-loop recycling systems and low-emission production techniques to reduce their environmental footprint. The global expansion of automotive manufacturing, particularly in emerging markets, is also fueling demand for cast components, supported by increasing investments in infrastructure and production capacity. These factors collectively ensure the robust growth and continued relevance of the automotive castings market in the evolving landscape of the automotive industry.

Select Competitors (Total 26 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â