반도체 제조 AI 시장 분석과 예측 : 유형, 제품, 서비스, 기술, 구성 요소, 용도, 프로세스, 전개, 최종 사용자, 기능(-2034년)
AI for Semiconductor Manufacturing Market Analysis and Forecast to 2034: Type, Product, Services, Technology, Component, Application, Process, Deployment, End User, Functionality
상품코드 : 1740635
리서치사 : Global Insight Services
발행일 : 2025년 06월
페이지 정보 : 영문 363 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,750 ₩ 6,802,000
Single User License help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능하며, 인쇄는 가능합니다.
US $ 5,750 ₩ 8,235,000
Site License help
PDF, Excel 보고서를 동일 기업(국가)의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 6,750 ₩ 9,667,000
Enterprise License help
PDF, Excel 보고서를 동일 기업의 전 세계 모든분이 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

반도체 제조 AI 시장은 2024년 463억 달러로 평가되었으며, 2034년에는 1,923억 달러에 이르고, 약 15.3%의 연평균 복합 성장률(CAGR)로 성장할 것으로 예상됩니다. 이를 통해 수율을 최적화하고, 결함을 줄이고, 효율을 개선하는 데 중점을 두고 있습니다. 반도체의 복잡성이 늘어남에 따라 AI 도입이 가속화되고, 머신러닝 모델, 실시간 모니터링, 데이터 주도의 의사결정에 있어서의 혁신이 추진되어, 최종적으로 제조 패러다임을 변화시켜 경쟁 우위를 조성합니다.

시장 개요 :

반도체 제조 AI 시장은 공정 최적화 분야를 필두로 명확한 부문을 특징으로 합니다. AI를 활용하여 제조 공정을 미세 조정하고 결함을 줄여 처리량을 향상시킴으로써 반도체 제조에 있어서의 정확성과 비용 효율의 중요한 요구에 대응하고 있습니다. 보전 능력을 통해 뛰어난 제품 품질을 보장함으로써 각광을 받고 있습니다. AI 주도 설계 자동화 등의 신흥 하위 부문은 설계 사이클을 가속화하고, 보다 복잡한 반도체 아키텍처의 작성을 가능하게 함으로써 시장에 혁명 이러한 하위 부문은 혁신을 촉진하고 시장 출시까지의 시간을 단축함으로써 시장에 큰 영향을 미치며 궁극적으로 경쟁이 치열해지는 가운데 반도체 업계의 진화를 촉진할 것으로 예측됩니다.

시장 세분화
유형 머신러닝, 딥러닝, 자연 언어 처리, 컴퓨터 비전
제품 AI 칩, AI 소프트웨어, AI 플랫폼, AI 서비스
서비스 컨설팅, 시스템 통합, 지원 및 유지보수, 관리 서비스
기술 신경망, 퍼지 로직, 유전 알고리즘, 전문가 시스템
구성요소 하드웨어, 소프트웨어, 서비스
용도 웨이퍼 제조, 품질 관리, 예측 보전, 수율 향상, 공급망 최적화
프로세스 리소그래피, 에칭, 증착, 세척
배포 On-Premise, 클라우드, 하이브리드
최종 사용자 반도체 제조업체, 주조 제조업체, 집적 디바이스 제조업체
기능 자동화, 데이터 분석, 프로세스 최적화

주요 동향과 촉진요인 :

반도체 제조 AI 시장은 반도체 공정의 복잡화와 고효율화의 요구에 따라 강력한 성장을 이루고 있습니다. 또한, AI 기반 설계 자동화 도구의 채택은 혁신을 가속화하고 있으며, 제조업체들이 빠른 기술 발전 속도를 충족할 수 있도록 하고 있습니다. 이러한 수요로 인해 제조업체들은 수율과 처리량을 개선하기 위해 AI 솔루션을 채택하고 있습니다. 스마트 매뉴팩처링과 인더스트리 4.0으로의 전환은 공급망 관리 및 생산 공정를 최적화하기 위한 AI의 활용을 촉진하고 있습니다. 반도체 제조의 고유한 과제에 맞춘 확장 가능한 AI 솔루션을 제공할 수 있는 기업들에게 많은 기회가 주어집니다. 산업계가 환경에 대한 영향 삭감의 압력 증대에 직면하는 가운데, AI 기술은 에너지 소비와 자원 이용을 최적화하는 것으로, 보다 지속 가능한 실천에의 길을 제공합니다.

주요 억제요인과 도전 :

반도체 제조 AI 시장에는 몇 가지 중요한 억제요인과 과제가 있습니다. 제조 공정의 복잡성과 특수성이 AI 솔루션의 원활한 구현의 장벽이 되고 있습니다. 또한, 업계에는 이러한 기술을 관리·최적화할 수 있는 충분한 AI 훈련을 받은 인재가 부족하기 때문에 스킬 격차 또한 AI의 통합에는 민감한 데이터와 독점 데이터의 취급이 필요하기 때문에 데이터의 프라이버시와 보안에 대한 우려는 엄청난 과제입니다. 페이스는 진부화로 이어질 수 있으며 지속적인 업데이트와 적응이 필요하기 때문에 자원이 집중될 수 있습니다.

목차

제1장 반도체 제조 AI 시장 개요

제2장 주요 요약

제3장 시장에 관한 중요 인사이트

제4장 반도체 제조 AI 시장 전망

제5장 반도체 제조 AI 시장 전략

제6장 반도체 제조 AI 시장 규모

제7장 반도체 제조 AI 시장 규모 : 유형별

제8장 반도체 제조 AI 시장 : 제품별

제9장 반도체 제조 AI 시장 : 서비스별

제10장 반도체 제조 AI 시장 : 기술별

제11장 반도체 제조 AI 시장 : 구성 요소별

제12장 반도체 제조 AI 시장 : 용도별

제13장 반도체 제조 AI 시장 : 프로세스별

제14장 반도체 제조 AI 시장 : 전개별

제15장 반도체 제조 AI 시장 : 최종 사용자별

제16장 반도체 제조 AI 시장 : 기능별

제17장 반도체 제조 AI 시장 : 지역별

제18장 경쟁 구도

제19장 기업 프로파일

SHW
영문 목차

영문목차

AI for Semiconductor Manufacturing Market is anticipated to expand from $46.3 billion in 2024 to $192.3 billion by 2034, growing at a CAGR of approximately 15.3%. The market encompasses the integration of artificial intelligence technologies to enhance semiconductor production processes. This market focuses on optimizing yield, reducing defects, and improving efficiency through AI-driven predictive analytics, quality control, and process automation. As semiconductor complexity rises, AI adoption accelerates, driving innovations in machine learning models, real-time monitoring, and data-driven decision-making, ultimately transforming manufacturing paradigms and fostering competitive advantages.

Market Overview:

The AI for Semiconductor Manufacturing Market is characterized by distinct segments, with the process optimization segment leading the charge. This segment's dominance is attributed to the industry's relentless pursuit of efficiency and yield enhancement. Process optimization leverages AI to fine-tune manufacturing processes, reducing defects and enhancing throughput, thereby addressing the critical demand for precision and cost-effectiveness in semiconductor production. The quality control segment is also gaining prominence, driven by AI's ability to perform real-time defect detection and predictive maintenance, ensuring superior product quality. Emerging sub-segments, such as AI-driven design automation, are poised to revolutionize the market by accelerating the design cycle and enabling the creation of more complex semiconductor architectures. These sub-segments are expected to significantly impact the market by fostering innovation and reducing time-to-market, ultimately driving the semiconductor industry's evolution in an increasingly competitive landscape.

Market Segmentation
TypeMachine Learning, Deep Learning, Natural Language Processing, Computer Vision
ProductAI Chips, AI Software, AI Platforms, AI Services
ServicesConsulting, System Integration, Support and Maintenance, Managed Services
TechnologyNeural Networks, Fuzzy Logic, Genetic Algorithms, Expert Systems
ComponentHardware, Software, Services
ApplicationWafer Fabrication, Quality Control, Predictive Maintenance, Yield Improvement, Supply Chain Optimization
ProcessLithography, Etching, Deposition, Cleaning
DeploymentOn-Premises, Cloud, Hybrid
End UserSemiconductor Manufacturers, Foundries, Integrated Device Manufacturers
FunctionalityAutomation, Data Analytics, Process Optimization

Geographical Overview:

The AI for Semiconductor Manufacturing Market is experiencing varied growth across global regions, with each area presenting unique opportunities and challenges. North America leads the charge, propelled by robust investments in AI technologies and a strong semiconductor industry. The region's focus on innovation and research fuels further advancements in manufacturing processes. Europe follows closely, benefiting from a well-established semiconductor sector and significant government support for AI initiatives. The region's commitment to sustainability and efficiency drives the adoption of AI in manufacturing, enhancing productivity and reducing waste. In Asia Pacific, the market is expanding rapidly, supported by technological advancements and substantial investments in AI. Countries like China and South Korea are at the forefront, with their strong manufacturing bases and government backing. This region's focus on digital transformation is accelerating AI adoption in semiconductor production. Latin America and the Middle East & Africa are emerging markets with growing potential. In Latin America, increasing investments in AI infrastructure are driving market growth. Meanwhile, the Middle East & Africa are recognizing AI's role in enhancing manufacturing capabilities and fostering economic development.

Recent Developments:

The AI for Semiconductor Manufacturing Market has experienced noteworthy developments in recent months. Samsung Electronics announced a strategic partnership with IBM to integrate AI-driven solutions into its semiconductor manufacturing process, aiming to enhance efficiency and yield. Intel unveiled a cutting-edge AI platform designed to optimize semiconductor production, promising significant improvements in both speed and precision. TSMC, in collaboration with Google, launched an AI initiative to streamline its chip design processes, leveraging machine learning to reduce time-to-market. Meanwhile, Applied Materials acquired a prominent AI startup specializing in semiconductor analytics, enhancing its capabilities in predictive maintenance and process optimization. Finally, ASML introduced a new AI-powered lithography system that promises to revolutionize the production of advanced chips, addressing the growing demand for high-performance semiconductors. These strategic moves underscore the increasing integration of AI technologies in semiconductor manufacturing, as industry leaders seek to capitalize on AI's potential to drive innovation and efficiency.

Key Companies:

Mythic, Graphcore, Samba Nova Systems, Cerebras Systems, Si Ma.ai, Hailo, Syntiant, Groq, Lightmatter, Rain Neuromorphics, Untether AI, Flex Logix Technologies, Deep Vision, Kneron, Blaize, Enflame Technology, Tenstorrent, Wave Computing, Perceive, Koniku

Key Trends and Drivers:

The AI for Semiconductor Manufacturing Market is experiencing robust growth due to the increasing complexity of semiconductor processes and the demand for higher efficiency. Key trends include the integration of AI-powered analytics to enhance quality control and predictive maintenance, significantly reducing downtime and operational costs. Furthermore, the adoption of AI-driven design automation tools is accelerating innovation, enabling manufacturers to meet the rapid pace of technological advancements. A major driver is the rising demand for advanced semiconductors in emerging technologies such as IoT, 5G, and autonomous vehicles. This demand is pushing manufacturers to adopt AI solutions to improve yield and throughput. Additionally, the shift towards smart manufacturing and Industry 4.0 is promoting the use of AI to optimize supply chain management and production processes. Opportunities abound for companies that can provide scalable AI solutions tailored to the unique challenges of semiconductor manufacturing. As the industry faces increasing pressure to reduce environmental impact, AI technologies offer pathways to more sustainable practices by optimizing energy consumption and resource utilization. The market is poised for continuous expansion as AI becomes integral to advancing semiconductor manufacturing capabilities.

Key Restraints and Challenges:

The AI for Semiconductor Manufacturing Market encounters several significant restraints and challenges. A primary restraint is the substantial initial investment required for AI technology integration, which can deter smaller manufacturers. Additionally, the complexity and specificity of semiconductor manufacturing processes create barriers to the seamless implementation of AI solutions. There is also a notable skills gap, as the industry lacks sufficient AI-trained personnel capable of managing and optimizing these technologies. Furthermore, data privacy and security concerns present formidable challenges, as the integration of AI necessitates handling sensitive and proprietary data. Lastly, the rapid pace of technological advancements in AI can lead to obsolescence, requiring continuous updates and adaptations, which can be resource-intensive. These factors collectively pose obstacles to the widespread adoption of AI in semiconductor manufacturing.

Sources:

U.S. Department of Commerce - National Institute of Standards and Technology (NIST), European Commission - Directorate-General for Communications Networks, Content and Technology (DG CONNECT), Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), Institute of Electrical and Electronics Engineers (IEEE), American Society for Quality (ASQ), National Science Foundation (NSF), European Semiconductor Industry Association (ESIA), Japan Electronics and Information Technology Industries Association (JEITA), Korea Semiconductor Industry Association (KSIA), Taiwan Semiconductor Industry Association (TSIA), China Semiconductor Industry Association (CSIA), International Conference on Computer-Aided Design (ICCAD), Design Automation Conference (DAC), International Symposium on Quality Electronic Design (ISQED), International Solid-State Circuits Conference (ISSCC), International Electron Devices Meeting (IEDM), Association for Computing Machinery (ACM) - Special Interest Group on Design Automation (SIGDA), World Semiconductor Council (WSC), International Conference on Machine Learning (ICML)

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: AI for Semiconductor Manufacturing Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: AI for Semiconductor Manufacturing Market Outlook

5: AI for Semiconductor Manufacturing Market Strategy

6: AI for Semiconductor Manufacturing Market Size

7: AI for Semiconductor Manufacturing Market, by Type

8: AI for Semiconductor Manufacturing Market, by Product

9: AI for Semiconductor Manufacturing Market, by Services

10: AI for Semiconductor Manufacturing Market, by Technology

11: AI for Semiconductor Manufacturing Market, by Component

12: AI for Semiconductor Manufacturing Market, by Application

13: AI for Semiconductor Manufacturing Market, by Process

14: AI for Semiconductor Manufacturing Market, by Deployment

15: AI for Semiconductor Manufacturing Market, by End User

16: AI for Semiconductor Manufacturing Market, by Functionality

17: AI for Semiconductor Manufacturing Market, by Region

18: Competitive Landscape

19: Company Profiles

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기