Æ÷Åä´Ð½º Ĩ ½ÃÀå : ½ÃÀå ºÐ¼® ¹× ¿¹Ãø : À¯Çüº°, Á¦Ç°º°, ±â¼úº°, ÄÄÆ÷³ÍÆ®º°, ¿ëµµº°, Àç·á À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, ±â´Éº°, ¼³Ä¡ À¯Çüº°, µð¹ÙÀ̽ºº°(2034³â)
Photonics Chips Market Analysis and Forecast to 2034: Type, Product, Technology, Component, Application, Material Type, End User, Functionality, Installation Type, Device
»óǰÄÚµå : 1699216
¸®¼­Ä¡»ç : Global Insight Services LLC
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 469 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,750 £Ü 6,740,000
Single User License help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇϸç, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 5,750 £Ü 8,159,000
Site License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷(±¹°¡)ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,750 £Ü 9,578,000
Enterprise License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ Àü ¼¼°è ¸ðµçºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Æ÷Åä´Ð½º Ĩ ½ÃÀåÀº 2024³â 15¾ï ´Þ·¯¿¡¼­ 2034³â¿¡´Â 48¾ï ´Þ·¯·Î È®´ëµÉ Àü¸ÁÀ̸ç, ¾à 12.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº µ¥ÀÌÅÍ Àü¼Û, ¼¾½Ì, ÇÁ·Î¼¼½ÌÀ» À§ÇØ ±¤ÀÚ¸¦ Á¶ÀÛÇÏ´Â ¹ÝµµÃ¼ µð¹ÙÀ̽º¸¦ Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¨Àº ±¤ÇÐ ºÎǰ ¹× ÀüÀÚ ºÎǰÀ» ÅëÇÕÇÏ¿© °í¼Ó µ¥ÀÌÅÍ Àü¼Û°ú ¿¡³ÊÁö È¿À²À» ±âÀçÇϰí ÀÖ½À´Ï´Ù. º¸´Ù °í¼ÓÀÇ Åë½Å ³×Æ®¿öÅ© ¹× ¼±ÁøÀû ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, Æ÷Åä´Ð½º ĨÀº Åë½Å, µ¥ÀÌÅÍ ¼¾ÅÍ, ÀÇ·á µîÀÇ ºÎ¹®¿¡¼­ Áö±ØÈ÷ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­ ¹× ÁýÀûÈ­¿¡ À־ÀÇ Çõ½ÅÀÌ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, 5G, AI, ¾çÀÚ ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¿ëµµ°¡ ±â¼ú·ÂÀ» ÀçÁ¤ÀÇÇÒ Å¼¼ÀÔ´Ï´Ù.

½ÃÀå °³¿ä

Æ÷Åä´Ð½º Ĩ ½ÃÀåÀº °í¼Ó µ¥ÀÌÅÍ Àü¼Û°ú ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó °­·ÂÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Åë½Å ºÎ¹®Àº µ¥ÀÌÅÍ Àü¼Û ¼Óµµ ¹× ´ë¿ªÆøÀ» Çâ»ó½ÃŲ´Ù°í ÇÏ´Â ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, ÃֽŠÅë½Å ³×Æ®¿öÅ©¿¡ ºÒ°¡°áÇÕ´Ï´Ù. ÀÌ ¿ìÀ§¼ºÀº 5G ÀÎÇÁ¶óÀÇ Àü°³ Áõ°¡ ¹× ¼±ÁøÀû ±¤Åë½Å ±â¼ú¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó °­È­µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¼¾ÅÍ ¹× ÀÚµ¿Â÷ µîÀÇ ½ÅÈï ÇÏÀ§ ºÎ¹®Àº ±â¼¼¸¦ ¿Ã¸®°í ÀÖ¾î Æ÷Åä´Ð½º ĨÀº µ¥ÀÌÅÍ Ã³¸® ¼ÓµµÀÇ Çâ»óÀ̳ª ÀÚÀ² ÁÖÇà ±â¼úÀÇ ½ÇÇö¿¡ ºÒ°¡°áÇÕ´Ï´Ù. ÀÇ·á ºÎ¹®¿¡¼­µµ Æ÷Åä´Ð½º ĨÀÇ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ÀÇ·á¿ë ¿µ»ó ¹× Áø´Ü ÀåÄ¡¿¡¼­ ±× ´Ù¿ëµµ¼º°ú ´Ù¾çÇÑ ¿ëµµ¿¡ ´ëÇÑ ÀáÀçÀûÀÎ ¿µÇâÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ±â¼ú ¹ßÀüÀÌ ÁøÇàµÊ¿¡ µû¶ó ´Ù¾çÇÑ »ê¾÷¿¡¼­ Æ÷Åä´Ð½º ĨÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ±â¼ú Çõ½ÅÀÌ ÃËÁøµÇ¾î ½ÃÀå È®´ëÀÇ »õ·Î¿î ±æÀÌ ¿­¸± °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­
À¯Çüº° ½Ç¸®ÄÜ Æ÷Åä´Ð½º, ÀÎÈ­Àεã, ºñÈ­ °¥·ý, ´Ï¿Àºê»ê¸®Æ¬
Á¦Ç°º° ¼Û¼ö½Å±â, ±¤ ¼¾¼­, ±¤ ÁõÆø±â, ±¤ ÁýÀû ȸ·Î
±â¼ú ºÎ¹®º° µµÆÄ°ü ±â¼ú, º¯Á¶ ±â¼ú, ´ÙÁßÈ­ ±â¼ú
ÄÄÆ÷³ÍÆ®º° ·¹ÀÌÀú, °ËÃâ±â, º¯Á¶±â, µµÆÄ·Î
¿ëµµ ºÎ¹®º° Åë½Å, µ¥ÀÌÅͼ¾ÅÍ, ÀÇ·á »ý¸í °úÇÐ, ¼ÒºñÀÚ ÀüÀÚ, ¹æÀ§ º¸¾È, »ê¾÷ »ý»ê
Àç·á À¯Çüº° ½Ç¸®ÄÜ, InP, GaAs, LiNbO3
ÃÖÁ¾ »ç¿ëÀÚº° ÅÚ·¹ÄÞ °ø±ÞÀÚ, µ¥ÀÌÅͼ¾ÅÍ ¿î¿µÀÚ, ÀÇ·á ±â°ü, ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º Á¦Á¶¾÷ü, »ê¾÷¿ë Á¦Á¶¾÷ü, ¹æÀ§ ±â°ü
±â´É¼ºº° ¼¾½Ì, µ¥ÀÌÅÍ Àü¼Û, ½ÅÈ£ ó¸®
¼³Ä¡ À¯Çüº° ¿ÂĨ, ¿ÀÇÁĨ
ÀåÄ¡º° ±¤ ½ºÀ§Ä¡, ±¤ ¶ó¿ìÅÍ, ±¤Æ®·£½Ã¹ö

Æ÷Åä´Ð½º ĨÀº Åë½Å, µ¥ÀÌÅͼ¾ÅÍ, ÀÇ·á µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ´Ù¾çÇÑ ½ÃÀå Á¡À¯À²À» ¾ò°í ÀÖ½À´Ï´Ù. Åë½Å ºÎ¹®Àº °í¼Ó µ¥ÀÌÅÍ Àü¼Û ¼ö¿ä·ÎºÎÅÍ ÇýÅÃÀ» ¹Þ¾Æ Å« °ßÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, µ¥ÀÌÅͼ¾ÅÍ ºÎ¹®Àº È¿À²ÀûÀÌ°í °í¼º´É ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÎ¹®µµ ÁÖ¸ñÇÒ ¸¸ÇÑ Ã¤¿ë ºÎ¹®À¸·Î¼­ ºÎ»óÇϰí ÀÖÀ¸¸ç, ¼±ÁøÀû Áø´Ü ¹× Ä¡·á ¿ëµµ¿¡ Æ÷Åä´Ð½º ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Áö¿ªÀûÀ¸·Î´Â ºÏ¹Ì°¡ ±â¼ú Çõ½Å¿¡ ÀÇÇØ ÁÖµµÀû ÁöÀ§¸¦ À¯ÁöÇϰí ÀÖ´Â ÇÑÆí, ¾Æ½Ã¾ÆÅÂÆò¾çÀº Æ÷Åä´Ð½º Á¦Á¶ ¹× ¿¬±¸ÀÇ °ÅÁ¡À¸·Î¼­ ±Þ¼ÓÈ÷ È®´ëÇϰí ÀÖ½À´Ï´Ù. °æÀï ±¸µµÀÇ Æ¯Â¡À¸·Î ÀÎÅÚ, IBM, ½Ã½ºÄÚ¿Í °°Àº ±âÁ¸ ÁøÃâ±â¾÷ÀÌ Á¸ÀçÇϸç, ÀÌ·¯ÇÑ ÁøÃâ±â¾÷Àº ¿¬±¸ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ½Ç½ÃÇÏ¿© Á¦Ç°ÀÇ Çõ½Å°ú °­È­¸¦ µµ¸ðÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ºÏ¹Ì¿Í À¯·´¿¡¼­´Â ±ÔÁ¦ÀÇ ¿µÇâÀÌ Ç¥ÁØÈ­¿Í ¾ÈÀü¿¡ ÁýÁßµÇ¾î ½ÃÀå ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÇâÈÄ Æ÷Åä´Ð½º Ĩ ½ÃÀåÀº ÀΰøÁö´É ¹× »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó °­·ÂÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ±×·¯³ª ³ôÀº Á¦Á¶ ºñ¿ë°ú ±â¼úÀû º¹À⼺°ú °°Àº ¹®Á¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°¿¡µµ ºÒ±¸ÇÏ°í Æ÷Åä´Ð ÁýÀûÈ­¿Í ¼ÒÇüÈ­ÀÇ ÁøÀüÀ¸·Î ½ÃÀå È®´ëÀÇ Å« ±âȸ°¡ ¿­¸± °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ

Æ÷Åä´Ð½º Ĩ ½ÃÀåÀº ±¤Åë½Å ±â¼úÀÇ Áøº¸¿Í °í¼Ó µ¥ÀÌÅÍ Àü¼Û ¼ö¿äÀÇ ±ÞÁõ¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀÇ Çʿ伺 ¶§¹®¿¡ µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ Æ÷Åä´Ð½º ĨÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ Å« µ¿ÇâÀÔ´Ï´Ù. »ê¾÷ÀÌ Ä£È¯°æ ±â¼ú·Î ¿Å°Ü°¡´Â µ¿¾È Æ÷Åä´Ð½º ĨÀº ±âÁ¸ÀÇ ÀüÀÚ ºÎǰÀ» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¿É¼ÇÀ» Á¦°øÇÏ¿© ¸Å·ÂÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ 5G ³×Æ®¿öÅ©ÀÇ ±Þ¼ÓÇÑ È®´ëµµ µ¹Ç³ÀÌ µÇ°í ÀÖÀ¸¸ç, °í´ë¿ªÆø°ú ´ë±â ½Ã°£ ´ÜÃàÀ» Áö¿øÇϴ ÷´Ü Æ÷Åä´Ð½º ĨÀÇ ÅëÇÕÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÇ·á ºÎ¹®µµ ±Þ¼ºÀåÇÏ´Â ½ÃÀå¿¡¼­ Æ÷Åä´Ð½º ĨÀº ÀÇ·á Áø´Ü ¹× À̹Ì¡ ±â¼ú¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ Çõ½ÅÀº ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ »ê¾÷ÀÇ ÀÚÀ²ÁÖÇàÂ÷·ÎÀÇ ÀüȯÀº LiDAR ½Ã½ºÅÛ°ú ADAS(¼±Áø¿îÀüÁö¿ø½Ã½ºÅÛ)¿¡ ÇʼöÀûÀÎ Æ÷Åä´Ð½º Ĩ¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Æ÷Åä´Ð½º¸¦ ±â¹ÝÀ¸·Î ÇÑ ¾çÀÚ ÄÄÇ»ÆÃ °³¹ß¿¡´Â »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ ÀÖÀ¸¸ç Àü·Ê¾ø´Â ó¸® ´É·ÂÀÌ ±â´ëµÇ°í ÀÖ½À´Ï´Ù. º¸´Ù ºü¸£°í È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, Æ÷Åä´Ð½º ĨÀÇ ±â´É °­È­¸¦ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ´Â ±â¾÷ÀÌ ½ÃÀåÀ» ¼±µµÇϴ ż¼¸¦ Á¤ºñÇϰí ÀÖ½À´Ï´Ù.

¾ïÁ¦ ¹× °úÁ¦

Æ÷Åä´Ð½º Ĩ ½ÃÀåÀº ¸î °¡Áö Áß¿äÇÑ ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ¹× °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ °úÁ¦ Áß Çϳª´Â ÁÖ·Î ÇÊ¿ä·Î ÇÏ´Â ¼±ÁøÀû ±â¼ú°ú Àç·á¿¡ ±âÀÎÇÏ´Â ³ôÀº Á¦Á¶ ºñ¿ëÀ̸ç, À̰ÍÀÌ Áß¼Ò±â¾÷ÀÇ ½ÃÀå Âü°¡¸¦ ¸·´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, Æ÷Åä´Ð½º Ĩ°ú ±âÁ¸ÀÇ ÀüÀÚ ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÇ º¹À⼺ÀÌ ±â¼úÀûÀÎ À庮ÀÌ µÇ¾î, º¸±ÞÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ÷Åä´Ð½ºÀÇ Àü¹® Áö½Ä¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¿ë ³ëµ¿·ÂÀ» »óȸÇϰí Àֱ⠶§¹®¿¡ ½ÃÀåÀº ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·¿¡µµ Á÷¸éÇϰí ÀÖ¾î ÀáÀçÀûÀÎ ÇÁ·ÎÁ§Æ®ÀÇ Áö¿¬À¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ÔÁ¦ À庮À̳ª ±¹Á¦ ±Ô°Ý Áؼö¿¡´Â ½Ã°£°ú ºñ¿ëÀÌ ¼Ò¿äµÇ¾î ±â¼ú Çõ½Å°ú ½ÃÀå ÁøÀÔ ¼Óµµ¿¡ ¿µÇâÀ» ÁÙ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ±â¼ú Áøº¸ ¼Óµµ°¡ ºü¸£±â ¶§¹®¿¡ ±â¾÷µéÀº °æÀïÀ» À¯ÁöÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ Áö¼ÓÀûÀ¸·Î ÅõÀÚÇØ¾ß Çϸç ÀÚ¿ø°ú ¿¹»êÀ» ¾Ð¹ÚÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â Æ÷Åä´Ð½º Ĩ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¿Í Á¢±Ù¼º¿¡ Á¾ÇÕÀûÀ¸·Î ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå °³¿ä

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå¿¡ °üÇÑ Áß¿ä ÀλçÀÌÆ®

Á¦4Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå Àü¸Á

Á¦5Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå Àü·«

Á¦6Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå ±Ô¸ð

Á¦7Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : À¯Çüº°

Á¦8Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : Á¦Ç°º°

Á¦9Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ±â¼úº°

Á¦10Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦11Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ¿ëµµº°

Á¦12Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : Àç·á À¯Çüº°

Á¦13Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦14Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ±â´Éº°

Á¦15Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : ¼³Ä¡ À¯Çüº°

Á¦16Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : µð¹ÙÀ̽ºº°

Á¦17Àå Æ÷Åä´Ð½º Ĩ ½ÃÀå : Áö¿ªº°

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Photonics Chips Market is anticipated to expand from $1.5 billion in 2024 to $4.8 billion by 2034, growing at a CAGR of approximately 12.3%. The market encompasses semiconductor devices that manipulate photons for data transmission, sensing, and processing. These chips integrate optical and electronic components, offering high-speed data transfer and energy efficiency. As demand for faster communication networks and advanced computing grows, photonics chips are pivotal in sectors like telecommunications, data centers, and healthcare. Innovations in miniaturization and integration are driving market expansion, with applications in 5G, AI, and quantum computing poised to redefine technological capabilities.

Market Overview:

The Photonics Chips Market is experiencing robust growth, driven by the escalating demand for high-speed data transmission and energy-efficient solutions. The telecommunications segment is the leading sector, attributed to its pivotal role in enhancing data transfer rates and bandwidth capabilities, essential for modern communication networks. This dominance is bolstered by the increasing deployment of 5G infrastructure and the rising need for advanced optical communication technologies. Emerging sub-segments such as data centers and automotive are gaining momentum, with photonics chips being integral to improving data processing speeds and enabling autonomous vehicle technologies. The healthcare sector is also witnessing a surge in demand for photonics chips, particularly in medical imaging and diagnostic devices, highlighting their versatility and potential impact across diverse applications. As technological advancements continue, the integration of photonics chips in various industries is expected to accelerate, fostering innovation and opening new avenues for market expansion.

Market Segmentation
TypeSilicon Photonics, Indium Phosphide, Gallium Arsenide, Lithium Niobate
ProductTransceivers, Optical Sensors, Optical Amplifiers, Photonic Integrated Circuits
TechnologyWaveguide Technology, Modulation Technology, Multiplexing Technology
ComponentLasers, Detectors, Modulators, Waveguides
ApplicationTelecommunications, Data Centers, Healthcare and Life Sciences, Consumer Electronics, Defense and Security, Industrial Manufacturing
Material TypeSilicon, InP, GaAs, LiNbO3
End UserTelecom Providers, Data Center Operators, Healthcare Institutions, Consumer Electronics Manufacturers, Industrial Manufacturers, Defense Organizations
FunctionalitySensing, Data Transmission, Signal Processing
Installation TypeOn-chip, Off-chip
DeviceOptical Switches, Optical Routers, Optical Transceivers

Photonics chips are witnessing a diversified market share distribution across various applications, including telecommunications, data centers, and healthcare. The telecommunications sector is a significant driver, benefiting from the demand for high-speed data transmission. Meanwhile, the data center segment is capitalizing on the need for efficient, high-performance computing solutions. The healthcare sector is also emerging as a notable area of adoption, leveraging photonics technology for advanced diagnostic and therapeutic applications. Geographically, North America maintains a leadership position due to technological innovation, while Asia-Pacific is rapidly expanding as a hub for photonics manufacturing and research. The competitive landscape is characterized by the presence of established players such as Intel, IBM, and Cisco, who are investing heavily in R&D to innovate and enhance product offerings. Regulatory influences, particularly in North America and Europe, are focusing on standardization and safety, which are pivotal in shaping market dynamics. Looking forward, the photonics chips market is poised for robust growth, driven by the increasing integration of artificial intelligence and the Internet of Things (IoT). However, challenges such as high manufacturing costs and technical complexities remain. Despite these hurdles, advancements in photonic integration and miniaturization are expected to unlock significant opportunities for market expansion.

Geographical Overview:

The photonics chips market is witnessing remarkable growth across various regions, each displaying unique characteristics. In North America, the market is driven by technological advancements and significant research investments. The presence of leading tech companies accelerates innovation in photonics technology. Europe is also a strong contender, with substantial funding in photonics research and development. The region's focus on sustainable technologies enhances market growth. In Asia Pacific, the market is expanding rapidly due to increased demand for high-speed communication and data processing. Government initiatives supporting photonics research further bolster the market. Latin America is emerging as a potential market with growing investments in telecommunication infrastructure. The region's focus on modernizing communication networks propels market expansion. The Middle East & Africa are gradually recognizing the importance of photonics chips in advancing digital infrastructure. Investments in smart city projects and telecommunication networks are driving market growth. These regions are poised to become significant players in the global photonics chips market, offering lucrative opportunities for stakeholders.

Recent Developments:

The photonics chips market has been vibrant with several key developments in the past quarter. Intel has announced a strategic partnership with Lightwave Logic to accelerate the integration of photonics chips in data centers, aiming to enhance data transmission speeds and energy efficiency. In a significant merger, Acacia Communications, a leader in optical interconnect products, has been acquired by Cisco to bolster its photonics capabilities and expand its market presence. Meanwhile, IBM has launched a new line of photonics chips designed to revolutionize high-performance computing, promising to reduce latency and increase bandwidth. The European Commission has introduced new regulatory frameworks to support the development and standardization of photonics technologies, aiming to position Europe as a leader in this field. Lastly, a consortium led by Huawei has invested heavily in research and development to innovate photonics chips for 5G infrastructure, focusing on improving connectivity and reducing operational costs. These developments highlight the dynamic nature of the photonics chips market, with significant investments and strategic collaborations shaping its future trajectory.

Key Trends and Drivers:

The photonics chips market is experiencing robust growth, fueled by advancements in optical communication technologies and the burgeoning demand for high-speed data transmission. The increasing adoption of photonics chips in data centers, driven by the need for energy-efficient solutions, is a significant trend. As industries shift towards greener technologies, photonics chips offer a sustainable alternative to traditional electronic components, enhancing their appeal. Another driver is the rapid expansion of the 5G network, which necessitates the integration of advanced photonics chips to support higher bandwidth and reduced latency. The healthcare sector is also a burgeoning market, with photonics chips playing a crucial role in medical diagnostics and imaging technologies. Innovations in silicon photonics are further accelerating market growth, offering cost-effective and scalable solutions. Moreover, the automotive industry's transition towards autonomous vehicles is creating demand for photonics chips, essential for LiDAR systems and advanced driver-assistance systems (ADAS). Emerging opportunities lie in the development of photonics-based quantum computing, which promises unprecedented processing power. Companies investing in research and development to enhance photonics chip capabilities are poised to lead the market, as the demand for faster and more efficient data processing continues to rise.

Restraints and Challenges:

The photonics chips market contends with several pivotal restraints and challenges. One significant challenge is the high production cost, primarily due to the sophisticated technology and materials required, which can deter smaller companies from entering the market. Additionally, the complexity of integrating photonics chips with existing electronic systems poses a technological barrier, slowing widespread adoption. The market also faces a shortage of skilled professionals, as the demand for expertise in photonics outpaces the available workforce, leading to potential project delays. Furthermore, regulatory hurdles and compliance with international standards can be time-consuming and costly, affecting the speed of innovation and market entry. Lastly, the rapid pace of technological advancements means that companies must continuously invest in research and development to stay competitive, which can strain resources and budgets. These challenges collectively impact the growth trajectory and accessibility of the photonics chips market.

Key Companies:

Ayar Labs, Rockley Photonics, DustPhotonics, Skorpios Technologies, Sicoya, Lightwave Logic, Elenion Technologies, Alpes Lasers, Luminous Computing, Optoscribe, Luna Innovations, NeoPhotonics, Anello Photonics, Optical Micro Machines, Kaiam Corporation, Infinera, Photonic Systems, Chromacity, ColorChip, Photon Design, POET Technologies, Cailabs, Prysmian Group, Genalyte, SiLC Technologies, EFFECT Photonics, Hewlett Packard Enterprise, Oclaro, Quantifi Photonics, Ciena, Avo Photonics, FiconTEC, Fujitsu Optical Components, EXFO, Lumentum, Finisar, LightCounting, Photonics Media

Sources:

U.S. Department of Energy - Office of Science, European Commission - Directorate-General for Communications Networks, Content and Technology (DG CONNECT), National Institute of Standards and Technology (NIST), Photonics21, International Society for Optics and Photonics (SPIE), Institute of Electrical and Electronics Engineers (IEEE) Photonics Society, Optical Society of America (OSA), European Photonics Industry Consortium (EPIC), International Commission for Optics (ICO), International Telecommunication Union (ITU), Fraunhofer Institute for Photonic Microsystems (IPMS), Massachusetts Institute of Technology (MIT) - Research Laboratory of Electronics, Stanford University - Ginzton Laboratory, University of California, Santa Barbara - Institute for Energy Efficiency, Technical University of Denmark - Department of Photonics Engineering, Photonics West Conference, European Conference on Optical Communication (ECOC), IEEE Photonics Conference, CLEO - Conference on Lasers and Electro-Optics, European Photonics Venture Forum

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: Photonics Chips Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: Photonics Chips Market Outlook

5: Photonics Chips Market Strategy

6: Photonics Chips Market Size

7: Photonics Chips Market , by Type

8: Photonics Chips Market , by Product

9: Photonics Chips Market , by Technology

10: Photonics Chips Market , by Component

11: Photonics Chips Market , by Application

12: Photonics Chips Market , by Material Type

13: Photonics Chips Market , by End User

14: Photonics Chips Market , by Functionality

15: Photonics Chips Market , by Installation Type

16: Photonics Chips Market , by Device

17: Photonics Chips Market , by Region

18: Competitive Landscape

19: Company Profiles

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â