¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå ºÐ¼® ¹× ¿¹Ãø(-2034³â) : À¯Çü, Á¦Ç°, ¼­ºñ½º, ±â¼ú, ±¸¼º¿ä¼Ò, ¿ëµµ, Àç·á À¯Çü, µð¹ÙÀ̽º, ÃÖÁ¾»ç¿ëÀÚ, ±â´É
Space Semiconductor Market Analysis and Forecast to 2034: Type, Product, Services, Technology, Component, Application, Material Type, Device, End User, Functionality
»óǰÄÚµå : 1699083
¸®¼­Ä¡»ç : Global Insight Services LLC
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 412 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,750 £Ü 6,740,000
Single User License help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇϸç, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 5,750 £Ü 8,159,000
Site License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷(±¹°¡)ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,750 £Ü 9,578,000
Enterprise License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ Àü ¼¼°è ¸ðµçºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀåÀº 2024³â 13¾ï ´Þ·¯¿¡¼­ 2034³â±îÁö 21¾ï ´Þ·¯·Î È®´ëµÇ¾î ¿¬Æò±Õ ¾à 4.9%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â À§¼ºÅë½Å, ³»ºñ°ÔÀ̼Ç, Áö±¸ °üÃø°ú °°Àº ¿ìÁÖ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇØ ¼³°èµÈ ¹ÝµµÃ¼°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ºÎǰÀº ¹æ»ç¼±°ú °¡È¤ÇÑ Á¶°Ç¿¡ ´ëÇÑ ³»¼ºÀ» °®µµ·Ï ¼³°èµÇ¾î ¿ìÁÖ ÀÓ¹«¿¡¼­ ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù. Àü ¼¼°è ¿¬°á¼º°ú ±¹¹æ ¼ö¿ä·Î ÀÎÇØ À§¼º ¹èÄ¡°¡ °¡¼ÓÈ­µÊ¿¡ µû¶ó ÷´Ü ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀº ¿ìÁÖ Å½»ç ¹× »ó¾÷¿ë À§¼º ³×Æ®¿öÅ©ÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸»çÇ׿¡ ´ëÀÀÇϱâ À§ÇØ ¼ÒÇüÈ­, ¿¡³ÊÁö È¿À²¼º ¹× ÄÄÇ»ÆÃ ¼º´É Çâ»ó¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä:

¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀåÀº Åë½Å, Áö±¸ °üÃø, Ç×¹ý, °úÇÐŽ»ç ºÐ¾ß·Î ±¸ºÐµÇ´Â °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß´Â À§¼º ±â¹Ý ÀÎÅÍ³Ý ¼­ºñ½º¿Í ¾ÈÀüÇÑ ±º¿ë Åë½Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÁÖ¿ä Ä«Å×°í¸®·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â À§¼ºÅë½Å ´É·Â°ú ´ë¿ªÆø È¿À²¼ºÀ» ³ôÀÌ´Â RF ¹× ¸¶ÀÌÅ©·ÎÆÄ ±â¼úÀÇ ¹ßÀü¿¡ ±âÀÎÇÕ´Ï´Ù. Å¥ºê»û°ú ÃʼÒÇü À§¼ºÀ» À§ÇÑ ¼ÒÇüÈ­ ¹ÝµµÃ¼¿Í °°Àº ½ÅÈï ÇÏÀ§ ºÎ¹®Àº ´Ù¾çÇÑ ¿ìÁÖ ÀÓ¹«¿¡ ºñ¿ë È¿À²ÀûÀ̰í À¯¿¬ÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ½ÃÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. »ó¾÷ ¹× ¿¬±¸ ¸ñÀûÀ¸·Î ¿ìÁÖ ±â¼úÀÇ ½Å¼ÓÇÑ ¹èÄ¡¿Í Á¢±Ù¼ºÀ» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®¿¡ ±× ÀáÀçÀû ¿µÇâ·ÂÀº ¸Å¿ì Å®´Ï´Ù. ¶ÇÇÑ, ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ¹æ»ç¼± °æÈ­ ºÎǰ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, °¡È¤ÇÑ ¿ìÁÖ È¯°æ¿¡¼­ÀÇ ½Å·Ú¼º°ú ¼ö¸íÀ» º¸ÀåÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¿ìÁÖ Å½»ç ¹× Åë½ÅÀÇ º¹À⼺À» ÇØ°áÇϱâ À§ÇÑ Çõ½Å°ú ź·Â¼ºÀ» ÇâÇÑ ½ÃÀåÀÇ ±ËÀûÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­
À¯Çü ÁýÀûȸ·Î, µð½ºÅ©¸®Æ® ¹ÝµµÃ¼, ±¤ÀüÀÚ, ¼¾¼­
Á¦Ç° ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­, Æ®·£½Ã¹ö, ÁõÆø±â, ÄÁ¹öÅÍ, ¸Þ¸ð¸® Ĩ, Àü·Â °ü¸® IC, RF µð¹ÙÀ̽º
¼­ºñ½º ¼³°è ¼­ºñ½º, Å×½ºÆ® ¹× °ËÁõ, Á¦Á¶ ¼­ºñ½º, ÄÁ¼³ÆÃ ¼­ºñ½º
񃬣 CMOS, BiCMOS, SiGe, SOI, GaN, GaAs, InP
±¸¼º¿ä¼Ò ¾Æ³¯·Î±× ºÎǰ, µðÁöÅÐ ºÎǰ, È¥ÇÕ ½ÅÈ£ ºÎǰ, ±¤ ºÎǰ
¿ëµµ À§¼ºÅë½Å, Áö±¸ °üÃø, Ç×¹ý, °úÇÐŽ»ç, ±º»ç/¹æÀ§, ¹Î°£¿ìÁÖ
Àç·á À¯Çü ½Ç¸®ÄÜ, °¥·ýºñ¼Ò, źȭ±Ô¼Ò, ÁúÈ­°¥·ý
µð¹ÙÀ̽º Æ®·£Áö½ºÅÍ, ´ÙÀÌ¿Àµå, Á¤·ù±â, »çÀ̸®½ºÅÍ
ÃÖÁ¾»ç¿ëÀÚ Ç×°ø¿ìÁÖ, ¹æÀ§, Åë½Å, ¹Î°£±â¾÷, Á¤ºÎ±â°ü
±â´É ½ÅÈ£ ó¸®, Àü·Â °ü¸®, µ¥ÀÌÅÍ º¯È¯, Åë½Å

¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ÁÖ·Î Åë½Å ¹× À§¼º ¾ÖÇø®ÄÉÀ̼ǿ¡ ÃÊÁ¡À» ¸ÂÃá ºÎ¹®ÀÌ Áö¹èÀûÀ̸ç, Ç×¹ý ¹× Áö±¸ °üÃø°ú °ü·ÃµÈ ºÎ¹®ÀÌ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐÆ÷´Â ¿ìÁÖ ÀÓ¹«¿¡ »ç¿ëµÇ´Â °í½Å·Ú¼º, °í¼º´É ¹ÝµµÃ¼ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ´Â µ¥¿¡ ±âÀÎÇÕ´Ï´Ù. ºÏ¹Ì´Â ±¤¹üÀ§ÇÑ R&D Ȱµ¿°ú Á¤ºÎ ÅõÀÚ¿¡ ÈûÀÔ¾î ½ÃÀå °³Ã´ÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀº À§¼º ¹ß»ç Áõ°¡¿Í ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °æÀï ȯ°æÀº Broadcom, Texas Instruments, STMicroelectronics¿Í °°Àº ÁÖ¿ä ±â¾÷µéÀÌ ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇØ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» ¼öÇàÇϰí ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ƯÈ÷ ºÏ¹Ì¿Í À¯·´ÀÇ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ¾÷°è Ç¥ÁØÀ» ¼³Á¤ÇÏ°í ¿ìÁÖ¿¡¼­ »ç¿ëµÇ´Â ¹ÝµµÃ¼ ºÎǰÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÇâÈÄ ¼ÒÇüÈ­ ¹× ¹æ»ç¼± °æÈ­ ±â¼úÀÇ ¹ßÀüÀ¸·Î ½ÃÀåÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç°ú ³ôÀº °³¹ß ºñ¿ë µîÀÇ °úÁ¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí ÀΰøÁö´É ÅëÇÕÀÇ ¹ßÀü°ú ¹Î°£ ¿ìÁÖ º¥Ã³ÀÇ ºÎ»óÀº À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ:

¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ¿ìÁÖ Å½»ç ¹× À§¼º ¹èÄ¡¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä Æ®·»µå´Â ¹ÝµµÃ¼ ºÎǰÀÇ ¼ÒÇüÈ­À̸ç, ÀÌ´Â º¸´Ù È¿À²ÀûÀ̰í ÄÄÆÑÆ®ÇÑ À§¼º ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ºñ¿ë È¿À²ÀûÀÎ ¹ß»ç ¹× ¿ìÁÖ ÀÓ¹«ÀÇ ±â´É °­È­¸¦ °¡´ÉÇÏ°Ô Çϱ⠶§¹®¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¹æ»ç¼± °æÈ­ ¹ÝµµÃ¼ÀÇ ¹ßÀüÀº °¡È¤ÇÑ ¿ìÁÖ È¯°æ¿¡¼­ ÀüÀÚºÎǰÀÇ ½Å·Ú¼º°ú ¼ö¸íÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº À§¼º ÀÎÅÍ³Ý ¼­ºñ½ºÀÇ º¸±Þ¿¡ ÈûÀÔ¾î °í¼Ó µ¥ÀÌÅÍ Àü¼Û ¹× Åë½Å ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â ´õ ³ôÀº ´ë¿ªÆø°ú ´õ ºü¸¥ ó¸® ¼Óµµ¸¦ Áö¿øÇÒ ¼ö Àִ ÷´Ü ¹ÝµµÃ¼ÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ìÁÖ ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ´Â ±â¼ú Çõ½Å°ú °æÀïÀ» ÃËÁøÇÏ¿© ¹ÝµµÃ¼ ±â¼úÀÇ °¡¼ÓÈ­µÈ ¹ßÀüÀ» À̲ø°í ÀÖ½À´Ï´Ù. ¿ìÁÖ¿©Çà, ´Þ Ž»ç µî »õ·Î¿î ¿ëµµ¿¡ ¸Â´Â ¹ÝµµÃ¼¸¦ °³¹ßÇÒ ¼ö ÀÖ´Â ±âȸ´Â ¹«±Ã¹«ÁøÇÕ´Ï´Ù. ÃÖ÷´Ü ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ±â¾÷µéÀº ½ÃÀå Á¡À¯À²À» Å©°Ô ³ôÀÏ ¼ö ÀÖ´Â ±âȸ¸¦ ÀâÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ìÁÖ ±â°ü°ú ¹Î°£ ±â¾÷ °£ÀÇ Çù·ÂÀº ±â¼ú °³¹ß°ú ½ÃÀå °³Ã´À» À§ÇÑ »õ·Î¿î ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. ¿ìÁÖ »ê¾÷ÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó Çõ½ÅÀûÀÎ ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© Å« ¼ºÀå Àü¸ÁÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

¾ïÁ¦¿äÀΰú °úÁ¦:

¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀåÀº ÇöÀç ¸î °¡Áö µÎµå·¯Áø ¾ïÁ¦¿äÀΰú µµÀü°úÁ¦¸¦ ¾È°í Ç×ÇØÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ °úÁ¦´Â ³ôÀº ¿¬±¸°³¹ß ºñ¿ëÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ±â¼ú Çõ½Å°ú ½Å±Ô ÁøÀÔÀ» ¹æÇØÇÏ°í °æÀï·Â°ú ´Ù¾ç¼ºÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ¼¼°è Àü¿°º´À¸·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õµµ ¶Ç ´Ù¸¥ Àå¾Ö¹°ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õÀº Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁ® »ý»ê ÀÏÁ¤°ú ¼öÀͼº¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÃÀåÀº ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Çµµ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§Çؼ­´Â ¸¹Àº ½Ã°£°ú ÀÚ¿øÀÌ ÇÊ¿äÇϸç, ÀÌ´Â Á¾Á¾ ±â¼ú ¹ßÀü°ú Á¦Ç° Ãâ½Ã ¼Óµµ¸¦ ´ÊÃß°Ô µË´Ï´Ù. ¶ÇÇÑ, ±â¼ú Çõ½ÅÀÇ ºü¸¥ ¼Óµµµµ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº Á÷¿øµéÀÇ ±â¼ú Çâ»ó°ú ±â¼ú ¾÷µ¥ÀÌÆ®¿¡ Áö¼ÓÀûÀ¸·Î ÅõÀÚÇØ¾ß Çϴµ¥, ÀÌ´Â ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ¸¶Áö¸·À¸·Î, Áö¼Ó°¡´É¼º°ú ȯ°æ ģȭÀû °üÇà¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§Çؼ­´Â »õ·Î¿î ±â¼ú°ú ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ´Â ¸¹Àº ±â¾÷¿¡°Ô À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå °³¿ä

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå¿¡ °üÇÑ ÁÖ¿ä ÀλçÀÌÆ®

Á¦4Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå Àü¸Á

Á¦5Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå Àü·«

Á¦6Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå ±Ô¸ð

Á¦7Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : À¯Çüº°

Á¦8Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : Á¦Ç°º°

Á¦9Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ¼­ºñ½ºº°

Á¦10Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ±â¼úº°

Á¦11Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦12Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ¿ëµµº°

Á¦13Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : Àç·á À¯Çüº°

Á¦14Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : µð¹ÙÀ̽ºº°

Á¦15Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦16Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : ±â´Éº°

Á¦17Àå ¿ìÁÖ¿ë ¹ÝµµÃ¼ ½ÃÀå : Áö¿ªº°

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ±â¾÷ °³¿ä

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Space Semiconductor Market is anticipated to expand from $1.3 billion in 2024 to $2.1 billion by 2034, growing at a CAGR of approximately 4.9%. The market encompasses semiconductors designed for space applications, including satellite communication, navigation, and Earth observation. These components are engineered for resilience against radiation and extreme conditions, ensuring reliability in space missions. As satellite deployment accelerates, driven by global connectivity and defense needs, demand for advanced semiconductors is surging. Innovations focus on miniaturization, energy efficiency, and enhanced computing power, catering to the evolving requirements of space exploration and commercial satellite networks.

Market Overview:

The Space Semiconductor Market is experiencing robust growth, primarily segmented into communication, Earth observation, navigation, and scientific exploration. The communication segment emerges as the leading category, driven by the escalating demand for satellite-based internet services and secure military communications. This dominance is attributable to advancements in RF and microwave technologies, which enhance satellite communication capabilities and bandwidth efficiency. Emerging sub-segments, such as miniaturized semiconductors for CubeSats and nanosatellites, are poised to revolutionize the market by offering cost-effective and flexible solutions for a variety of space missions. Their potential impact is significant, as they enable rapid deployment and increased accessibility to space technologies for commercial and research purposes. Additionally, the growing emphasis on radiation-hardened components in semiconductor manufacturing is crucial, ensuring reliability and longevity in the harsh space environment. This trend underscores the market's trajectory towards innovation and resilience in addressing the complexities of space exploration and communication.

Market Segmentation
TypeIntegrated Circuits, Discrete Semiconductors, Optoelectronics, Sensors
ProductMicroprocessors, Transceivers, Amplifiers, Converters, Memory Chips, Power Management ICs, RF Devices
ServicesDesign Services, Testing and Validation, Manufacturing Services, Consulting Services
TechnologyCMOS, BiCMOS, SiGe, SOI, GaN, GaAs, InP
ComponentAnalog Components, Digital Components, Mixed-Signal Components, Optical Components
ApplicationSatellite Communication, Earth Observation, Navigation, Scientific Exploration, Military and Defense, Commercial Space
Material TypeSilicon, Gallium Arsenide, Silicon Carbide, Gallium Nitride
DeviceTransistors, Diodes, Rectifiers, Thyristors
End UserAerospace, Defense, Telecommunications, Commercial Enterprises, Government Agencies
FunctionalitySignal Processing, Power Management, Data Conversion, Communication

The space semiconductor market is primarily dominated by segments focusing on communication and satellite applications, with a substantial contribution from sectors involved in navigation and earth observation. This distribution is largely propelled by the burgeoning demand for reliable and high-performance semiconductor components in space missions. North America remains at the forefront of market adoption, fueled by extensive research and development activities and government investments, while the Asia-Pacific region is witnessing robust growth due to increased satellite launches and technological advancements. The competitive landscape is characterized by the presence of key players such as Broadcom, Texas Instruments, and STMicroelectronics, who are continuously innovating to enhance their market positions. Regulatory frameworks, particularly in North America and Europe, are pivotal in setting industry standards and ensuring the reliability and safety of semiconductor components used in space. Looking ahead, the market is poised for significant expansion, driven by advancements in miniaturization and radiation-hardened technologies. However, challenges such as stringent regulatory requirements and high development costs persist. Nonetheless, the increasing integration of artificial intelligence and the rise of private space ventures present lucrative growth opportunities.

Geographical Overview:

The space semiconductor market is witnessing notable growth across diverse regions, each exhibiting unique characteristics. North America leads the charge, buoyed by robust government investments in space exploration and technological advancements. Key players in the region are driving innovation, enhancing the market's competitive landscape. Europe follows closely, with its strong focus on research and development in aerospace technologies. The region's emphasis on sustainability and collaboration among countries fosters a conducive environment for market expansion. The European Union's initiatives further amplify growth prospects. In the Asia Pacific, the market is experiencing rapid expansion, propelled by the region's burgeoning space programs and technological prowess. Countries like China and India are making significant strides, contributing to the region's dynamic growth trajectory. Latin America and the Middle East & Africa are emerging as promising markets. Latin America benefits from increasing investments in space infrastructure, while the Middle East & Africa recognize the strategic importance of space technologies for economic diversification and innovation.

Recent Developments:

The space semiconductor market has witnessed notable developments in recent months. Northrop Grumman announced a strategic partnership with SkyWater Technology to enhance the production of radiation-hardened semiconductors, crucial for space applications, aiming to bolster supply chain resilience. Meanwhile, Texas Instruments launched a new line of space-grade semiconductors, designed to withstand the harsh conditions of space, further solidifying its position in the market. In a significant move, Renesas Electronics Corporation acquired a US-based semiconductor firm specializing in space-qualified components, aiming to expand its portfolio and market reach. The European Space Agency (ESA) unveiled a new policy framework to encourage collaboration between European semiconductor manufacturers and space agencies, aiming to foster innovation and competitiveness in the sector. Lastly, a consortium of Asian semiconductor companies announced a joint venture to develop next-generation semiconductors for satellite communications, reflecting the growing demand for advanced technology in the rapidly evolving space industry.

Key Trends and Drivers:

The Space Semiconductor Market is experiencing robust growth driven by increasing investments in space exploration and satellite deployment. A key trend is the miniaturization of semiconductor components, enabling more efficient and compact satellite designs. This trend is vital as it allows for cost-effective launches and enhanced functionality in space missions. Furthermore, advancements in radiation-hardened semiconductors are crucial for ensuring the reliability and longevity of electronic components in harsh space environments. Another significant driver is the growing demand for high-speed data transmission and communication capabilities, fueled by the proliferation of satellite internet services. This demand is pushing the development of advanced semiconductors that can support higher bandwidth and faster processing speeds. Additionally, government initiatives and private sector investments in space technology are fostering innovation and competition, leading to accelerated advancements in semiconductor technologies. Opportunities abound in the development of semiconductors tailored for emerging applications such as space tourism and lunar exploration. Companies that can deliver cutting-edge, cost-effective solutions are poised to capture significant market share. Furthermore, the increasing collaboration between space agencies and commercial entities is opening new avenues for technological development and market expansion. As the space industry continues to evolve, the demand for innovative semiconductor solutions is set to rise, offering substantial growth prospects.

Restraints and Challenges:

The Space Semiconductor Market is currently navigating a landscape fraught with several notable restraints and challenges. A significant challenge is the high cost of research and development. This financial burden hampers innovation and entry of new players into the market, limiting competitiveness and diversity. Supply chain disruptions, exacerbated by geopolitical tensions and global pandemics, pose another obstacle. These disruptions can lead to delays and increased costs, affecting production timelines and profitability. The market also grapples with stringent regulatory requirements. Compliance with these regulations demands substantial time and resources, often slowing down the pace of technological advancement and product deployment. Furthermore, the rapid pace of technological change presents a challenge. Companies must continually invest in upskilling their workforce and updating their technologies, which can be both costly and time-consuming. Lastly, there is an increasing demand for sustainability and environmentally friendly practices. Meeting these demands requires significant investment in new technologies and processes, which can be a barrier for many companies.

Key Companies:

Max Linear, Skyworks Solutions, Qorvo, Cree, ON Semiconductor, Microsemi, Vishay Intertechnology, Diodes Incorporated, Semtech Corporation, Monolithic Power Systems, Lattice Semiconductor, Power Integrations, Rambus, Silicon Laboratories, Alpha and Omega Semiconductor, MACOM Technology Solutions, Nordic Semiconductor, Marvell Technology Group, Inphi Corporation, Tower Semiconductor

Sources:

National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Indian Space Research Organisation (ISRO), China National Space Administration (CNSA), United States Geological Survey (USGS) - Astrogeology Science Center, European Union Agency for the Space Programme (EUSPA), International Telecommunication Union (ITU), Space Data Association (SDA), International Astronautical Federation (IAF), International Academy of Astronautics (IAA), Committee on Space Research (COSPAR), International Institute of Space Law (IISL), United Nations Office for Outer Space Affairs (UNOOSA), Institute of Electrical and Electronics Engineers (IEEE) - Aerospace and Electronic Systems Society, American Institute of Aeronautics and Astronautics (AIAA), Space Generation Advisory Council (SGAC), Global Space and Technology Convention (GSTC), International Astronautical Congress (IAC), Space Symposium.

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: Space Semiconductor Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: Space Semiconductor Market Outlook

5: Space Semiconductor Market Strategy

6: Space Semiconductor Market Size

7: Space Semiconductor Market, by Type

8: Space Semiconductor Market, by Product

9: Space Semiconductor Market, by Services

10: Space Semiconductor Market, by Technology

11: Space Semiconductor Market, by Component

12: Space Semiconductor Market, by Application

13: Space Semiconductor Market, by Material Type

14: Space Semiconductor Market, by Device

15: Space Semiconductor Market, by End User

16: Space Semiconductor Market, by Functionality

17: Space Semiconductor Market, by Region

18: Competitive Landscape

19: Company Profiles

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â