The Global Market for Polymeric Materials for Advanced Electronic Packaging 2026-2036
상품코드:1863597
리서치사:Future Markets, Inc.
발행일:2025년 12월
페이지 정보:영문 466 Pages, 118 Tables, 27 Figures
라이선스 & 가격 (부가세 별도)
한글목차
첨단 전자 패키징용 고분자 재료 시장은 차세대 반도체 기술의 중요한 기반 기술로 부상하고 있습니다. 이 급속한 확대는 기존의 트랜지스터 미세화의 물리적 한계 및 고성능화, 고기능화, 에너지 절약화에 대한 지루한 수요에 의해 반도체 산업이 첨단 패키징 구조로 근본적으로 이행하고 있음을 반영하고 있습니다. 시장 성장은 고성능 컴퓨팅(HPC), 생성형 AI, 자동차 ADAS 시스템, 5G/6G 통신, AR/VR 용도, 엣지 AI 전개 등 여러 혁신적인 반도체 메가 트렌드에 의해 추진되고 있습니다. 이러한 용도는 더 큰 다이 수용, 칩렛 통합 지원, 다양한 반도체 기술의 헤테로지니어 통합 구현, 우수한 열 관리 제공을 가능하게 하는 패키징 솔루션을 요구합니다. 이러한 모든 요구 사항은 고분자 재료에 전례없는 수요를 제공합니다.
트랜지스터의 미세화가 물리적 한계에 이르는 가운데, 업계는 성능 향상의 주된 길로서 첨단 패키징으로 축족을 옮겼습니다. 이러한 전환으로 인해 고분자 재료는 단순한 밀봉 기능에서 기계적 응력 관리, 전기 신호 무결성, 방열성, 치수 안정성 및 장기 신뢰성과 같은 문제를 동시에 해결해야 하는 첨단 엔지니어링 재료로 향상되었습니다.
시장은 주로 네 가지 재료 카테고리로 구성되어 있습니다. 유전체 재료, 몰드 컴파운드, 언더필 재료, 가접합 및 박리(TBDB) 재료입니다. 유전체 재료는 폴리이미드(PI), 폴리벤조옥사졸(PBO), 벤조사이클로부텐(BCB), 에폭시아크릴 복합재료 등을 포함하며, 재배선층(RDL) 구조에서 중요한 절연층으로서 기능하여 저전기 손실의 미세 피치 상호접속을 실현합니다. 몰드 컴파운드는 기계적 보호 및 열 관리를 제공하며 AI/HPC 용도를 위한 고열 전도성 배합에 대한 주목이 높아지고 있습니다. 언더필 재료(모세관 언더필(CUF), 몰드 언더필(MUF), 비전도성 필름(NCF), 비전도성 페이스트(NCP) 등)는 칩과 기판 사이의 열 기계적 스트레스를 완화합니다. TBDB 재료는 3D 집적 및 실리콘 관통 전극(TSV) 형성에 필수적인 웨이퍼의 박화 및 후면 처리를 가능하게 합니다.
현재 모바일 및 소비자 일렉트로닉스는 시장의 수량과 수익을 독점하고 있지만, AI 워크로드를 지원하는 하이퍼스케일 데이터센터의 건설은 통신 및 인프라 부문이 가장 급속한 성장을 보이고 있습니다. 패키징 플랫폼 중에서 시스템 임패키징(SiP)은 여전히 고분자 재료의 가장 큰 소비자이지만, 2.5D/3D 패키징은 CAGR이 28-35% 이상의 가장 급성장하고 있는 부문이며, 이는 업계가 첨단 프로세서에 칩렛 아키텍처와 이기종 통합을 채용하고 있음을 반영하고 있습니다. 고분자 재료 공급망은 현저한 집중화를 나타내며 지리적 집중은 더욱 두드러집니다.
업계는 심각한 기술적 과제에 직면하고 있으며, 특히 폴리머와 실리콘 사이의 열팽창 계수(CTE) 불일치는 대형 및 얇은 패키징에서 휨과 신뢰성에 대한 우려를 야기하고 있습니다. 열 사이클 하에서 폴리머는 실리콘보다 현저하게 팽창하기 때문에 재료 개발자는 경쟁 요구 사항(저 CTE, 고열 전도율, 저유전율, 우수한 접착성, 미세 피치 패터닝 능력, 그리고 진화하는 환경 규제에 대응하기 위한 PFAS 프리 조성)의 균형을 맞추는 특정 용도를 위한 제법을 추구하고 있습니다. AI 컴퓨팅 수요 증가, 지속가능한 재료에 대한 규제 압력, 3D 이기종 통합의 기술적 복잡성으로 인해 고분자 재료는 2036년 이후에도 반도체 혁신에 필수적인 기반 기술로 자리를 잡고 있습니다.
이 보고서는 세계의 첨단 전자 패키징용 고분자 재료 시장에 대해 조사했으며, 차세대 반도체 패키징 기술을 가능하게 하는 유전체 재료, 몰드 컴파운드, 언더필 재료, 가접합 및 박리(TBDB) 솔루션을 포함한 고분자 재료 에코시스템의 상세한 분석을 제공합니다.
목차
제1장 주요 요약
배경 및 시장 개요
첨단 패키징 시장 동향
주요 시장 성장 촉진요인
시장 예측의 요약
경쟁 구도의 개요
제2장 첨단 패키징용 고분자 재료
고분자 재료의 정의
첨단 패키징용 고분자 재료의 카테고리
차세대 패키징에서 폴리머의 역할
재료 기술 동향 개요
재료 요건의 진화
첨단 패키징에 있어서 연질 재료의 과제
제3장 세계 시장 예측
세계 시장 규모 및 성장 예측(2026-2036년)
시장 점유율 : 재료별, 패키징별
고분자 재료의 수익 및 수량 예측
가격 역학 : 카테고리별
시장 예측 : 최종 시장별
시장 예측 : 패키징 플랫폼별
2.5D 및 3D 패키징의 성장
지역 시장 분석
시장 동향 및 기회
제4장 첨단 패키징용 고분자 재료 공급망
첨단 패키징 공급망 개요
재료 공급자 개요 : 재료 카테고리별
공급망 분석 및 역학
고분자 재료에 관한 규제
제5장 직접 재료 : 유전체 재료
유전체의 정의 및 개요
첨단 패키징에 있어서 유전체 재료의 용도
고분자 유전체 재료 시장 동향
재료의 세분화 및 성막 프로세스
첨단 패키징에 있어서 유전체 재료의 요건
다른 재료 유형의 비교
패널 레벨 패키징 재료의 동향
첨단 리소그래피 및 파인 피치 기능
유전체 재료 공급자 : 재료 유형별
유전체 재료의 기술 로드맵
유전체 재료 시장 예측(2026-2036년)
제6장 직접 재료 : 몰드 컴파운드
몰드 컴파운드 재료의 정의 및 개요
첨단 패키징에 있어서 몰드 컴파운드의 용도
에폭시 몰드 컴파운드(EMC) 기술
성형 언더필(MUF)과 종래의 EMC
재료의 세분화 및 성막 프로세스
첨단 패키징에 있어서 몰드 컴파운드의 요건
몰드 컴파운드 가공의 과제
열가소성 폴리머의 혁신
몰드 컴파운드 공급자 : 재료 유형별
몰드 컴파운드의 기술 로드맵
몰드 컴파운드 시장 예측(2026-2036년)
제7장 직접 재료 : 언더필 재료
언더필 재료의 정의 및 개요
첨단 패키징에 있어서의 언더필의 용도
재료의 세분화 및 가공
첨단 패키징에서 언더필 요구 사항
파인 피치 및 마이크로 범프 용도
하이브리드 본딩 대응 언더필
언더필 공급자 : 재료 유형별
언더필 재료의 기술 로드맵
언더필 재료 시장 예측(2026-2036년)
제8장 간접 재료 : 가접합 및 박리
TBDB 재료의 정의 및 개요
첨단 패키징에서 TBDB의 용도
재료의 세분화 및 용도 포맷
박리 기술 및 공정 흐름
TBDB 재료 요건 및 기술 동향
웨이퍼 박화 및 초박형 웨이퍼 핸들링
패널 레벨 패키징 TBDB 솔루션
TBDB 재료 공급업체 : 기술별
TBDB 재료의 기술 로드맵
TBDB 재료 시장 예측(2026-2036년)
제9장 새로운 재료 및 용도
패널 레벨 패키징에 있어서 고분자 재료
코 패키징 광학(CPO)의 고분자 재료
칩렛 인테그레이션 및 이기종 인테그레이션용 폴리머
첨단 열 관리 재료
지속 가능한 바이오베이스 고분자 재료
차세대 재료의 혁신
AI에 의한 재료의 설계 및 최적화
제10장 기술 과제 및 미래 전망
주요 기술적 과제
재료 특성의 평가 및 표준화
프로세스 통합의 과제
비용 및 공급망 고려 사항
환경 및 규제 준수
장래의 동향 및 기회
기술 로드맵(2026-2036년)
제11장 기업 프로파일(기업 89사의 프로파일)
제12장 부록 1
제13장 참고문헌
AJY
영문 목차
영문목차
The polymeric materials market for advanced electronic packaging has emerged as a critical enabler of next-generation semiconductor technologies. This rapid expansion reflects the semiconductor industry's fundamental shift toward advanced packaging architectures driven by the physical limitations of traditional transistor scaling and the insatiable demand for higher performance, greater functionality, and improved energy efficiency. The market's growth is propelled by several transformative semiconductor megatrends, including high-performance computing (HPC), generative AI, automotive ADAS systems, 5G/6G communications, AR/VR applications, and edge AI deployment. These applications demand packaging solutions that can accommodate larger dies, support chiplet integration, enable heterogeneous integration of diverse semiconductor technologies, and deliver superior thermal management-all requirements that place unprecedented demands on polymeric materials.
As transistor scaling reaches its physical limits, the industry has pivoted to advanced packaging as the primary path for continued performance improvements. This transition has elevated polymeric materials from simple encapsulation functions to sophisticated engineered materials that must simultaneously address mechanical stress management, electrical signal integrity, thermal dissipation, dimensional stability, and long-term reliability challenges.
The market encompasses four primary material categories: dielectric materials, mold compounds, underfills, and temporary bonding/debonding (TBDB) materials. Dielectric materials, including polyimides (PI), polybenzoxazole (PBO), benzocyclobutene (BCB), and epoxy-acrylic composites, serve as critical insulation layers in redistribution layer (RDL) structures, enabling fine-pitch interconnects with low electrical loss. Mold compounds provide mechanical protection and thermal management, with increasing emphasis on high thermal conductivity formulations for AI and HPC applications. Underfill materials-available as capillary underfills (CUF), molded underfills (MUF), non-conductive films (NCF), and non-conductive pastes (NCP)-mitigate thermomechanical stress between chips and substrates. TBDB materials enable wafer thinning and backside processing essential for 3D integration and through-silicon via (TSV) formation.
Mobile and consumer electronics currently dominate market volumes and revenues, but telecom and infrastructure segments are experiencing the fastest growth, driven by hyperscale data center buildouts supporting AI workloads. Among packaging platforms, System-in-Package (SiP) remains the largest consumer of polymeric materials, while 2.5D and 3D packaging represent the fastest-growing segments with CAGRs exceeding 28-35%, reflecting the industry's embrace of chiplet architectures and heterogeneous integration for advanced processors. The polymeric materials supply chain exhibits significant concentration. Geographic concentration is even more pronounced.
The industry faces critical technical challenges, particularly coefficient of thermal expansion (CTE) mismatch between polymers and silicon, which drives warpage and reliability concerns in large, thin packages. Since polymers expand significantly more than silicon under thermal cycling, material developers are pursuing application-specific formulations that balance competing requirements: low CTE, high thermal conductivity, low dielectric constant, superior adhesion, fine-pitch patterning capability, and increasingly, PFAS-free compositions to meet evolving environmental regulations. The convergence of AI-driven computing demands, regulatory pressures for sustainable materials, and the technical complexity of 3D heterogeneous integration positions polymeric materials as indispensable enablers of semiconductor innovation through 2036 and beyond.
"The Global Market for Polymeric Materials for Advanced Electronic Packaging 2026-2036" delivers in-depth analysis of the polymeric materials ecosystem, encompassing dielectric materials, molding compounds, underfill materials, and temporary bonding/debonding (TBDB) solutions that enable next-generation semiconductor packaging technologies.
As Moore's Law approaches physical limitations, the semiconductor industry has pivoted toward advanced packaging architectures including System-in-Package (SiP), Fan-Out Wafer Level Packaging (FOWLP), 2.5D packaging, 3D packaging, and chiplet integration. These sophisticated packaging platforms demand increasingly specialized polymeric materials capable of meeting stringent requirements for thermal management, electrical performance, mechanical reliability, and dimensional stability. This report provides essential intelligence for materials suppliers, packaging manufacturers, semiconductor fabs, OSAT providers, equipment manufacturers, and strategic investors seeking to capitalize on this high-growth market opportunity.
The report delivers comprehensive market forecasts segmented by material category (dielectric, mold compound, underfill, TBDB), packaging platform (SiP, FOWLP, 2.5D, 3D, embedded die), end-market application (mobile & consumer electronics, HPC & AI, automotive & ADAS, telecom & infrastructure, IoT & edge computing, AR/VR), and geographic region spanning the decade from 2026 through 2036. Detailed revenue and volume projections enable stakeholders to identify the fastest-growing market segments, with particular emphasis on the explosive growth anticipated in 2.5D/3D packaging driven by artificial intelligence, high-performance computing, and generative AI applications.
Technology analysis examines the evolution of material chemistries including polyimides (PI), polybenzoxazole (PBO), benzocyclobutene (BCB), epoxy-based systems, and acrylic resin composites, evaluating critical performance parameters such as coefficient of thermal expansion (CTE), dielectric constant (Dk), dissipation factor (Df), glass transition temperature (Tg), thermal conductivity, and moisture absorption. The report explores emerging innovations in panel-level packaging, co-packaged optics (CPO), sustainable bio-based polymers, and AI-driven material design optimization.
Supply chain intelligence reveals the competitive landscape dominated by Japanese suppliers commanding approximately 80% market share, with detailed profiles of over 90 companies including material suppliers, packaging service providers, semiconductor manufacturers, and equipment vendors. Market share analysis identifies the top players across each material category, highlighting strategic positioning, technological capabilities, geographic presence, and competitive advantages. The report examines critical industry trends including PFAS-free material development, carbon emission reduction initiatives, recycled material integration, and regulatory compliance requirements.
Technical challenges and solutions address the industry's most pressing concerns: CTE mismatch and warpage control in large packages, moisture sensitivity and long-term reliability, high-temperature performance for automotive applications, fine-pitch interconnect capability for advanced nodes, process integration complexity, and cost optimization strategies. Technology roadmaps project material evolution through 2036, identifying innovation opportunities and potential disruptive technologies.
Report Contents include:
Market Analysis & Forecasts
Executive summary with context, market overview, and key drivers (2026-2036)
Global market size and growth projections with 13% CAGR analysis
Market forecasts by material category: dielectrics, mold compounds, underfills, TBDB materials
Market segmentation by end-market: Mobile/Consumer, HPC/AI, Automotive/ADAS, Telecom, IoT, AR/VR
Market analysis by packaging platform: SiP, FOWLP, 2.5D, 3D, Embedded Die
Material characterization and industry standardization initiatives
Process integration challenges and cost optimization strategies
Company Profiles (91 Companies)
Detailed profiles of material suppliers, OSAT providers, semiconductor manufacturers
Product portfolios, technological capabilities, and market positioning
Geographic presence and manufacturing facilities
Strategic initiatives, R&D investments, and recent developments
Contact information and corporate structure
This comprehensive report includes detailed profiles of 91 leading companies active in the polymeric materials ecosystem for advanced electronic packaging: 3M, AEMC, AI Technology, Ajinomoto, AMD, Amkor Technology, AOI Electronics, Applied Materials, Asahi Kasei, ASE, Brewer Science, Caplinq, Chang Chun Group, Chang Wah Electromaterials, CXMT, Darbond, Deca Technologies, DELO, Dupont, Empower Materials, Epoxy Technology, Eternal Materials, Everlight Chemical, Fujifilm, GlobalFoundries, HD Microsystems, Henkel, Huahai Chengke, Hysol, IBM, Imec, Innolux, Intel, JCET, JSR, Kayaku Advanced Materials, KCC, Kyocera, MacDermid Alpha, Manz, MASTERBOND, Merck, Micro Materials, Micron, Mingkun Technologies, Minseoa, Mitsubishi Gas Chemical, Mitsui Chemicals, Murata, Nagase ChemteX, Namics and more. These profiles encompass the complete value chain from raw material suppliers and specialty chemical manufacturers to advanced packaging service providers, leading semiconductor fabs, and equipment manufacturers driving innovation in polymeric materials for next-generation electronic packaging applications.
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. Context and Market Overview
1.2. Advanced Packaging Market Trends
1.2.1. Chiplet Architecture Adoption
1.2.2. 2.5D and 3D Integration Expansion
1.2.3. High-Bandwidth Memory Proliferation
1.2.4. Panel-Level Packaging Emergence
1.3. Key Market Drivers
1.3.1. Artificial Intelligence and High-Performance Computing
1.3.2. Automotive ADAS and Electrification
1.3.3. 5G/6G Communications Infrastructure
1.3.4. Consumer Electronics Miniaturization
1.3.5. IoT and Edge Computing Expansion
1.4. Market Forecast Summary
1.5. Competitive Landscape Overview
2. POLYMERIC MATERIALS IN ADVANCED PACKAGING
2.1. Definition of Polymeric Materials
2.2. Polymeric Materials Categories in Advanced Packaging
2.2.1. Dielectric Materials
2.2.2. Mold Compounds
2.2.3. Underfill Materials
2.2.4. Temporary Bonding/Debonding Materials
2.3. Role of Polymers in Next-Generation Packaging
2.3.1. Enabling High-Density Interconnects
2.3.2. Managing Thermomechanical Stress
2.3.3. Supporting Thermal Management
2.3.4. Enabling Manufacturing Processes
2.4. Overview of Materials Technology Trends
2.4.1. Low-Loss Dielectrics for High-Frequency Applications
2.4.2. High Thermal Conductivity Mold Compounds
2.4.3. Fine-Pitch Underfill Technology
2.4.4. TBDB for Extreme Wafer Thinning
2.4.5. Computational Materials Design
2.5. Material Requirements Evolution
2.5.1. Application-Specific Requirements
2.6. Challenges of Soft Materials in Advanced Packaging
2.6.1. Coefficient of Thermal Expansion Mismatch
2.6.2. Moisture Sensitivity
2.6.3. Outgassing and Contamination
2.6.4. Thermal Stability Limitations
2.6.5. Computational Approaches to Material Development
3. GLOBAL MARKET FORECAST
3.1. Global Market Size and Growth Projections (2026-2036)
3.1.1. Growth Phase Characteristics
3.2. Market Share by Material and Package Types
3.2.1. Dielectric Materials
3.2.2. Mold Compounds
3.2.3. Underfill Materials
3.2.4. TBDB Materials
3.3. Polymeric Materials Revenue and Volume Forecast
3.3.1. Material Consumption by Package Type
3.3.2. Material Intensity Analysis
3.3.3. Volume Forecast by Material Category
3.4. Price Dynamics by Category
3.5. Market Forecast by End-Market
3.5.1. Mobile & Consumer Electronics
3.5.2. High-Performance Computing (HPC) and AI
3.5.3. Automotive and ADAS
3.5.4. Telecom and Infrastructure
3.5.5. IoT and Edge Computing
3.5.6. AR/VR Applications
3.6. Market Forecast by Packaging Platform
3.6.1. System-in-Package (SiP)
3.6.2. Fan-Out Wafer Level Packaging (FOWLP)
3.6.3. 2.5D Packaging
3.6.4. 3D Packaging and Chiplet Integration
3.6.5. Embedded Die Packaging
3.7. 2.5D/3D Packaging Growth
3.7.1. Growth Trajectory Analysis
3.7.2. Demand Drivers
3.7.3. Technology Roadmap
3.8. Regional Market Analysis
3.8.1. Asia-Pacific
3.8.2. North America
3.8.3. Europe
3.9. Market Trends and Opportunities
3.9.1. Panel-Level Packaging Commercialization
3.9.2. PFAS-Free Material Development
3.9.3. AI-Accelerated Material Discovery
3.9.4. Sustainability and Circular Economy
4. POLYMERIC MATERIALS SUPPLY CHAIN FOR ADVANCED PACKAGING
4.1. Advanced Packaging Supply Chain Overview
4.1.1. Value Chain Structure
4.1.2. Value Distribution
4.2. Overview of Material Suppliers by Material Category
4.2.1. Dielectric Materials Supplier Landscape
4.2.2. Mold Compound Supplier Landscape
4.2.3. Underfill Supplier Landscape
4.2.4. TBDB Supplier Landscape
4.3. Supply Chain Analysis and Dynamics
4.3.1. Concentration Risks
4.3.2. Chinese Supply Development
4.3.3. Vertical Integration Trends
4.4. Regulations for Polymeric Materials
4.4.1. PFAS-Free Requirements
4.4.2. CO2 Emission Standards
4.4.3. Recycled Material Integration
4.4.4. Safety Data Sheet Compliance
4.4.5. AI Implementation in Material Development
5. DIRECT MATERIALS-DIELECTRIC MATERIALS
5.1. Definition and Overview of Dielectric Materials
5.2. Application of Dielectric Materials in Advanced Packaging
5.2.1. Redistribution Layer (RDL) Formation
5.2.2. Interposer Dielectrics
5.2.3. Passivation and Buffer Layers
5.2.4. Panel-Level Packaging Applications
5.3. Polymeric Dielectric Material Market Trends
5.3.1. Low-Loss Material Development
5.3.2. Fine-Pitch Patterning Capability
5.3.3. Thickness Uniformity and Control
5.4. Material Segmentation and Deposition Processes
5.4.1. Polyimides (PI)
5.4.1.1. Chemistry and Structure
5.4.1.2. Property Profile
5.4.1.3. Photosensitive Variants
5.4.1.4. Applications and Suppliers
5.4.2. Polybenzoxazole (PBO)
5.4.2.1. Chemistry and Structure
5.4.2.2. Property Profile
5.4.2.3. Applications and Suppliers
5.4.3. Benzocyclobutene (BCB)
5.4.3.1. Chemistry and Structure
5.4.3.2. Property Profile
5.4.3.3. Applications and Suppliers
5.4.4. Epoxy-Based Dielectrics
5.4.4.1. Chemistry and Structure
5.4.4.2. Property Profile
5.4.4.3. Applications and Suppliers
5.4.5. Acrylic Resin Composites
5.4.5.1. Property Profile
5.4.5.2. Applications
5.5. Dielectric Material Requirements for Advanced Packaging
5.5.1. Electrical Properties (Low Dk, Low Df)
5.5.1.1. Dielectric Constant (Dk)
5.5.1.2. Dissipation Factor (Df)
5.5.1.3. Frequency Stability
5.5.2. Thermal Stability
5.5.2.1. Processing Compatibility
5.5.2.2. Operational Requirements
5.5.3. Mechanical Properties
5.5.3.1. Modulus and Strength
5.5.3.2. Stress and Warpage
5.5.4. CTE Control and Warpage Management
5.5.4.1. CTE Values and Mismatch
5.5.4.2. Warpage Impact
5.5.5. Adhesion and Patternability
5.6. Comparison Between Different Material Types
5.6.1. Electrical Performance Ranking
5.6.2. Processability Ranking
5.6.3. Thermal Stability Ranking
5.6.4. Cost Ranking
5.7. Panel Level Packaging Material Trends
5.7.1. Scale-Related Challenges
5.7.2. Process Adaptation Requirements
5.7.3. Current Development Status
5.8. Advanced Lithography and Fine Pitch Capabilities
5.8.1. Resolution Requirements
5.8.2. Photosensitive Dielectric Optimization
5.8.3. Via Formation Considerations
5.8.4. Equipment Requirements
5.9. Dielectric Material Suppliers by Material Type
5.9.1. Polyimide Supplier Landscape
5.9.2. PBO Supplier Landscape
5.9.3. BCB Supplier Landscape
5.9.4. Epoxy and Composite Dielectric Suppliers
5.10. Technology Roadmap for Dielectric Materials
5.11. Dielectric Material Market Forecast (2026-2036)
5.11.1. Growth Drivers
5.11.2. Segment Dynamics
5.11.3. Price Dynamics
6. DIRECT MATERIALS - MOLDING COMPOUNDS
6.1. Definition and Overview of Mold Compound Materials
6.2. Application of Mold Compounds in Advanced Packaging
6.2.1. Fan-Out Wafer Level Packaging (FOWLP)
6.2.2. System-in-Package (SiP)
6.2.3. 2.5D and 3D Packaging
6.2.4. Compression Molding Dominance
6.3. Epoxy Mold Compound (EMC) Technology
6.3.1. Base Chemistry
6.3.2. Property Profiles
6.3.3. Advanced Formulations
6.4. Molded Underfill (MUF) vs. Traditional EMC
6.4.1. MUF Concept
6.4.2. MUF Material Requirements
6.4.3. Trade-offs
6.4.4. Market Positioning
6.5. Material Segmentation and Deposition Processes
6.5.1. Compression Molding
6.5.1.1. Process Description
6.5.1.2. Advantages
6.5.1.3. Equipment and Process Considerations
6.5.2. Transfer Molding
6.5.2.1. Process Description
6.5.2.2. Applications
6.5.2.3. Limitations
6.5.3. Liquid Molding
6.5.3.1. Process Description
6.5.3.2. Applications
6.6. Mold Compound Requirements for Advanced Packaging
6.6.1. Low Warpage and CTE Control
6.6.1.1. Warpage Mechanisms
6.6.1.2. CTE Control Strategies
6.6.1.3. Warpage Management
6.6.2. High Thermal Conductivity
6.6.2.1. Thermal Requirements by Application
6.6.2.2. Thermally Conductive Filler Options
6.6.2.3. Trade-offs
6.6.3. Low Moisture Absorption
6.6.3.1. Moisture-Related Failures
6.6.3.2. Moisture Absorption Levels
6.6.3.3. Moisture Resistance Strategies
6.6.4. Filler Size and Content Optimization
6.6.4.1. Filler Loading Effects
6.6.4.2. Filler Size Distribution
6.6.5. High Reliability and Mechanical Strength
6.6.5.1. Reliability Requirements
6.6.5.2. Mechanical Property Requirements
6.7. Mold Compound Processing Challenges
6.7.1. Large Package Size Handling
6.7.1.1. Flow Completion
6.7.1.2. Warpage Control
6.7.1.3. Equipment Requirements
6.7.2. Thin Profile Requirements
6.7.2.1. Thin Package Challenges
6.7.2.2. Material Adaptations
6.7.3. High-Temperature Applications
6.7.3.1. Temperature Requirements
6.7.3.2. Material Requirements
6.7.3.3. Available Solutions
6.8. Innovations in Thermoplastic Polymers
6.8.1. Thermoplastic vs. Thermoset
6.8.2. Potential Thermoplastic Advantages
6.8.3. Challenges and Limitations
6.8.4. Current Status
6.9. Mold Compound Suppliers by Material Type
6.10. Technology Roadmap for Mold Compounds
6.11. Mold Compound Market Forecast (2026-2036)
6.11.1. Growth Drivers
6.11.2. Segment Dynamics
6.11.3. Price Dynamics
7. DIRECT MATERIALS - UNDERFILL MATERIALS
7.1. Definition and Overview of Underfill Materials
7.2. Application of Underfill in Advanced Packaging
7.2.1. Flip-Chip on Substrate (FCOS)
7.2.2. Flip-Chip on Interposer
7.2.3. Die-to-Die Stacking
7.2.4. High-Bandwidth Memory (HBM)
7.2.5. Hybrid Bonding Applications
7.3. Material Segmentation and Processing
7.3.1. Capillary Underfill (CUF)
7.3.1.1. Process Description
7.3.1.2. Material Characteristics
7.3.1.3. Advantages and Limitations
7.3.2. Molded Underfill (MUF)
7.3.2.1. Process Integration
7.3.2.2. Material Requirements
7.3.2.3. Pitch Limitations
7.3.3. Non-Conductive Film (NCF)
7.3.3.1. Process Description
7.3.3.2. Material Characteristics
7.3.3.3. Advantages and Limitations
7.3.4. Non-Conductive Paste (NCP)
7.3.4.1. Process Description
7.3.4.2. Material Characteristics
7.3.4.3. Applications
7.4. Underfill Requirements for Advanced Packaging
7.4.1. Flow Characteristics and Void Control
7.4.1.1. Flow Requirements
7.4.1.2. Void Formation Mechanisms
7.4.1.3. Void Mitigation
7.4.2. CTE Matching and Stress Management
7.4.2.1. CTE Values and Mismatch
7.4.2.2. CTE Optimization Strategies
7.4.2.3. Stress Distribution
7.4.3. Fast Cure and High Throughput
7.4.3.1. Cure Time Targets
7.4.3.2. Fast-Cure Chemistry Options
7.4.3.3. Trade-offs
7.4.4. Thermal and Electrical Performance
7.4.4.1. Thermal Conductivity
7.4.4.2. Electrical Properties
7.4.5. Reworkability Considerations
7.4.5.1. Rework Importance
7.4.5.2. Rework Methods
7.4.5.3. Material Reworkability
7.5. Fine Pitch and Micro-Bump Applications
7.5.1. Pitch Trends
7.5.2. Fine-Pitch Challenges
7.5.3. Material Approaches
7.5.4. Process Approaches
7.6. Hybrid Bonding Compatible Underfills
7.6.1. Hybrid Bonding Concept
7.6.2. Implications for Underfill
7.6.3. Remaining Material Requirements
7.6.4. Development Status
7.7. Underfill Suppliers by Material Type
7.8. Technology Roadmap for Underfill Materials
7.9. Underfill Material Market Forecast (2026-2036)