¼¼°èÀÇ Åº¼Ò³ª³ëÆ©ºê(CNT) ½ÃÀå(2026-2036³â)
The Global Carbon Nanotubes Market 2026-2036
»óǰÄÚµå : 1747987
¸®¼­Ä¡»ç : Future Markets, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 444 Pages, 192 Tables, 82 Figures
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¡Ì 1,100 £Ü 2,069,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
¡Ì 1,500 £Ü 2,822,000
PDF (Corporate License)
¡Ì 1,850 £Ü 3,480,000
PDF (Global Enterprise License)
¡Ì 2,100 £Ü 3,951,000
PDF (Global Enterprise and Subsidiaries License)


Çѱ۸ñÂ÷

ź¼Ò³ª³ëÆ©ºê(CNT) ½ÃÀåÀº ÷´Ü ¼ÒÀç »ê¾÷ ³»¿¡¼­ °¡Àå ¿ªµ¿ÀûÀÌ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ºÐ¾ß Áß Çϳª·Î, ½ÃÀå ±Ô¸ð´Â 2036³â±îÁö 50¾ï ´Þ·¯ À̻󿡼­ 250¾ï ´Þ·¯ ÀÌ»óÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ·¯ÇÑ ¿¹¿ÜÀûÀÎ ¼ºÀå ±Ëµµ´Â CNT°¡ Áö´Ñ ȹ±âÀûÀÎ °¡´É¼ºÀ» ¹Ý¿µÇÏ´Â °ÍÀ¸·Î, ÀÌ ¿øÅëÇü ź¼Ò ±¸Á¶Ã¼´Â Ź¿ùÇÑ ±â°èÀû, Àü±âÀû, ¿­Àû Ư¼ºÀ» ¹ÙÅÁÀ¸·Î ÇâÈÄ 10³â°£ ´Ù¾çÇÑ »ê¾÷¿¡ Çõ½ÅÀ» ÀÏÀ¸Å³ °ÍÀÔ´Ï´Ù.

CNT ½ÃÀåÀº Å©°Ô µÎ °¡Áö ÁÖ¿ä ¹üÁÖ·Î ³ª´µ¸ç, ÀÌ´Â ´ÙÁߺ® ź¼Ò³ª³ëÆ©ºê(MWCNTs) ¿Í ´ÜÀϺ® ź¼Ò³ª³ëÆ©ºê(SWCNTs) ÀÔ´Ï´Ù. 2036³â±îÁö MWCNTs´Â ¿©ÀüÈ÷ ½ÃÀåÀÇ ¿ìÀ§¸¦ Á¡ÇÒ °ÍÀ¸·Î º¸À̸ç, ÀÌ´Â À̵éÀÌ ´ë±Ô¸ð ÀÀ¿ë¿¡ ÀûÇÕÇÑ ¿ì¼öÇÑ ±â°èÀû °­µµ, Àü±â Àüµµ¼º, ºñ¿ë È¿À²¼ºÀ» °®Ãß°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÇÑÆí, SWCNTs´Â Ư¼öÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÇÁ¸®¹Ì¾ö °¡°ÝÀÌ Ã¥Á¤µÇ¸ç, 2036³â±îÁö 20¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. SWCNTs´Â Â÷¼¼´ë ÀüÀÚ¼ÒÀÚ, ¾çÀÚÄÄÇ»ÆÃ, ÷´Ü ¹ÙÀÌ¿ÀÀÇ·á ºÐ¾ß µî¿¡¼­ ´ÜÀÏÃþ ±¸Á¶°¡ Á¦°øÇÏ´Â µ¶º¸ÀûÀÎ ¼º´É Ư¼º ´öºÐ¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¿¡³ÊÁö ÀúÀå ºÐ¾ß´Â °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ºÐ¾ß·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Àü±âÂ÷ ¹× Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó·ÎÀÇ ±Û·Î¹ú Àüȯ¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. CNT´Â ¸®Æ¬À̿ ¹èÅ͸®¿¡¼­ ¿ì¼öÇÑ Àüµµ¼º ÷°¡Á¦·Î ÀÛ¿ëÇϸç, ±âÁ¸ ź¼Ò Àç·áº¸´Ù ´õ ÀûÀº ¾çÀ¸·Îµµ ÆÛÄÝ·¹ÀÌ¼Ç ³×Æ®¿öÅ©(percolation network)¸¦ Çü¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ź¿ùÇÑ Àü±â Àüµµ¼º°ú °æ·®¼º ´öºÐ¿¡ ´õ ºü¸¥ ÃæÀü ¼Óµµ¿Í ³ôÀº ¹èÅ͸® ¿ë·®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÇ Àü±âÂ÷ Àüȯ °¡¼ÓÈ­¿Í ´ë±Ô¸ð Àü·Â¸Á¿ë ¿¡³ÊÁö ÀúÀå ¼ö¿ä Áõ°¡¿Í ¸Â¹°·Á, CNT´Â Â÷¼¼´ë ¹èÅ͸® ±â¼ú¿¡ ÇʼöÀûÀÎ ¼ÒÀç·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. CNT °­È­ ¼ÒÀç´Â °æ·®À̸鼭µµ ¶Ù¾î³­ °­µµ¸¦ À¯ÁöÇÏ´Â ±¸Á¶ ºÎǰÀ» ÅëÇØ Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ »ê¾÷À» Çõ½ÅÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç ´öºÐ¿¡ Ç×°ø±â Á¦Á¶¾÷ü´Â Áß·®À» ´ëÆø ÁÙÀ̸鼭µµ ¿¬·á È¿À²¼º°ú ¾ÈÀü¼ºÀ» µ¿½Ã¿¡ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °Ç¼³ »ê¾÷¿¡¼­´Â CNT°¡ °­È­µÈ ÄÜÅ©¸®Æ® ¹× ÄÚÆÃ ¼ÒÀç°¡ ÀÌÀü¿¡´Â ºÒ°¡´ÉÇß´ø ¼öÁØÀÇ ³»±¸¼º°ú ±â´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀüÀÚ ºÐ¾ß¿¡¼­µµ CNT´Â Ç÷º¼­ºí µð½ºÇ÷¹ÀÌ, Åõ¸í Àüµµ Çʸ§, ¼¾¼­, ¾çÀÚÄÄÇ»ÆÃ ±â¼ú µî¿¡¼­ Å« °¡´É¼ºÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. CNTÀÇ µ¶Æ¯ÇÑ 1Â÷¿ø ±¸Á¶¿Í Á¶Àý °¡´ÉÇÑ ÀüÀÚÀû Ư¼ºÀº Â÷¼¼´ë Æ®·£Áö½ºÅÍ, ¸Þ¸ð¸® ¼ÒÀÚ, ¿þ¾î·¯ºí ÀüÀÚ±â±â¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇÕ´Ï´Ù.

CNT »ý»ê ¹æ½Ä ¶ÇÇÑ ±Ùº»ÀûÀÎ ÀüȯÀ» ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÇöÀç±îÁö´Â È­Çбâ»óÁõÂø¹ý(CVD)ÀÌ ´ë·® »ý»ê¼º°ú ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ÁÖ¿ä ±â¼ú·Î ÀÚ¸® Àâ°í ÀÖÁö¸¸, 2036³â±îÁö´Â ÇÃ·ÎÆÃ Ã˸ŠCVD, ÇöóÁ ±â¹Ý °øÁ¤, ±×¸®°í CO©ü Æ÷Áý ¹× Æó±â¹° ¿ø·á¸¦ Ȱ¿ëÇÑ Ä£È¯°æ ÇÕ¼º¹ý µîÀÇ Ã·´Ü Á¦Á¶ ±â¼úÀÌ µîÀåÇÏ¸ç »ý»ê ºñ¿ë ±¸Á¶¿Í ȯ°æ Áö¼Ó °¡´É¼º¿¡ Çõ½ÅÀ» ÀÏÀ¸Å³ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

LGÈ­ÇÐ, OCSiAl°ú °°Àº ÁÖ¿ä ±â¾÷µéÀº ¹èÅ͸®, ÀüÀÚ¼ÒÀÚ, º¹ÇÕ¼ÒÀç ºÐ¾ßÀÇ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê ´É·ÂÀ» ´ë´ëÀûÀ¸·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù.¶ÇÇÑ, ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×À» CNT ÇÕ¼º¿¡ µµÀÔÇÔÀ¸·Î½á, ³ª³ëÆ©ºêÀÇ ³ª¼± ±¸Á¶, Á÷°æ, ¹°¼º Á¦¾î°¡ Á¤¹ÐÇÏ°Ô °¡´ÉÇØÁö°í ÀÖÀ¸¸ç, ÀÌ´Â °ú°Å¿¡´Â ´ë·® »ý»êÀÌ ºÒ°¡´ÉÇß´ø ÀÀ¿ë ºÐ¾ß ¸ÂÃãÇü CNT °³¹ßÀ» ½ÇÇöÇÏ´Â µ¥ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀ» ÅëÇØ »ý»ê ±Ô¸ð°¡ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÏ°í ºñ¿ëÀÌ °¨¼ÒÇÔ¿¡ µû¶ó, ź¼Ò³ª³ëÆ©ºê´Â ¹Ì·¡ ±â¼úÀÇ ÇÙ½É ±â¹Ý ¼ÒÀç·Î ÀÚ¸® ÀâÀ» °ÍÀÔ´Ï´Ù. Áï, ½ÇÇè½Ç ¼öÁØÀÇ Çõ½ÅÀÌ »ó¾÷Àû Çö½Ç·Î ÀüȯµÇ´Â °úÁ¤¿¡¼­ CNT´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿¡³ÊÁö, ÀüÀÚ, ¹ÙÀÌ¿À ±â¼ú µî ´Ù¾çÇÑ ºÐ¾ßÀÇ ±³µÎº¸ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ƯÈ÷ CNT¿Í ÀΰøÁö´É, ·Îº¸Æ½½º, Áö¼Ó °¡´ÉÇÑ Á¦Á¶ ±â¼úÀÇ À¶ÇÕÀº ¡®Áö´ÉÇü ¼ÒÀ硯¶ó´Â »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» ¿­¸ç, ÇâÈÄ 10³â°£ ±â¼ú ȯ°æÀ» Á¤ÀÇÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°èÀÇ Åº¼Ò³ª³ëÆ©ºê(CNT) ½ÃÀåÀ» ºÐ¼®ÇÏ°í ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø, ±â¼ú ¹× »ý»ê ºÐ¼®, ¿ëµµ ¹× ½ÃÀå ±âȸ, ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ź¼Ò³ª³ëÆ©ºêÀÇ °³¿ä

Á¦3Àå ź¼Ò³ª³ëÆ©ºêÀÇ ÇÕ¼º ¹× »ý»ê

Á¦4Àå ±ÔÁ¦

Á¦5Àå ź¼Ò³ª³ëÆ©ºê ƯÇã

Á¦6Àå ź¼Ò³ª³ëÆ©ºê °¡°Ý

Á¦7Àå ź¼Ò³ª³ëÆ©ºê ½ÃÀå

Á¦8Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ : ´ÙÁߺ® ź¼Ò³ª³ëÆ©ºê(141»çÀÇ ±â¾÷ ÇÁ·ÎÆÄÀÏ)

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ : ´ÜÃþ ź¼Ò³ª³ëÆ©ºê(16»çÀÇ ±â¾÷ ÇÁ·ÎÆÄÀÏ)

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ : ±âŸ À¯Çü(ÁúÈ­ºØ¼Ò ³ª³ëÆ©ºê, 2Ãþ ³ª³ëÆ©ºê µî)(±â¾÷ 5»çÇÁ·ÎÆÄÀÏ)

Á¦11Àå Á¶»ç ¹æ¹ý

Á¦12Àå Âü°í¹®Çå

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global carbon nanotubes (CNTs) market represents one of the most dynamic and rapidly expanding segments of the advanced materials industry, with market valuations projected to grow from >$5 billion to more than $25 billion by 2036. This exceptional growth trajectory reflects the transformative potential of these cylindrical carbon structures, which possess extraordinary mechanical, electrical, and thermal properties that are revolutionizing multiple industries across the next decade.

The CNT market is primarily divided into two main categories: multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). By 2036, MWCNTs are projected to maintain their dominance, driven by their superior mechanical strength, electrical conductivity, and cost-effectiveness in large-scale applications. SWCNTs, while commanding premium pricing for specialized applications, are expected to reach $2.0 billion by 2036, finding critical roles in next-generation electronics, quantum computing, and advanced biomedical applications where their unique single-layer structure provides unmatched performance characteristics.

Energy storage emerges as the fastest-growing sector, driven by the global transition to electric vehicles and renewable energy infrastructure. CNTs serve as superior conductive additives in lithium-ion batteries, creating more effective electrical percolation networks at lower weight loadings than conventional carbons, while enabling faster charge transfer and higher battery capacity through their exceptional electrical conductivity and lightweight nature. The automotive industry's accelerating shift toward electrification, coupled with grid-scale energy storage demands, positions CNTs as essential materials for next-generation battery technologies.

CNT-reinforced materials are revolutionizing aerospace and automotive applications through lightweight structural components that maintain superior strength, enabling aircraft manufacturers to achieve significant weight reductions while enhancing fuel efficiency and safety. In the construction industry, CNT-enhanced concrete and coatings provide unprecedented durability and functionality. Electronics applications showcase CNTs' potential in flexible displays, transparent conductive films, sensors, and emerging quantum computing technologies. Their unique one-dimensional structure and tunable electronic properties make them invaluable for next-generation transistors, memory devices, and wearable electronics.

The production landscape is undergoing fundamental transformation, with chemical vapor deposition (CVD) technology maintaining its dominance due to scalability and cost-effectiveness. By 2036, advanced manufacturing techniques including floating catalyst CVD, plasma-enhanced processes, and emerging green synthesis methods using captured CO2 and waste feedstocks are expected to revolutionize production economics and environmental sustainability. Major capacity expansions by industry leaders like LG Chem and OCSiAl are scaling production to meet demand growth across battery, electronics, and composite applications. The integration of artificial intelligence and machine learning in CNT synthesis is enabling unprecedented control over nanotube chirality, diameter, and properties, opening pathways to application-specific CNT variants that were previously impossible to produce at scale.

"The CNT market's future trajectory through 2036" is intrinsically linked to mega-trends including the global energy transition, space exploration initiatives, quantum computing development, and advanced manufacturing technologies. As production scales increase exponentially and costs decrease through technological breakthroughs, carbon nanotubes are positioned to become fundamental building blocks for next-generation technologies, bridging the gap between laboratory innovation and commercial reality across aerospace, automotive, energy, electronics, and emerging biotechnology sectors. The convergence of CNTs with artificial intelligence, robotics, and sustainable manufacturing represents a paradigm shift toward intelligent materials that will define the technological landscape of the next decade.

Report contents include:

The report features over 180 company profiles including 3D Strong, Birla Carbon, BNNano, BNNT, BNNT Technology Limited, Brewer Science, Bufa, C12, Cabot Corporation, Canatu, Carbice Corporation, Carbon Corp, Carbon Fly, Carbonova, CENS Materials, CHASM Advanced Materials, DexMat, Huntsman (Miralon), JEIO, LG Energy Solution, Mechnano, Meijo Nano Carbon, Molecular Rebar Design LLC, Nano-C, Nanocyl, Nanoramic Laboratories, NanoRial, NAWA Technologies, Nemo Nanomaterials, NEO Battery Materials, NoPo Nanotechnologies, NTherma, OCSiAl, PARC (Sensors), Raymor Industries, Samsung SDI (Battery), Shinko Carbon Nanotube Thermal Interface Materials, SmartNanotubes Technologies, Sumitomo Electric (Carbon Nanotube), TrimTabs, UP Catalyst, Wootz, Zeon, and Zeta Energy.

Strategic Insights Include:

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. OVERVIEW OF CARBON NANOTUBES

3. CARBON NANOTUBE SYNTHESIS AND PRODUCTION

4. REGULATIONS

5. CARBON NANOTUBES PATENTS

6. CARBON NANOTUBES PRICING

7. MARKETS FOR CARBON NANOTUBES

8. company profileS: MULTI-WALLED CARBON NANOTUBES (141 company profiles)

9. company profileS: SINGLE-WALLED CARBON NANOTUBES (16 company profiles)

10. company profileS: OTHER TYPES (Boron Nitride nanotubes, double-walled nanotubes etc.) (5 company profiles)

11. RESEARCH METHODOLOGY

12. REFERENCES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â