세계의 지속가능 화학 원료 시장(2025-2035년)
The Global Market for Sustainable Chemical Feedstocks 2025-2035
상품코드
:
1706269
리서치사
:
Future Markets, Inc.
발행일
:
2025년 04월
페이지 정보
:
영문 1,007 Pages, 455 Tables, 149 Figures
샘플 요청 목록에 추가
화학 산업은 환경 문제와 산업 공정의 탈탄소화를 배경으로 지속가능한 원료로 전환기를 맞이하고 있습니다. 차세대 화학 원료 시장은 괄목할 만한 성장세를 보이고 있으며, 생산 능력은 2025-2035년 연평균 16%의 높은 성장률을 보일 것으로 예상됩니다. 이러한 발전은 엄격한 규제 압력, 기업의 지속가능성에 대한 약속, 순환 경제 솔루션에 대한 수요 증가 등 여러 요인에 의해 촉진되고 있습니다. 기업은 리그노셀룰로오스 바이오매스(목재 및 농업 폐기물), 비리그노셀룰로오스 바이오매스(조류 및 농업 잔류물), 도시 폐기물, 이산화탄소 활용 등 다양한 재생한 탄소원을 모색하고 있습니다. 기술 혁신으로 리그닌 추출, 폐기물에서 BTX 생산, CO2를 귀중한 화학 중간체로 전환하는 등 획기적인 방법들이 등장하면서 이러한 선택은 점점 더 실행 가능한 대안이 되고 있습니다.
지속가능한 화학 원료로의 전환은 경제적으로나 기술적으로 대규모 작업이며, 2040년까지 누적 투자액은 4,400억-1조 달러로 추정되며, 2050년까지 1조 5,000억-3조 3,000억 달러에 달할 것으로 예상됩니다. 화석연료를 대체하는 대체연료에 비해 생산비용이 높고, 유가의 영향을 받기 쉽다는 점 등 경제성 문제는 여전히 남아있지만, 잠재적인 보상은 큽니다. 지속가능한 원료 시장은 특수화학, 고분자, 플라스틱, 식품첨가제, 화장품, 의약품 등 다양한 분야의 화학 생산에 혁명을 가져올 것으로 예상됩니다. 성공 여부는 효율적인 전환 기술 개발, 지속가능한 조달 방법 확보, 장기 공급 계약 체결, 복잡한 규제 환경 극복에 달려 있습니다. 브랜드와 소비자가 점점 더 친환경적인 솔루션을 요구하고 있는 가운데, 차세대 원료는 산업의 탄소 배출을 줄이고, 폐기물을 가치 있는 자원으로 전환하며, 친환경 화학제품에 대한 세계 수요 증가에 대응할 수 있는 보다 지속가능한 산업 생태계를 지원하는 중요한 길을 제시합니다.
세계의 지속가능 화학 원료 시장에 대해 상세하게 분석하고, 기존 화석 유래 원료로부터 혁신적이며 지속가능한 대체 원료로의 이동을 촉진하고 있는 기술 상황, 경제정세, 규제 상황을 검증하여 전해드립니다.
목차
제1장 개요
화학 산업에서 신시대의 필요성
화학의 신시대를 정의한다.
세계의 촉진요인과 동향
화학 산업의 변화하는 상황
화학 신시대에서 신흥 시장과 변혁 시장
제2장 원료
지속가능 원료 : 신시대 기반
지속가능 원료 옵션의 개요
화학 원료로서의 바이오매스
탄소원으로서의 CO2
폐기물 가치화
재생(그린) 수소
산업용 원료 이동 경로
제3장 그린 케미스트리 원리와 응용
그린 케미스트리의 12 원칙
합성에서 원자 경제와 스텝 경제
용매 삭감과 그린 용매
그린 케미스트리용 촉매
화학에서 그린 메트릭스와 수명주기 평가
특정 원료 그린 케미스트리 어프로치
제4장 화학 산업에서의 순환형 경제
순환형 경제의 원칙
화학제품에서의 순환형 디자인
케미컬 재활용 기술
화학 폐기물의 업사이클
화학 부문에서의 순환형 비즈니스 모델
순환 실현의 과제와 기회
기업
제5장 화학 프로세스의 전기화
화학 생산에서 재생 전력의 역할
전기화학 합성
플라즈마 화학
마이크로파를 이용한 화학
화학제품 생산에서 Power-to-X 기술의 통합
제6장 화학에서의 디지털화와 인더스트리 4.0
화학 연구에서 빅데이터와 첨단 애널리틱스
AI와 기계학습의 용도
화학 플랜트 운영에서의 디지털 트윈
공급망 투명성과 이력추적에 이용하는 블록체인
디지털화된 화학 산업에서 사이버 보안의 과제
제7장 첨단 제조 기술
연속 플로우 화학
모듈형, 분산형 제조
화학제품과 재료 3D 프린팅
첨단 프로세스 제어와 실시간 모니터링
유연하고 적응성 높은 생산 시스템
제8장 바이오리파이닝과 산업 바이오테크놀러지
바이오리파이너리 개념과 구성
리그노셀룰로오스 바이오매스 처리
조류 바이오리파이너리
업스트림 처리
발효
다운스트림 처리
처방
바이오프로세스 개발
분석 방법
생산 규모
운영 방식
숙주 생물
제9장 CO2 이용 기술
개요
CO2 비변환/변환 기술
탄소 이용 비즈니스 모델
CO2 이용 경로
변환 프로세스
CO2 유래 제품
석유회수증진에서의 CO2 이용
강화된 광화 작용
제10장 지속가능 화학용 첨단 촉매
생체 촉매 기술의 개요
생체 촉매의 유형
생산 방식과 프로세스
생체 촉매에서 신기술과 혁신
기업
제11장 합성생물학, 대사 공학
대사 공학
유전자와 DNA 합성
유전자 합성과 조립
게놈 공학
단백질/효소 공학
합성 유전체학
스트레인 구축과 최적화
스마트 바이오프로세스
샤시 오가니즘
생체 모방
지속가능 재료
로보틱스, 자동화
바이오인포매틱스와 계산 툴
이종 생물학과 확장 유전자 알파벳
바이오센서와 바이오일렉트로닉스
원료
제12장 그린 용매와 대체 반응 매체
바이오 기반 용제
전환 가능한 용매
심공정용매(DES)
산업 용도에서의 초임계 유체
무용매 반응과 메카노케미스트리
용매 선택 툴과 프레임워크
기업
제13장 폐기물 가치화와 자원 회수
도시 고형 폐기물로부터 화학제품으로의 전환
농업 폐기물과 식품 폐기물 가치화
중요 물질 추출 기술
폐수 처리와 자원 회수
광업 폐기물 가치화
기업
제14장 에너지 효율과 재생에너지의 통합
화학 공장에서 에너지 효율 대책
열회수와 핀치 분석
화학 생산에서 재생에너지원
프로세스 산업용 에너지 저장 기술
열병합발전(CHP) 시스템
산업 공생과 에너지 통합
제15장 안전성과 지속가능성 평가
그린 케미스트리 지표와 지속가능성 지표
화학 프로세스에서 수명주기 평가(LCA)
설계상 안전성 원칙
새로운 화학 기술에서 리스크의 평가와 관리
환경상 영향 평가
화학 신시대에서 사회적·윤리적 우려
제16장 규제와 정책
세계의 화학제품 규제와 진화
지속가능 화학을 추진하는 환경 정책
그린 케미스트리에 대한 장려책과 지원 메커니즘
신기술의 규제의 과제
국제 협력과 조화 구상
제17장 시장과 제품
지속가능 재료와 폴리머
지속가능 농업용 화학제품
지속가능 건축자재
지속가능 포장
그린 화장품, 퍼스널케어
바이오 기반 친환경 페인트·코팅
그린 일렉트로닉스
지속가능 텍스타일, 섬유
대체연료, 윤활유
그린 의약품, 의료
3D 프린팅용 첨단 소재
화학 설계용 AI
양자 화학의 응용
제18장 경제적 측면과 비즈니스 모델
지속가능 화학 기술의 비용 경쟁력
그린 케미스트리에 대한 투자 동향
순환형 경제에서 새로운 비즈니스 모델
시장 역학과 소비자의 선호도
지적재산에 관한 우려
사례 연구
제19장 향후 전망과 새로운 동향
바이오, 나노, IT의 융합
화학 연구개발에서의 양자 컴퓨팅
우주 기반 화학제품의 제조
인공 광합성과 태양 연료
맞춤형 온디맨드 화학제품 제조
넷 제로 배출의 달성에서 화학의 역할
순환형 경제 솔루션
AI와 디지털화의 영향
양자 화학 전망
제20장 부록
제21장 참고 문헌
KSA
영문 목차
The chemical industry is undergoing a transformative shift towards sustainable feedstocks, driven by environmental challenges and the drive to decarbonize industrial processes. The market for next-generation chemical feedstocks is experiencing significant growth, with production capacity projected to expand at a robust 16% Compound Annual Growth Rate from 2025 to 2035. This evolution is propelled by multiple factors, including stringent regulatory pressures, corporate sustainability commitments, and the growing demand for circular economy solutions. Companies are exploring diverse renewable carbon sources such as lignocellulosic biomass (wood and agricultural waste), non-lignocellulosic biomass (algae and agricultural residues), municipal waste, and carbon dioxide utilization. Technological innovations are making these alternatives increasingly viable, with breakthrough methods emerging for lignin extraction, BTX production from waste, and CO2 conversion into valuable chemical intermediates.
The transition to sustainable chemical feedstocks represents a massive economic and technological undertaking, requiring an estimated cumulative investment between US$440 billion and US$1 trillion through 2040, and potentially reaching US$1.5 trillion to US$3.3 trillion by 2050. While economic challenges persist-including higher production costs compared to fossil-based alternatives and market sensitivity to crude oil prices-the potential rewards are substantial. The sustainable feedstocks market promises to revolutionize chemical production across multiple sectors, including specialty chemicals, polymers, plastics, food additives, cosmetics, and pharmaceuticals. Success will depend on developing efficient conversion technologies, ensuring sustainable sourcing practices, creating long-term supply agreements, and navigating complex regulatory environments. As brands and consumers increasingly demand environmentally responsible solutions, next-generation feedstocks offer a critical pathway to reducing industrial carbon emissions, transforming waste into valuable resources, and supporting a more sustainable industrial ecosystem that can meet the growing global demand for eco-friendly chemical products.
"The Global Market for Sustainable Chemical Feedstocks 2025-2035" provides an in-depth analysis of the emerging sustainable chemical feedstocks market, covering the critical transformation of the global chemical industry towards more environmentally friendly and circular solutions. The report examines the technological, economic, and regulatory landscape driving the shift from traditional fossil-based feedstocks to innovative, sustainable alternatives.
Report contents include:
Comprehensive analysis of sustainable chemical feedstock technologies
Global market research covering G20 markets
Detailed examination of technological innovations, market dynamics, and future projections
Market Drivers and Trends
Feedstock Evolution
Detailed analysis of emerging sustainable feedstock sources:
Biomass (lignocellulosic and non-lignocellulosic)
Municipal and agricultural waste
CO2 utilization
Renewable hydrogen
Waste valorization technologies
Technological Innovations:
Green chemistry principles
Circular economy approaches
Advanced recycling technologies
Electrification of chemical processes
Digitalization and AI in chemical design
Synthetic biology and metabolic engineering
End-use Market Analysis:
Sustainable agriculture chemicals
Green cosmetics and personal care
Sustainable packaging
Eco-friendly paints and coatings
Alternative fuels and lubricants
Pharmaceuticals and healthcare
Advanced materials for 3D printing
Investment trends in green chemistry
Cost competitiveness analysis
New circular economy business models
Market dynamics and consumer preferences
Emerging Technologies and Future Outlook
Convergence of bio, nano, and information technologies
Quantum computing in chemical research
Space-based chemical manufacturing
Artificial photosynthesis
Personalized on-demand chemical manufacturing
Quantitative Market Projections
Forecast of chemical production capacity from next-generation feedstocks
Estimated growth rates and market valuations
Investment requirements for industrial transformation
Projected CO2 emissions reductions
Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Afyren, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Anellotech, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, BioBTX, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, Biolive, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, CelluForce, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chaincraft, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chempolis, Chitose Bio Evolution, Chiyoda, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjo Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfe, Industrial Microbes, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, New Energy Blue, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Ourobio, OxFA, PeelPioneers, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, PeelPioneers, Re:Chemistry, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sonichem, Straw Innovations, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....
The report offers strategic guidance for:
Chemical industry executives
Investors and venture capitalists
Research and development professionals
Policymakers
Sustainability officers
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. The Need for a New Era in the Chemical Industry
1.2. Defining the New Era of Chemicals
1.3. Global Drivers and Trends
1.3.1. Consumer and brand demand for sustainable products
1.3.2. Government Regulation
1.3.3. Carbon taxation
1.3.4. Costs
1.3.4.1. Oil Prices
1.3.4.2. Process Costs
1.3.4.3. Capital Costs
1.4. The Changing Landscape of the Chemical Industry
1.4.1. Historical Context: From Coal to Oil to Renewables
1.4.2. Current State of the Global Chemical Industry
1.4.3. Environmental Challenges and Regulatory Pressures
1.4.4. Shifting Consumer Demands and Market Dynamics
1.4.5. The Role of Digitalization and Industry 4.0
1.5. Emerging and Transforming Markets in the New Era of Chemicals
1.5.1. Sustainable Agriculture Chemicals
1.5.2. Green Cosmetics and Personal Care
1.5.3. Sustainable Packaging
1.5.4. Eco-friendly Paints and Coatings
1.5.5. Alternative Fuels and Lubricants
1.5.6. Pharmaceuticals and Healthcare
1.5.7. Water Treatment and Purification
1.5.8. Carbon Capture and Utilization Products
1.5.9. Advanced Materials for 3D Printing
1.5.10. Sustainable Mining and Metallurgy
2. FEEDSTOCKS
2.1. Sustainable Feedstocks: The Foundation of the New Era
2.2. Overview of Sustainable Feedstock Options
2.3. Biomass as a Chemical Feedstock
2.3.1. Types of Biomass and Their Chemical Compositions
2.3.2. Pretreatment and Conversion Technologies
2.3.3. Challenges in Scaling Up Biomass Utilization
2.3.4. Lignocellulosic feedstocks
2.3.4.1. Wood-based feedstocks
2.3.4.2. Agricultural waste
2.3.4.3. Energy crops
2.3.5. Non-lignocellulosic feedstocks
2.3.5.1. Agricultural waste
2.3.5.2. Algae based feedstocks
2.4. CO2 as a Carbon Source
2.4.1. CO2 Capture Technologies
2.4.2. Chemical Conversion Pathways for CO2
2.4.3. Economic and Technical Barriers to CO2 Utilization
2.5. Waste Valorization
2.5.1. Municipal Solid Waste as a Feedstock
2.5.2. Industrial Waste Streams and By-products
2.5.3. Plastic Waste Recycling and Upcycling
2.6. Renewable (Green) Hydrogen
2.6.1. Electrolysis Technologies
2.6.2. Integration of Renewable Energy in Hydrogen Production
2.6.3. Hydrogen's Role in Chemical Synthesis
2.7. Feedstock Transition Pathways for Industry
3. GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS
3.1. The 12 Principles of Green Chemistry
3.2. Atom Economy and Step Economy in Synthesis
3.3. Solvent Reduction and Green Solvents
3.3.1. Water as a Reaction Medium
3.3.2. Ionic Liquids and Deep Eutectic Solvents
3.3.3. Supercritical Fluids in Chemical Processes
3.4. Catalysis for Green Chemistry
3.4.1. Biocatalysis and Enzyme Engineering
3.4.2. Heterogeneous Catalysis Advancements
3.4.3. Photocatalysis and Electrocatalysis
3.5. Green Metrics and Life Cycle Assessment in Chemistry
3.6. Feedstock-Specific Green Chemistry Approaches
3.6.1. Green Chemistry Principles Applied to Next-Generation Feedstocks
4. CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY
4.1. Principles of Circular Economy
4.2. Design for Circularity in Chemical Products
4.3. Chemical Recycling Technologies
4.3.1. Applications
4.3.2. Pyrolysis
4.3.2.1. Non-catalytic
4.3.2.2. Catalytic
4.3.2.2.1. Polystyrene pyrolysis
4.3.2.2.2. Pyrolysis for production of bio fuel
4.3.2.2.3. Used tires pyrolysis
4.3.2.2.3.1. Conversion to biofuel
4.3.2.2.4. Co-pyrolysis of biomass and plastic wastes
4.3.2.3. Companies and capacities
4.3.3. Gasification
4.3.3.1. Technology overview
4.3.3.1.1. Syngas conversion to methanol
4.3.3.1.2. Biomass gasification and syngas fermentation
4.3.3.1.3. Biomass gasification and syngas thermochemical conversion
4.3.3.2. Companies and capacities (current and planned)
4.3.4. Dissolution
4.3.4.1. Technology overview
4.3.4.2. Companies and capacities (current and planned)
4.3.5. Depolymerisation
4.3.5.1. Hydrolysis
4.3.5.1.1. Technology overview
4.3.5.2. Enzymolysis
4.3.5.2.1. Technology overview
4.3.5.3. Methanolysis
4.3.5.3.1. Technology overview
4.3.5.4. Glycolysis
4.3.5.4.1. Technology overview
4.3.5.5. Aminolysis
4.3.5.5.1. Technology overview
4.3.5.6. Companies and capacities (current and planned)
4.3.6. Other advanced chemical recycling technologies
4.3.6.1. Hydrothermal cracking
4.3.6.2. Pyrolysis with in-line reforming
4.3.6.3. Microwave-assisted pyrolysis
4.3.6.4. Plasma pyrolysis
4.3.6.5. Plasma gasification
4.3.6.6. Supercritical fluids
4.4. Upcycling of Chemical Waste
4.5. Circular Business Models in the Chemical Sector
4.6. Challenges and Opportunities in Implementing Circularity
4.7. Companies
5. ELECTRIFICATION OF CHEMICAL PROCESSES
5.1. The Role of Renewable Electricity in Chemical Production
5.2. Electrochemical Synthesis
5.2.1. Electroorganic Synthesis
5.2.2. Electrochemical CO2 Reduction
5.2.3. Electrochemical Nitrogen Fixation
5.3. Plasma Chemistry
5.4. Microwave-Assisted Chemistry
5.5. Integration of Power-to-X Technologies in Chemical Production
6. DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY
6.1. Big Data and Advanced Analytics in Chemical Research
6.2. Artificial Intelligence and Machine Learning Applications
6.2.1. In Silico Design of Molecules and Materials
6.2.2. Process Optimization and Predictive Maintenance
6.2.3. Automated Synthesis and High-Throughput Experimentation
6.3. Digital Twins in Chemical Plant Operations
6.4. Blockchain for Supply Chain Transparency and Traceability
6.5. Cybersecurity Challenges in the Digitalized Chemical Industry
7. ADVANCED MANUFACTURING TECHNOLOGIES
7.1. Continuous Flow Chemistry
7.1.1. Microreactors and Process Intensification
7.1.2. Advantages in Pharmaceuticals and Fine Chemicals
7.1.3. Challenges in Scale-up and Implementation
7.2. Modular and Distributed Manufacturing
7.3. 3D Printing of Chemicals and Materials
7.3.1. Direct Ink Writing and Reactive Printing
7.3.2. Applications in Custom Synthesis and Formulation
7.4. Advanced Process Control and Real-time Monitoring
7.5. Flexible and Adaptable Production Systems
8. BIOREFINING AND INDUSTRIAL BIOTECHNOLOGY
8.1. Biorefinery Concepts and Configurations
8.1.1. Biorefinery Classifications
8.1.2. Biorefinery Configurations
8.1.2.1. Lignocellulosic Biorefinery:
8.1.2.2. Whole-Crop Biorefinery
8.1.2.3. Green Biorefinery
8.1.2.4. Thermochemical Biorefinery
8.1.2.5. Marine Biorefinery
8.1.2.6. Integrated Forest Biorefinery
8.1.2.7. Integration and Process Intensification
8.2. Lignocellulosic Biomass Processing
8.3. Algal Biorefineries
8.4. Upstream Processing
8.4.1. Cell Culture
8.4.1.1. Overview
8.4.1.2. Types of Cell Culture Systems
8.4.1.3. Factors Affecting Cell Culture Performance
8.4.1.4. Advances in Cell Culture Technology
8.4.1.4.1. Single-use systems
8.4.1.4.2. Process analytical technology (PAT)
8.4.1.4.3. Cell line development
8.5. Fermentation
8.5.1. Overview
8.5.1.1. Types of Fermentation Processes
8.5.1.2. Factors Affecting Fermentation Performance
8.5.1.3. Advances in Fermentation Technology
8.5.1.3.1. High-cell-density fermentation
8.5.1.3.2. Continuous processing
8.5.1.3.3. Metabolic engineering
8.6. Downstream Processing
8.6.1. Purification
8.6.1.1. Overview
8.6.1.2. Types of Purification Methods
8.6.1.2.1. Factors Affecting Purification Performance
8.6.1.3. Advances in Purification Technology
8.6.1.3.1. Affinity chromatography
8.6.1.3.2. Membrane chromatography
8.6.1.3.3. Continuous chromatography
8.7. Formulation
8.7.1. Overview
8.7.1.1. Types of Formulation Methods
8.7.1.2. Factors Affecting Formulation Performance
8.7.1.3. Advances in Formulation Technology
8.7.1.3.1. Controlled release
8.7.1.3.2. Nanoparticle formulation
8.7.1.3.3. 3D printing
8.8. Bioprocess Development
8.8.1. Scale-up
8.8.1.1. Overview
8.8.1.2. Factors Affecting Scale-up Performance
8.8.1.3. Scale-up Strategies
8.8.2. Optimization
8.8.2.1. Overview
8.8.2.2. Factors Affecting Optimization Performance
8.8.2.3. Optimization Strategies
8.9. Analytical Methods
8.9.1. Quality Control
8.9.1.1. Overview
8.9.1.2. Types of Quality Control Tests
8.9.1.3. Factors Affecting Quality Control Performance
8.9.2. Characterization
8.9.2.1. Overview
8.9.2.2. Types of Characterization Methods
8.9.2.3. Factors Affecting Characterization Performance
8.10. Scale of Production
8.10.1. Laboratory Scale
8.10.1.1. Overview
8.10.1.2. Scale and Equipment
8.10.1.3. Advantages
8.10.1.4. Disadvantages
8.10.2. Pilot Scale
8.10.2.1. Overview
8.10.2.2. Scale and Equipment
8.10.2.3. Advantages
8.10.2.4. Disadvantages
8.10.3. Commercial Scale
8.10.3.1. Overview
8.10.3.2. Scale and Equipment
8.10.3.3. Advantages
8.10.3.4. Disadvantages
8.11. Mode of Operation
8.11.1. Batch Production
8.11.1.1. Overview
8.11.1.2. Advantages
8.11.1.3. Disadvantages
8.11.1.4. Applications
8.11.2. Fed-batch Production
8.11.2.1. Overview
8.11.2.2. Advantages
8.11.2.3. Disadvantages
8.11.2.4. Applications
8.11.3. Continuous Production
8.11.3.1. Overview
8.11.3.2. Advantages
8.11.3.3. Disadvantages
8.11.3.4. Applications
8.11.4. Cell factories for biomanufacturing
8.11.5. Perfusion Culture
8.11.5.1. Overview
8.11.5.2. Advantages
8.11.5.3. Disadvantages
8.11.5.4. Applications
8.11.6. Other Modes of Operation
8.11.6.1. Immobilized Cell Culture
8.11.6.2. Two-Stage Production
8.11.6.3. Hybrid Systems
8.12. Host Organisms
9. CO2 UTILIZATION TECHNOLOGIES
9.1. Overview
9.2. CO2 non-conversion and conversion technology
9.3. Carbon utilization business models
9.3.1. Benefits of carbon utilization
9.3.2. Market challenges
9.4. Co2 utilization pathways
9.5. Conversion processes
9.5.1. Thermochemical
9.5.1.1. Process overview
9.5.1.2. Plasma-assisted CO2 conversion
9.5.2. Electrochemical conversion of CO2
9.5.2.1. Process overview
9.5.3. Photocatalytic and photothermal catalytic conversion of CO2
9.5.4. Catalytic conversion of CO2
9.5.5. Biological conversion of CO2
9.5.6. Copolymerization of CO2
9.5.7. Mineral carbonation
9.6. CO2-derived products
9.6.1. Fuels
9.6.1.1. Overview
9.6.1.2. Production routes
9.6.1.3. CO2 -fuels in road vehicles
9.6.1.4. CO2 -fuels in shipping
9.6.1.5. CO2 -fuels in aviation
9.6.1.6. Power-to-methane
9.6.1.6.1. Biological fermentation
9.6.1.6.2. Costs
9.6.1.7. Algae based biofuels
9.6.1.8. CO2-fuels from solar
9.6.1.9. Companies
9.6.1.10. Challenges
9.6.2. Chemicals and polymers
9.6.2.1. Polycarbonate from CO2
9.6.2.2. Carbon nanostructures
9.6.2.3. Scalability
9.6.2.4. Applications
9.6.2.4.1. Urea production
9.6.2.4.2. CO2-derived polymers
9.6.2.4.3. Inert gas in semiconductor manufacturing
9.6.2.4.4. Carbon nanotubes
9.6.2.5. Companies
9.6.3. Construction materials
9.6.3.1. Overview
9.6.3.2. CCUS technologies
9.6.3.3. Carbonated aggregates
9.6.3.4. Additives during mixing
9.6.3.5. Concrete curing
9.6.3.6. Costs
9.6.3.7. Market trends and business models
9.6.3.8. Companies
9.6.3.9. Challenges
9.6.4. CO2 Utilization in Biological Yield-Boosting
9.6.4.1. Overview
9.6.4.2. Applications
9.6.4.2.1. Greenhouses
9.6.4.2.2. Algae cultivation
9.6.4.2.2.1. CO2-enhanced algae cultivation: open systems
9.6.4.2.2.2. CO2-enhanced algae cultivation: closed systems
9.6.4.2.3. Microbial conversion
9.6.4.2.4. Food and feed production
9.6.4.3. Companies
9.7. CO2 Utilization in Enhanced Oil Recovery
9.7.1. Overview
9.7.1.1. Process
9.7.1.2. CO2 sources
9.7.2. CO2-EOR facilities and projects
9.7.3. Challenges
9.8. Enhanced mineralization
9.8.1. Advantages
9.8.2. In situ and ex-situ mineralization
9.8.3. Enhanced mineralization pathways
9.8.4. Challenges
10. ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY
10.1. Overview of biocatalyst technology
10.1.1. Biotransformations
10.1.2. Cascade biocatalysis
10.1.3. Co-factor recycling
10.1.4. Immobilization
10.2. Types of biocatalysts
10.2.1. Microorganisms
10.2.1.1. Bacteria
10.2.1.2. Fungi
10.2.1.3. Yeast
10.2.1.4. Archaea
10.2.1.5. Algae
10.2.1.6. Cyanobacteria
10.2.2. Engineered biocatalysts
10.2.2.1. Directed Evolution
10.2.2.2. Rational Design
10.2.2.3. Semi-Rational Design
10.2.2.4. Immobilization
10.2.2.5. Fusion Proteins
10.2.3. Enzymes
10.2.3.1. Detergent Enzymes
10.2.3.2. Food Processing Enzymes
10.2.3.3. Textile Processing Enzymes
10.2.3.4. Paper and Pulp Processing Enzymes
10.2.3.5. Leather Processing Enzymes
10.2.3.6. Biofuel Production Enzymes
10.2.3.7. Animal Feed Enzymes
10.2.3.8. Pharmaceutical and Diagnostic Enzymes
10.2.3.9. Waste Management and Bioremediation Enzymes
10.2.3.10. Agriculture and Crop Improvement Enzymes
10.2.4. Other types
10.2.4.1. Ribozymes
10.2.4.2. DNAzymes
10.2.4.3. Abzymes
10.2.4.4. Nanozymes
10.2.4.5. Organocatalysts
10.3. Production methods and processes
10.3.1. Fermentation
10.3.2. Recombinant DNA technology
10.3.3. ell-Free Protein Synthesis
10.3.4. Extraction from Natural Sources
10.3.5. Solid-State Fermentation
10.4. Emerging technologies and innovations in biocatalysis
10.4.1. Synthetic biology and metabolic engineering
10.4.1.1. Batch biomanufacturing
10.4.1.2. Continuous biomanufacturing
10.4.1.3. Fermentation Processes
10.4.1.4. Cell-free synthesis
10.4.2. Generative biology and Artificial Intelligence (AI)
10.4.2.1. Molecular Dynamics Simulations
10.4.2.2. Quantum Mechanical Calculations
10.4.2.3. Systems Biology Modeling
10.4.2.4. Metabolic Engineering Modeling
10.4.3. Genome engineering
10.4.4. Immobilization and encapsulation techniques
10.4.5. Biomimetics
10.4.6. Nanoparticle-based biocatalysts
10.4.7. Biocatalytic cascades and multi-enzyme systems
10.4.8. Microfluidics
10.5. Companies
11. SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING
11.1. Metabolic engineering
11.2. Gene and DNA synthesis
11.3. Gene Synthesis and Assembly
11.4. Genome engineering
11.4.1. CRISPR
11.4.1.1. CRISPR/Cas9-modified biosynthetic pathways
11.4.1.2. TALENs
11.4.1.3. ZFNs
11.5. Protein/Enzyme Engineering
11.6. Synthetic genomics
11.6.1. Principles of Synthetic Genomics
11.6.2. Synthetic Chromosomes and Genomes
11.7. Strain construction and optimization
11.8. Smart bioprocessing
11.9. Chassis organisms
11.10. Biomimetics
11.11. Sustainable materials
11.12. Robotics and automation
11.12.1. Robotic cloud laboratories
11.12.2. Automating organism design
11.12.3. Artificial intelligence and machine learning
11.13. Bioinformatics and computational tools
11.13.1. Role of Bioinformatics in Synthetic Biology
11.13.2. Computational Tools for Design and Analysis
11.14. Xenobiology and expanded genetic alphabets
11.15. Biosensors and bioelectronics
11.16. Feedstocks
11.16.1. C1. feedstocks
11.16.1.1. Advantages
11.16.1.2. Pathways
11.16.1.3. Challenges
11.16.1.4. Non-methane C1 feedstocks
11.16.1.5. Gas fermentation
11.16.2. C2 feedstocks
11.16.3. Biological conversion of CO2
11.16.4. Food processing wastes
11.16.4.1. Syngas
11.16.4.2. Glycerol
11.16.4.3. Methane
11.16.4.4. Municipal solid wastes
11.16.4.5. Plastic wastes
11.16.4.6. Plant oils
11.16.4.7. Starch
11.16.4.8. Sugars
11.16.4.9. Used cooking oils
11.16.4.10. Green hydrogen production
11.16.4.11. Blue hydrogen production
11.16.5. Marine biotechnology
11.16.5.1. Cyanobacteria
11.16.5.2. Macroalgae
11.16.5.3. Companies
12. GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA
12.1. Bio-based Solvents
12.2. Switchable Solvents
12.3. Deep Eutectic Solvents (DES)
12.4. Supercritical Fluids in Industrial Applications
12.5. Solvent-free Reactions and Mechanochemistry
12.6. Solvent Selection Tools and Frameworks
12.7. Companies
13. WASTE VALORIZATION AND RESOURCE RECOVERY
13.1. Municipal Solid Waste to Chemicals
13.2. Agricultural and Food Waste Valorization
13.3. Critical Material Extraction Technology
13.3.1. Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
13.3.2. Critical rare-earth element recovery from secondary sources
13.3.3. Li-ion battery technology metal recovery
13.3.4. Critical semiconductor materials recovery
13.3.5. Critical semiconductor materials recovery
13.3.6. Critical platinum group metal recovery
13.3.7. Critical platinum Group metal recovery
13.4. Wastewater Treatment and Resource Recovery
13.4.1. Bio-based Flocculants and Coagulants
13.4.2. Green Oxidants and Disinfectants
13.4.3. Sustainable Membrane Materials
13.4.3.1. Bio-based polymer membranes
13.4.3.2. Ceramic membranes from recycled materials
13.4.3.3. Self-healing membranes
13.4.4. Advanced Adsorbents for Contaminant Removal
13.4.4.1. Biochar
13.4.4.2. Activated carbon from waste biomass
13.4.4.3. Green zeolites and MOFs (Metal-Organic Frameworks)
13.4.5. Nutrient Recovery Technologies
13.4.6. Resource Recovery from Industrial Wastewater
13.4.7. Bioelectrochemical Systems
13.4.8. Green Solvents in Extraction Processes
13.4.9. Photocatalytic Materials
13.4.10. Biodegradable Chelating Agents
13.4.11. Biocatalysts for Wastewater Treatment
13.4.12. Advanced Adsorption Materials
13.4.13. Sustainable pH Adjustment Chemicals
13.5. Mining Waste Valorization
13.5.1. Bioleaching and Biooxidation
13.5.2. Green Lixiviants for Metal Extraction
13.5.3. Phytomining and Phytoremediation
13.5.4. Sustainable Flotation Chemicals
13.5.5. Electrochemical Recovery Methods
13.5.6. Geopolymers and Mine Tailings Utilization
13.5.7. CO2 Mineralization
13.5.8. Sustainable Remediation Technologies
13.5.9. Waste-to-Energy Technologies
13.5.10. Advanced Separation Techniques
13.6. Companies
14. ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION
14.1. Energy Efficiency Measures in Chemical Plants
14.2. Heat Recovery and Pinch Analysis
14.3. Renewable Energy Sources in Chemical Production
14.4. Energy Storage Technologies for Process Industries
14.5. Combined Heat and Power (CHP) Systems
14.6. Industrial Symbiosis and Energy Integration
15. SAFETY AND SUSTAINABILITY ASSESSMENT
15.1. Green Chemistry Metrics and Sustainability Indicators
15.2. Life Cycle Assessment (LCA) in Chemical Processes
15.3. Safety by Design Principles
15.4. Risk Assessment and Management in New Chemical Technologies
15.5. Environmental Impact Assessment
15.6. Social and Ethical Considerations in the New Era of Chemicals
16. REGULATIONS AND POLICY
16.1. Global Chemical Regulations and Their Evolution
16.2. Environmental Policies Driving Sustainable Chemistry
16.3. Incentives and Support Mechanisms for Green Chemistry
16.4. Challenges in Regulating Emerging Technologies
16.5. International Cooperation and Harmonization Efforts
17. MARKETS AND PRODUCTS
17.1. Sustainable Materials and Polymers
17.1.1. Bioplastics and Biodegradable Polymers
17.1.1.1. Polylactic acid (Bio-PLA)
17.1.1.1.1. Overview
17.1.1.1.2. Properties
17.1.1.1.3. Applications
17.1.1.1.4. Advantages
17.1.1.1.5. Commercial examples
17.1.1.2. Polyethylene terephthalate (Bio-PET)
17.1.1.2.1. Overview
17.1.1.2.2. Properties
17.1.1.2.3. Applications
17.1.1.2.4. Commercial examples
17.1.1.3. Polytrimethylene terephthalate (Bio-PTT)
17.1.1.3.1. Overview
17.1.1.3.2. Production Process
17.1.1.3.3. Properties
17.1.1.3.4. Applications
17.1.1.3.5. Commercial examples
17.1.1.4. Polyethylene furanoate (Bio-PEF)
17.1.1.4.1. Overview
17.1.1.4.2. Properties
17.1.1.4.3. Applications
17.1.1.4.4. Commercial examples
17.1.1.5. Bio-PA
17.1.1.5.1. Overview
17.1.1.5.2. Properties
17.1.1.5.3. Commercial examples
17.1.1.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
17.1.1.6.1. Overview
17.1.1.6.2. Properties
17.1.1.6.3. Applications
17.1.1.6.4. Commercial examples
17.1.1.7. Polybutylene succinate (PBS) and copolymers
17.1.1.7.1. Overview
17.1.1.7.2. Properties
17.1.1.7.3. Applications
17.1.1.7.4. Commercial examples
17.1.1.8. Polypropylene (Bio-PP)
17.1.1.8.1. Overview
17.1.1.8.2. Properties
17.1.1.8.3. Applications
17.1.1.8.4. Commercial examples
17.1.1.9. Polyhydroxyalkanoates (PHA)
17.1.1.9.1. Properties
17.1.1.9.2. Applications
17.1.1.9.3. Commercial examples
17.1.1.10. Starch-based blends
17.1.1.10.1. Overview
17.1.1.10.2. Properties
17.1.1.10.3. Applications
17.1.1.10.4. Commercial examples
17.1.1.11. Cellulose
17.1.1.12. Microfibrillated cellulose (MFC)
17.1.1.13. Nanocellulose
17.1.1.13.1. Cellulose nanocrystals
17.1.1.13.1.1. Applications
17.1.1.13.2. Cellulose nanofibers
17.1.1.13.2.1. Applications
17.1.1.13.2.1.1. Reinforcement and barrier
17.1.1.13.2.1.2. Biodegradable food packaging foil and films
17.1.1.13.2.1.3. Paperboard coatings
17.1.1.13.3. Bacterial Nanocellulose (BNC)
17.1.1.13.3.1. Applications in packaging
17.1.1.13.3.2. Commercial examples
17.1.1.14. Protein-based bioplastics in packaging
17.1.1.14.1. Feedstocks
17.1.1.14.2. Commercial examples
17.1.1.15. Alginate
17.1.1.15.1. Overview
17.1.1.15.2. Production
17.1.1.15.3. Applications
17.1.1.15.4. Producers
17.1.1.16. Mycelium
17.1.1.16.1. Overview
17.1.1.16.2. Applications
17.1.1.16.3. Commercial examples
17.1.1.17. Chitosan
17.1.1.17.1. Overview
17.1.1.17.2. Applications
17.1.1.17.3. Commercial examples
17.1.1.18. Bio-naphtha
17.1.1.18.1. Overview
17.1.1.18.2. Markets and applications
17.1.1.18.3. Commercial examples
17.1.2. Recycled and Upcycled Plastics
17.1.3. High-Performance Bio-based Materials
17.1.4. Companies
17.2. Sustainable Agriculture Chemicals
17.2.1. Overview
17.2.2. Biopesticides and Biocontrol Agents
17.2.3. Precision Agriculture Chemicals
17.2.4. Controlled-Release Fertilizers
17.2.5. Biostimulants
17.2.6. Microbials
17.2.6.1. Overview
17.2.6.2. Microbial biostimulants and biofertilizers
17.2.6.3. Microbiome manipulation
17.2.6.4. Prebiotics
17.2.7. Biochemicals
17.2.8. Semiochemicals
17.2.9. Macrobials
17.2.10. Biopesticides
17.2.10.1. Natural herbicides and insecticides
17.2.11. Companies
17.3. Sustainable Construction Materials
17.3.1. Established bio-based construction materials
17.3.2. Hemp-based Materials
17.3.2.1. Hemp Concrete (Hempcrete)
17.3.2.2. Hemp Fiberboard
17.3.2.3. Hemp Insulation
17.3.3. Mycelium-based Materials
17.3.3.1. Insulation
17.3.3.2. Structural Elements
17.3.3.3. Acoustic Panels
17.3.3.4. Decorative Elements
17.3.4. Sustainable Concrete and Cement Alternatives
17.3.4.1. Geopolymer Concrete
17.3.4.2. Recycled Aggregate Concrete
17.3.4.3. Lime-Based Materials
17.3.4.4. Self-healing concrete
17.3.4.4.1. Bioconcrete
17.3.4.4.2. Fiber concrete
17.3.4.5. Microalgae biocement
17.3.4.6. Carbon-negative concrete
17.3.4.7. Biomineral binders
17.3.5. Natural Fiber Composites
17.3.5.1. Types of Natural Fibers
17.3.5.2. Properties
17.3.5.3. Applications in Construction
17.3.6. Cellulose nanofibers
17.3.6.1. Sandwich composites
17.3.6.2. Cement additives
17.3.6.3. Pump primers
17.3.6.4. Insulation materials
17.3.7. Sustainable Insulation Materials
17.3.7.1. Types of sustainable insulation materials
17.3.7.2. Biobased and sustainable aerogels (bio-aerogels)
17.3.8. Companies
17.4. Sustainable Packaging
17.4.1. Paper and board packaging
17.4.2. Food packaging
17.4.2.1. Bio-Based films and trays
17.4.2.2. Bio-Based pouches and bags
17.4.2.3. Bio-Based textiles and nets
17.4.2.4. Bioadhesives
17.4.2.4.1. Starch
17.4.2.4.2. Cellulose
17.4.2.4.3. Protein-Based
17.4.2.5. Barrier coatings and films
17.4.2.5.1. Polysaccharides
17.4.2.5.1.1. Chitin
17.4.2.5.1.2. Chitosan
17.4.2.5.1.3. Starch
17.4.2.5.2. Poly(lactic acid) (PLA)
17.4.2.5.3. Poly(butylene Succinate)
17.4.2.5.4. Functional Lipid and Proteins Based Coatings
17.4.2.6. Active and Smart Food Packaging
17.4.2.6.1. Active Materials and Packaging Systems
17.4.2.6.2. Intelligent and Smart Food Packaging
17.4.2.7. Antimicrobial films and agents
17.4.2.7.1. Natural
17.4.2.7.2. Inorganic nanoparticles
17.4.2.7.3. Biopolymers
17.4.2.8. Bio-based Inks and Dyes
17.4.2.9. Edible films and coatings
17.4.2.9.1. Overview
17.4.2.9.2. Commercial examples
17.4.2.10. Types of bio-based coatings and films in packaging
17.4.2.10.1. Polyurethane coatings
17.4.2.10.1.1. Properties
17.4.2.10.1.2. Bio-based polyurethane coatings
17.4.2.10.1.3. Products
17.4.2.10.2. Acrylate resins
17.4.2.10.2.1. Properties
17.4.2.10.2.2. Bio-based acrylates
17.4.2.10.2.3. Products
17.4.2.10.3. Polylactic acid (Bio-PLA)
17.4.2.10.3.1. Properties
17.4.2.10.3.2. Bio-PLA coatings and films
17.4.2.10.4. Polyhydroxyalkanoates (PHA) coatings
17.4.2.10.5. Cellulose coatings and films
17.4.2.10.5.1. Microfibrillated cellulose (MFC)
17.4.2.10.5.2. Cellulose nanofibers
17.4.2.10.5.2.1. Properties
17.4.2.10.5.2.2. Product developers
17.4.2.10.6. Lignin coatings
17.4.2.10.7. Protein-based biomaterials for coatings
17.4.2.10.7.1. Plant derived proteins
17.4.2.10.7.2. Animal origin proteins
17.4.3. Carbon capture derived materials for packaging
17.4.3.1. Benefits of carbon utilization for plastics feedstocks
17.4.3.2. CO2-derived polymers and plastics
17.4.3.3. CO2 utilization products
17.4.4. Companies
17.5. Green Cosmetics and Personal Care
17.5.1. Natural and Bio-based Ingredients
17.5.2. Microplastic Alternatives
17.5.2.1. Natural hard materials
17.5.2.2. Polysaccharides
17.5.2.2.1. Starch
17.5.2.2.2. Cellulose
17.5.2.2.2.1. Microcrystalline cellulose (MCC)
17.5.2.2.2.2. Regenerated cellulose microspheres
17.5.2.2.2.3. Cellulose nanocrystals
17.5.2.2.2.4. Bacterial nanocellulose (BNC)
17.5.2.2.3. Chitin
17.5.2.3. Proteins
17.5.2.3.1. Collagen/Gelatin
17.5.2.3.2. Casein
17.5.2.4. Polyesters
17.5.2.4.1. Polyhydroxyalkanoates
17.5.2.4.2. Polylactic acid
17.5.2.5. Other natural polymers
17.5.2.5.1. Lignin
17.5.2.5.1.1. Description
17.5.2.5.1.2. Applications and commercial status
17.5.2.5.2. Alginate
17.5.2.5.2.1. Applications and commercial status
17.5.3. Waterless Formulations
17.5.4. Companies
17.6. Bio-based and Eco-Friendly Paints and Coatings
17.6.1. UV-cure
17.6.2. Waterborne coatings
17.6.3. Treatments with less or no solvents
17.6.4. Hyperbranched polymers for coatings
17.6.5. Powder coatings
17.6.6. High solid (HS) coatings
17.6.7. Use of bio-based materials in coatings
17.6.7.1. Biopolymers
17.6.7.2. Coatings based on agricultural waste
17.6.7.3. Vegetable oils and fatty acids
17.6.7.4. Proteins
17.6.7.5. Cellulose
17.6.7.6. Plant-Based wax coatings
17.6.8. Barrier coatings
17.6.8.1. Polysaccharides
17.6.8.1.1. Chitin
17.6.8.1.2. Chitosan
17.6.8.1.3. Starch
17.6.8.2. Poly(lactic acid) (PLA)
17.6.8.3. Poly(butylene Succinate
17.6.8.4. Functional Lipid and Proteins Based Coatings
17.6.9. Alkyd coatings
17.6.9.1. Alkyd resin properties
17.6.9.2. Bio-based alkyd coatings
17.6.9.3. Products
17.6.10. Polyurethane coatings
17.6.10.1. Properties
17.6.10.2. Bio-based polyurethane coatings
17.6.10.2.1. Bio-based polyols
17.6.10.2.2. Non-isocyanate polyurethane (NIPU)
17.6.10.3. Products
17.6.11. Epoxy coatings
17.6.11.1. Properties
17.6.11.2. Bio-based epoxy coatings
17.6.11.3. Products
17.6.12. Acrylate resins
17.6.12.1. Properties
17.6.12.2. Bio-based acrylates
17.6.12.3. Products
17.6.13. Polylactic acid (Bio-PLA)
17.6.13.1. Bio-PLA coatings and films
17.6.14. Polyhydroxyalkanoates (PHA)
17.6.15. Microfibrillated cellulose (MFC)
17.6.16. Cellulose nanofibers
17.6.17. Bacterial Nanocellulose (BNC)
17.6.18. Rosins
17.6.19. Bio-based carbon black
17.6.19.1. Lignin-based
17.6.19.2. Algae-based
17.6.20. Lignin
17.6.21. Antimicrobial films and agents
17.6.21.1. Natural
17.6.21.2. Inorganic nanoparticles
17.6.21.3. Biopolymers
17.6.22. Nanocoatings
17.6.23. Protein-based biomaterials for coatings
17.6.23.1. Plant derived proteins
17.6.23.2. Animal origin proteins
17.6.24. Algal coatings
17.6.25. Polypeptides
17.6.26. Companies
17.7. Green Electronics
17.7.1. Biodegradable Electronics
17.7.2. Recycled and Recoverable Electronic Materials
17.7.3. Conventional electronics manufacturing
17.7.4. Benefits of Green Electronics manufacturing
17.7.5. Challenges in adopting Green Electronics manufacturing
17.7.6. Green Electronics Manufacturing
17.7.7. Sustainability in PCB manufacturing
17.7.7.1. Sustainable cleaning of PCBs
17.7.8. Design of PCBs for sustainability
17.7.8.1. Rigid
17.7.8.2. Flexible
17.7.8.3. Additive manufacturing
17.7.8.4. In-mold elctronics (IME)
17.7.9. Materials
17.7.9.1. Metal cores
17.7.9.2. Recycled laminates
17.7.9.3. Conductive inks
17.7.9.4. Green and lead-free solder
17.7.9.5. Biodegradable substrates
17.7.9.5.1. Bacterial Cellulose
17.7.9.5.2. Mycelium
17.7.9.5.3. Lignin
17.7.9.5.4. Cellulose Nanofibers
17.7.9.5.5. Soy Protein
17.7.9.5.6. Algae
17.7.9.5.7. PHAs
17.7.9.6. Biobased inks
17.7.10. Substrates
17.7.10.1. Halogen-free FR4
17.7.10.1.1. FR4 limitations
17.7.10.1.2. FR4 alternatives
17.7.10.1.3. Bio-Polyimide
17.7.10.2. Metal-core PCBs
17.7.10.3. Biobased PCBs
17.7.10.3.1. Flexible (bio) polyimide PCBs
17.7.10.3.2. Recent commercial activity
17.7.10.4. Paper-based PCBs
17.7.10.5. PCBs without solder mask
17.7.10.6. Thinner dielectrics
17.7.10.7. Recycled plastic substrates
17.7.10.8. Flexible substrates
17.7.11. Sustainable patterning and metallization in electronics manufacturing
17.7.11.1. Introduction
17.7.11.2. Issues with sustainability
17.7.11.3. Regeneration and reuse of etching chemicals
17.7.11.4. Transition from Wet to Dry phase patterning
17.7.11.5. Print-and-plate
17.7.11.6. Approaches
17.7.11.6.1. Direct Printed Electronics
17.7.11.6.2. Photonic Sintering
17.7.11.6.3. Biometallization
17.7.11.6.4. Plating Resist Alternatives
17.7.11.6.5. Laser-Induced Forward Transfer
17.7.11.6.6. Electrohydrodynamic Printing
17.7.11.6.7. Electrically conductive adhesives (ECAs
17.7.11.6.8. Green electroless plating
17.7.11.6.9. Smart Masking
17.7.11.6.10. Component Integration
17.7.11.6.11. Bio-inspired material deposition
17.7.11.6.12. Multi-material jetting
17.7.11.6.13. Vacuumless deposition
17.7.11.6.14. Upcycling waste streams
17.7.12. Sustainable attachment and integration of components
17.7.12.1. Conventional component attachment materials
17.7.12.2. Materials
17.7.12.2.1. Conductive adhesives
17.7.12.2.2. Biodegradable adhesives
17.7.12.2.3. Magnets
17.7.12.2.4. Bio-based solders
17.7.12.2.5. Bio-derived solders
17.7.12.2.6. Recycled plastics
17.7.12.2.7. Nano adhesives
17.7.12.2.8. Shape memory polymers
17.7.12.2.9. Photo-reversible polymers
17.7.12.2.10. Conductive biopolymers
17.7.12.3. Processes
17.7.12.3.1. Traditional thermal processing methods
17.7.12.3.2. Low temperature solder
17.7.12.3.3. Reflow soldering
17.7.12.3.4. Induction soldering
17.7.12.3.5. UV curing
17.7.12.3.6. Near-infrared (NIR) radiation curing
17.7.12.3.7. Photonic sintering/curing
17.7.12.3.8. Hybrid integration
17.7.13. Sustainable integrated circuits
17.7.13.1. IC manufacturing
17.7.13.2. Sustainable IC manufacturing
17.7.13.3. Wafer production
17.7.13.3.1. Silicon
17.7.13.3.2. Gallium nitride ICs
17.7.13.3.3. Flexible ICs
17.7.13.3.4. Fully printed organic ICs
17.7.13.4. Oxidation methods
17.7.13.4.1. Sustainable oxidation
17.7.13.4.2. Metal oxides
17.7.13.4.3. Recycling
17.7.13.4.4. Thin gate oxide layers
17.7.13.5. Patterning and doping
17.7.13.5.1. Processes
17.7.13.5.1.1. Wet etching
17.7.13.5.1.2. Dry plasma etching
17.7.13.5.1.3. Lift-off patterning
17.7.13.5.1.4. Surface doping
17.7.13.6. Metallization
17.7.13.6.1. Evaporation
17.7.13.6.2. Plating
17.7.13.6.3. Printing
17.7.13.6.3.1. Printed metal gates for organic thin film transistors
17.7.13.6.4. Physical vapour deposition (PVD)
17.7.14. End of life
17.7.14.1. Hazardous waste
17.7.14.2. Emissions
17.7.14.3. Water Usage
17.7.14.4. Recycling
17.7.14.4.1. Mechanical recycling
17.7.14.4.2. Electro-Mechanical Separation
17.7.14.4.3. Chemical Recycling
17.7.14.4.4. Electrochemical Processes
17.7.14.4.5. Thermal Recycling
17.7.15. Green Certification
17.7.16. Companies
17.8. Sustainable Textiles and Fibers
17.8.1. Types of bio-based fibres
17.8.1.1. Natural fibres
17.8.1.2. Main-made bio-based fibres
17.8.2. Bio-based synthetics
17.8.3. Recyclability of bio-based fibres
17.8.4. Lyocell
17.8.5. Bacterial cellulose
17.8.6. Algae textiles
17.8.7. Bio-based leather
17.8.7.1. Properties of bio-based leathers
17.8.7.1.1. Tear strength.
17.8.7.1.2. Tensile strength
17.8.7.1.3. Bally flexing
17.8.7.2. Comparison with conventional leathers
17.8.7.3. Comparative analysis of bio-based leathers
17.8.7.4. Plant-based leather
17.8.7.4.1. Overview
17.8.7.4.2. Production processes
17.8.7.4.2.1. Feedstocks
17.8.7.4.2.1. Agriculture Residues
17.8.7.4.2.2. Food Processing Waste
17.8.7.4.2.3. Invasive Plants
17.8.7.4.2.4. Culture-Grown Inputs
17.8.7.4.2.5. Textile-Based
17.8.7.4.2.6. Bio-Composite
17.8.7.4.3. Products
17.8.7.4.4. Market players
17.8.7.5. Mycelium leather
17.8.7.5.1. Overview
17.8.7.5.2. Production process
17.8.7.5.2.1. Growth conditions
17.8.7.5.2.2. Tanning Mycelium Leather
17.8.7.5.2.3. Dyeing Mycelium Leather
17.8.7.5.3. Products
17.8.7.5.4. Market players
17.8.7.6. Microbial leather
17.8.7.6.1. Overview
17.8.7.6.2. Production process
17.8.7.6.3. Fermentation conditions
17.8.7.6.4. Harvesting
17.8.7.6.5. Products
17.8.7.6.6. Market players
17.8.7.7. Lab grown leather
17.8.7.7.1. Overview
17.8.7.7.2. Production process
17.8.7.7.3. Products
17.8.7.7.4. Market players
17.8.7.8. Protein-based leather
17.8.7.8.1. Overview
17.8.7.8.2. Production process
17.8.7.8.3. Commercial activity
17.8.7.9. Sustainable textiles coatings and dyes
17.8.7.9.1. Overview
17.8.7.9.1.1. Coatings
17.8.7.9.1.2. Dyes
17.8.7.9.2. Commercial activity
17.8.8. Companies
17.9. Alternative Fuels and Lubricants
17.9.1. Biofuels and Synthetic Fuels
17.9.2. Biodiesel
17.9.2.1. Biodiesel by generation
17.9.2.2. Production of biodiesel and other biofuels
17.9.2.2.1. Pyrolysis of biomass
17.9.2.2.2. Vegetable oil transesterification
17.9.2.2.3. Vegetable oil hydrogenation (HVO)
17.9.2.2.3.1. Production process
17.9.2.2.4. Biodiesel from tall oil
17.9.2.2.5. Fischer-Tropsch BioDiesel
17.9.2.2.6. Hydrothermal liquefaction of biomass
17.9.2.2.7. CO2 capture and Fischer-Tropsch (FT)
17.9.2.2.8. Dymethyl ether (DME)
17.9.2.3. Prices
17.9.2.4. Global production and consumption
17.9.3. Renewable diesel
17.9.3.1. Production
17.9.3.2. SWOT analysis
17.9.3.3. Global consumption
17.9.3.4. Prices
17.9.4. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
17.9.4.1. Description
17.9.4.2. SWOT analysis
17.9.4.3. Global production and consumption
17.9.4.4. Production pathways
17.9.4.5. Prices
17.9.4.6. Bio-aviation fuel production capacities
17.9.4.7. Market challenges
17.9.4.8. Global consumption
17.9.5. Bio-naphtha
17.9.5.1. Overview
17.9.5.2. SWOT analysis
17.9.5.3. Markets and applications
17.9.5.4. Prices
17.9.5.5. Production capacities, by producer, current and planned
17.9.5.6. Production capacities, total (tonnes), historical, current and planned
17.9.6. Biomethanol
17.9.6.1. SWOT analysis
17.9.6.2. Methanol-to gasoline technology
17.9.6.2.1. Production processes
17.9.6.2.1.1. Anaerobic digestion
17.9.6.2.1.2. Biomass gasification
17.9.6.2.1.3. Power to Methane
17.9.7. Ethanol
17.9.7.1. Technology description
17.9.7.2. 1G Bio-Ethanol
17.9.7.3. SWOT analysis
17.9.7.4. Ethanol to jet fuel technology
17.9.7.5. Methanol from pulp & paper production
17.9.7.6. Sulfite spent liquor fermentation
17.9.7.7. Gasification
17.9.7.7.1. Biomass gasification and syngas fermentation
17.9.7.7.2. Biomass gasification and syngas thermochemical conversion
17.9.7.8. CO2 capture and alcohol synthesis
17.9.7.9. Biomass hydrolysis and fermentation
17.9.7.9.1. Separate hydrolysis and fermentation
17.9.7.9.2. Simultaneous saccharification and fermentation (SSF)
17.9.7.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
17.9.7.9.4. Simultaneous saccharification and co-fermentation (SSCF)
17.9.7.9.5. Direct conversion (consolidated bioprocessing) (CBP)
17.9.7.10. Global ethanol consumption
17.9.8. Biobutanol
17.9.8.1. Production
17.9.8.2. Prices
17.9.9. Biomass-based Gas
17.9.9.1. Biomethane
17.9.9.2. Production pathways
17.9.9.2.1. Landfill gas recovery
17.9.9.2.2. Anaerobic digestion
17.9.9.2.3. Thermal gasification
17.9.9.3. SWOT analysis
17.9.9.4. Global production
17.9.9.5. Prices
17.9.9.5.1. Raw Biogas
17.9.9.5.2. Upgraded Biomethane
17.9.9.6. Bio-LNG
17.9.9.6.1. Markets
17.9.9.6.1.1. Trucks
17.9.9.6.1.2. Marine
17.9.9.6.2. Production
17.9.9.6.3. Plants
17.9.9.7. bio-CNG (compressed natural gas derived from biogas)
17.9.9.8. Carbon capture from biogas
17.9.10. Biosyngas
17.9.10.1. Production
17.9.10.2. Prices
17.9.11. Biohydrogen
17.9.11.1. Description
17.9.11.2. SWOT analysis
17.9.11.3. Production of biohydrogen from biomass
17.9.11.3.1. Biological Conversion Routes
17.9.11.3.1.1. Bio-photochemical Reaction
17.9.11.3.1.2. Fermentation and Anaerobic Digestion
17.9.11.3.2. Thermochemical conversion routes
17.9.11.3.2.1. Biomass Gasification
17.9.11.3.2.2. Biomass Pyrolysis
17.9.11.3.2.3. Biomethane Reforming
17.9.11.4. Applications
17.9.11.5. Prices
17.9.12. Biochar in biogas production
17.9.13. Bio-DME
17.9.14. Chemical recycling for biofuels
17.9.14.1. Plastic pyrolysis
17.9.14.2. Used tires pyrolysis
17.9.14.2.1. Conversion to biofuel
17.9.14.3. Co-pyrolysis of biomass and plastic wastes
17.9.14.4. Gasification
17.9.14.4.1. Syngas conversion to methanol
17.9.14.4.2. Biomass gasification and syngas fermentation
17.9.14.4.3. Biomass gasification and syngas thermochemical conversion
17.9.14.5. Hydrothermal cracking
17.9.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
17.9.15.1. Introduction
17.9.15.2. Benefits of e-fuels
17.9.15.3. Feedstocks
17.9.15.3.1. Hydrogen electrolysis
17.9.15.4. CO2 capture
17.9.15.5. Production
17.9.15.5.1. eFuel production facilities, current and planned
17.9.15.6. Companies
17.9.16. Algae-derived biofuels
17.9.16.1. Technology description
17.9.16.1.1. Conversion pathways
17.9.16.2. Production
17.9.16.3. Market challenges
17.9.16.4. Prices
17.9.16.5. Producers
17.9.17. Green Ammonia
17.9.17.1. Production
17.9.17.1.1. Decarbonisation of ammonia production
17.9.17.1.2. Green ammonia projects
17.9.17.2. Green ammonia synthesis methods
17.9.17.2.1. Haber-Bosch process
17.9.17.2.2. Biological nitrogen fixation
17.9.17.2.3. Electrochemical production
17.9.17.2.4. Chemical looping processes
17.9.17.3. Blue ammonia
17.9.17.3.1. Blue ammonia projects
17.9.17.3.2. Markets and applications
17.9.17.3.3. Chemical energy storage
17.9.17.3.4. Ammonia fuel cells
17.9.17.3.5. Marine fuel
17.9.17.3.6. Prices
17.9.17.4. Companies and projects
17.9.18. Bio-oils (pyrolysis oils)
17.9.18.1. Description
17.9.18.1.1. Advantages of bio-oils
17.9.18.2. Production
17.9.18.2.1. Fast Pyrolysis
17.9.18.2.2. Costs of production
17.9.18.2.3. Upgrading
17.9.18.3. Applications
17.9.18.4. Bio-oil producers
17.9.18.5. Prices
17.9.19. Refuse Derived Fuels (RDF)
17.9.19.1. Overview
17.9.19.2. Production
17.9.19.2.1. Production process
17.9.19.2.2. Mechanical biological treatment
17.9.19.3. Markets
17.9.20. Bio-based Lubricants
17.9.21. Companies
17.10. Green Pharmaceuticals and Healthcare
17.10.1. Green Pharmaceutical Synthesis
17.10.1.1. Green Solvents
17.10.1.1.1. Supercritical CO2 (scCO2)
17.10.1.1.2. Ionic Liquids
17.10.1.1.3. Bio-based Solvents
17.10.1.1.4. Water-based Reactions
17.10.1.2. Catalysis
17.10.1.2.1. Biocatalysis (Enzymes and Whole-cell Catalysts)
17.10.1.2.2. Heterogeneous Catalysts
17.10.1.2.3. Organocatalysts
17.10.1.2.4. Photocatalysis
17.10.1.3. Continuous Flow Chemistry
17.10.1.3.1. Microreactors
17.10.1.3.2. Flow Photochemistry
17.10.1.3.3. Electrochemical Flow Cells
17.10.1.4. Alternative Energy Sources
17.10.1.4.1. Microwave-assisted Synthesis
17.10.1.4.2. Ultrasound-assisted Reactions
17.10.1.4.3. Mechanochemistry (Ball Milling)
17.10.1.5. Green Oxidation and Reduction Methods
17.10.1.5.1. Electrochemical oxidation/reduction
17.10.1.5.2. Photochemical reactions
17.10.1.5.3. Hydrogen peroxide as green oxidant
17.10.1.6. Atom-Economical Reactions
17.10.1.7. Bio-based Starting Materials
17.10.1.8. Process Intensification
17.10.1.9. Green Analytical Techniques
17.10.1.10. Sustainable Purification Methods
17.10.2. Bio-based Drug Delivery Systems
17.10.2.1. Natural polymers
17.10.2.1.1. Chitosan and its derivatives
17.10.2.1.2. Alginate
17.10.2.1.3. Hyaluronic acid
17.10.2.1.4. Cellulose and its derivatives
17.10.2.2. Protein-based Materials
17.10.2.2.1. Albumin nanoparticles
17.10.2.2.2. Collagen matrices
17.10.2.2.3. Silk fibroin scaffolds
17.10.2.2.4. Gelatin hydrogels
17.10.2.3. Polysaccharide-based Systems
17.10.2.3.1. Cyclodextrins
17.10.2.3.2. Pectin
17.10.2.3.3. Dextran
17.10.2.3.4. Pullulan
17.10.2.4. Lipid-based Carriers
17.10.2.4.1. Liposomes from natural phospholipids
17.10.2.4.2. Solid lipid nanoparticles
17.10.2.4.3. Nanostructured lipid carriers
17.10.2.5. Plant-derived Materials
17.10.2.5.1. Guar gum
17.10.2.5.2. Carrageenan
17.10.2.5.3. Zein (corn protein)
17.10.2.5.4. Starch-based materials
17.10.2.6. Microbial-derived Polymers
17.10.2.6.1. Polyhydroxyalkanoates (PHAs)
17.10.2.6.2. Bacterial cellulose
17.10.2.6.3. Xanthan gum
17.10.2.7. Stimuli-responsive Biopolymers
17.10.2.7.1. pH-sensitive alginate derivatives
17.10.2.7.2. Thermoresponsive chitosan systems
17.10.2.7.3. Enzyme-responsive materials
17.10.2.8. Bioconjugation Techniques
17.10.2.8.1. Click chemistry for polymer modification
17.10.2.8.2. Enzyme-catalyzed conjugation
17.10.2.8.3. Photo-initiated crosslinking
17.10.2.9. Sustainable Particle Formation
17.10.2.9.1. Spray-drying with green solvents
17.10.2.9.2. Electrospinning of biopolymers
17.10.2.9.3. Supercritical fluid-assisted particle formation
17.10.3. Sustainable Medical Devices
17.10.4. Personalized Chemistry in Medicine
17.10.4.1. Tailored Drug Delivery Systems
17.10.4.2. Personalized Diagnostic Materials
17.10.4.3. Custom-synthesized Therapeutics
17.10.4.4. Biocompatible Materials for Implants
17.10.4.5. 3D-printed Pharmaceuticals
17.10.4.6. Personalized Nutrient Formulations
17.10.5. Companies
17.11. Advanced Materials for 3D Printing
17.11.1. Bio-based 3D Printing Resins
17.11.2. Recyclable and Reusable 3D Printing Materials
17.11.3. Functional and Smart 3D Printing Materials
17.11.4. Companies
17.12. Artificial Intelligence in Chemical Design
17.12.1. Machine Learning for Molecular Design
17.12.2. AI-driven Retrosynthesis Planning
17.12.3. Predictive Modelling of Chemical Properties
17.12.4. AI in Process Optimization
17.12.5. Automated Lab Systems and Robotics
17.12.6. AI for Materials Discovery and Development
17.13. Quantum Chemistry Applications
17.13.1. Quantum Computing for Molecular Simulations
17.13.2. Quantum Sensors in Chemical Analysis
17.13.3. Quantum-inspired Algorithms for Property Prediction
17.13.4. Quantum Approaches to Catalyst Design
17.13.5. Quantum Chemistry in Drug Discovery
17.13.6. Quantum Effects in Nanomaterials
17.13.7. Companies
18. ECONOMIC ASPECTS AND BUSINESS MODELS
18.1. Cost Competitiveness of Sustainable Chemical Technologies
18.2. Investment Trends in Green Chemistry
18.3. New Business Models in the Circular Economy
18.4. Market Dynamics and Consumer Preferences
18.5. Intellectual Property Considerations
18.6. Case Studies
18.6.1. Bio-based Production of Bulk Chemicals
18.6.2. CO2 to Polymers: Innovating in Materials
18.6.3. Waste Plastic to Fuels and Chemicals
18.6.4. Green Pharmaceutical Manufacturing
18.6.5. Sustainable Agriculture Chemicals
18.6.6. Circular Economy in Action: Closing the Loop in Packaging
18.6.7. Revolutionizing Textiles: From Petrochemicals to Bio-based Fibers
19. FUTURE OUTLOOK AND EMERGING TRENDS
19.1. Convergence of Bio, Nano, and Information Technologies
19.2. Quantum Computing in Chemical Research and Development
19.3. Space-based Manufacturing of Chemicals
19.4. Artificial Photosynthesis and Solar Fuels
19.5. Personalized and On-demand Chemical Manufacturing
19.6. The Role of Chemistry in Achieving Net-Zero Emissions
19.7. Circular Economy Solutions
19.8. Artificial Intelligence and Digitalization Impact
19.9. Quantum Chemistry Prospects
20. APPENDICES
20.1. Glossary of Terms
20.2. List of Abbreviations
20.3. Research Methodology
21. REFERENCES
관련자료