¼¼°èÀÇ Ã·´Ü È­ÇÐÁ¦Ç° ¹× °ø±Þ ¿ø·á ÀçȰ¿ë ½ÃÀå(2025-2040³â)
The Global Advanced (Chemical or Feedstock) Recycling Market 2025-2040
»óǰÄÚµå : 1682216
¸®¼­Ä¡»ç : Future Markets, Inc.
¹ßÇàÀÏ : 2025³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 363 Pages, 89 Tables, 54 Figures
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¡Ì 1,000 £Ü 1,940,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

È­ÇÐÀû ÀçȰ¿ë ¶Ç´Â °ø±Þ¿ø·á ÀçȰ¿ëÀ̶ó°íµµ ºÒ¸®´Â ÷´Ü ÀçȰ¿ëÀº Æó±â¹°À» ºÐÀÚ ¼öÁرîÁö ºÐÇØÇÏ¿© »õ·Î¿î ¿ø·á·Î ÀüȯÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ÀÌÇØ°ü°èÀÚµéÀÌ Áö±Ý±îÁö ÀçȰ¿ëÇÒ ¼ö ¾ø¾ú´ø ÇÃ¶ó½ºÆ½ Æó±â¹°¿¡ ´ëÇÑ ÇØ°áÃ¥À» ¸ð»öÇÏ´Â °¡¿îµ¥, ÷´Ü ÀçȰ¿ë ½ÃÀåÀº Å« ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ·Î Æú¸®¸Ó¸¦ ÀçÇü¼ºÇÏ´Â ±â°èÀû ÀçȰ¿ë°ú ´Þ¸® °í±Þ ÀçȰ¿ëÀº Àç·á¸¦ ºÐÀÚ ´ÜÀ§·Î ºÐÇØÇÏ¿© ´õ ³ÐÀº ¹üÀ§ÀÇ ÇÃ¶ó½ºÆ½ ¹× ±âŸ Àç·áÀÇ ÁøÁ¤ÇÑ ¼øÈ¯¼ºÀ» ½ÇÇöÇÕ´Ï´Ù.

ÀÌ ½ÃÀåÀº Áõ°¡ÇÏ´Â ±ÔÁ¦ ¾Ð·Â, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â, ¿©·¯ º¯È¯ Ç÷§Æû¿¡ °ÉÄ£ ±â¼ú ¼º¼÷¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú·Î´Â ¿­ºÐÇØ, °¡½ºÈ­, ¿ë¸Å ºÐÇØ, ¿ë¸Å ºÐÇØ, ÇØÁßÇÕ µîÀÌ ÀÖÀ¸¸ç, °¢ ±â¼úÀº ƯÁ¤ Æú¸®¸Ó È帧 ¶Ç´Â ÃÖÁ¾ Á¦Ç° ¿ëµµ¸¦ ´ë»óÀ¸·Î ÇÕ´Ï´Ù. ÀÌ ºÎ¹®¿¡ ´ëÇÑ ÅõÀÚ È帧Àº ±Þ°ÝÈ÷ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, 2020³â ÀÌÈÄ 75¾ï ´Þ·¯ ÀÌ»óÀÇ ÅõÀÚ°¡ ¾à¼ÓµÇ¾î ÀÖ½À´Ï´Ù. ÷´Ü ÀçȰ¿ë°ú ±âÁ¸ ¼®À¯È­ÇÐ ÀÎÇÁ¶óÀÇ ÅëÇÕÀº ±âÁ¸ À¯Åë¸Á°ú ±â¼ú Àü¹®¼ºÀ» ÅëÇØ ¹èÆ÷»óÀÇ ÀÌÁ¡À» âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù.

±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â Á¡Á¡ ´õ ¼±ÁøÀûÀÎ ÀçȰ¿ë äÅÃÀ» ÁöÁöÇÏ´Â ¹æÇâÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕÀÇ Circular Economy Action Plan°ú Plastic Packaging Levy´Â ÀçȰ¿ë Á¦Ç°¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °æÁ¦Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, ¹Ì±¹ EPA¿Í ÁÖÁ¤ºÎ Â÷¿øÀÇ ¹ý·üÀº È­Çй°Áú ÀçȰ¿ëÀ» Æó±â¹° 󸮰¡ ¾Æ´Ñ Á¤´çÇÑ ÀçȰ¿ëÀ¸·Î ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¿¡µµ ºÒ±¸ÇÏ°í °úÁ¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ÀÚº» Áý¾àµµ´Â ¿¬°£ »ý»ê ´É·Â 1Åæ´ç 1,500-4,000´Þ·¯·Î ¿©ÀüÈ÷ ³ôÀ¸¸ç, ÀÌ´Â ±Þ¼ÓÇÑ È®Àå¿¡ ´ëÇÑ °æÁ¦Àû À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ã˸а³¹ß ¹× °øÁ¤ ÅëÇÕÀ» ÅëÇØ °øÁ¤ ¼öÀ²°ú ¿¡³ÊÁö È¿À²ÀÌ Áö¼ÓÀûÀ¸·Î °³¼±µÇ¾î °æÁ¦¼ºÀÌ Á¡Â÷ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ¿ø·áÀÇ Ç°Áú°ú Àϰü¼ºÀº ¿î¿µ»óÀÇ ¹®Á¦À̸ç, ¿À¿° ¹°ÁúÀº Ã˸ÅÀÇ ¼º´É°ú Á¦Ç° ǰÁú¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿¹Ãø¿¡ µû¸£¸é, ¼±Áø ÀçȰ¿ëÀº 2030³â±îÁö ¿¬°£ 2,000¸¸-2,500¸¸ ÅæÀÇ ÇÃ¶ó½ºÆ½ Æó±â¹°À» ó¸®ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â Àü ¼¼°è ÇÃ¶ó½ºÆ½ »ý»ê·®ÀÇ ¾à 5-7%¿¡ ÇØ´çÇÕ´Ï´Ù. Àüü ÇÃ¶ó½ºÆ½ »ý»ê·®¿¡¼­ Â÷ÁöÇÏ´Â ºñÁßÀº ¿©ÀüÈ÷ ÀÛÁö¸¸, ÇöÀç ¼öÁØ(1% ¹Ì¸¸)¿¡¼­ Å©°Ô Áõ°¡ÇÏ¿© ÀÌÀü¿¡´Â ¸Å¸³ ¶Ç´Â ¼Ò°¢ 󸮵Ǵø ¹°Áú¿¡ ´ëÇÑ ÀÇ¹Ì ÀÖ´Â ¼øÈ¯ °æ·Î¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ÁøÈ­´Â ±ú²ýÇÏ°í ±ÕÀÏÇÑ È帧À» À§ÇØ ±â°è½Ä ÀçȰ¿ë°ú Á÷Á¢ °æÀïÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó °í±Þ ÀçȰ¿ëÀÌ °íÀ¯ÇÑ °¡Ä¡¸¦ Á¦°øÇϴ Ư¼ö ¿ëµµ¿¡ Á¡Á¡ ´õ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ º¸¿ÏÀûÀÎ Á¢±Ù ¹æ½ÄÀº ´Ù¾çÇÑ Àç·áÀÇ Ç°Áú°ú ¿À¿° ¼öÁØ¿¡¼­ ȯ°æÀû, °æÁ¦Àû ¼º´ÉÀ» ÃÖÀûÈ­Çϸ鼭 ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ Àüü ¹üÀ§¸¦ ´Ù·ç°í ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°è ÷´Ü È­ÇÐÁ¦Ç° ¹× °ø±Þ ¿ø·á ÀçȰ¿ë ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ºü¸£°Ô ÁøÈ­ÇÏ´Â ±â¼ú, ½ÃÀå ¿ªÇÐ, ¼ºÀå ±âȸ¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÀçȰ¿ë ±â¼ú ºÐ·ù

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ¼­·Ð

Á¦4Àå ÷´Ü ÀçȰ¿ë ½ÃÀå

Á¦5Àå ÷´Ü È­ÇÐÁ¦Ç° ¹× °ø±Þ ¿ø·á ÀçȰ¿ë ±â¼ú

Á¦6Àå Àç·á ºÐ¼®

Á¦7Àå ÃÖÁ¾ Á¦Ç° ºÐ¼®

Á¦8Àå ±â¾÷ °³¿ä(±â¾÷ 193°³»ç °³¿ä)

Á¦9Àå ¿ë¾îÁý

Á¦10Àå Âü°í ¹®Çå

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Advanced recycling, sometimes referred to as chemical or feedstock recycling, is a process that breaks down waste to the molecular level so it can be converted to new raw materials. The advanced recycling market is experiencing major growth as stakeholders seek solutions for previously unrecyclable plastic waste. Unlike mechanical recycling, which primarily reshapes polymers, advanced recycling breaks materials down to molecular building blocks, enabling true circularity for a wider range of plastics and other materials.

The market is driven by increasing regulatory pressure, corporate sustainability commitments, and technological maturation across multiple conversion platforms. Leading technologies include pyrolysis, gasification, solvolysis, and depolymerization, each targeting specific polymer streams or end-product applications. Investment flows into the sector have accelerated dramatically, with over $7.5 billion committed since 2020. This integration of advanced recycling with conventional petrochemical infrastructure creates deployment advantages through existing distribution networks and technical expertise.

Regulatory frameworks increasingly support advanced recycling adoption. The European Union's Circular Economy Action Plan and Plastic Packaging Levy create direct economic incentives for recycled content, while the U.S. EPA and state-level legislation increasingly recognize chemical recycling as legitimate recycling rather than waste disposal. Challenges persist despite these advances. Capital intensity remains high at $1,500-4,000 per ton of annual capacity, creating economic barriers to rapid scaling. Process yield and energy efficiency improvements continue through catalyst development and process integration, gradually improving economics. Feedstock quality and consistency represent operational challenges, with contaminants potentially affecting catalyst performance and product quality.

Market forecasts suggest advanced recycling will process 20-25 million tons of plastic waste annually by 2030, representing approximately 5-7% of global plastic production. While still a modest fraction of total plastics volume, this represents significant growth from current levels (<1%) and creates meaningful circular pathways for materials previously destined for landfills or incineration. The sector's evolution increasingly focuses on specialized applications where advanced recycling provides unique value rather than competing directly with mechanical recycling for clean, homogeneous streams. This complementary approach addresses the full spectrum of plastic waste while optimizing environmental and economic performance across different material qualities and contamination levels.

"The Advanced (Chemical or Feedstock) Recycling Market 2025-2040" report provides an in-depth analysis of the rapidly evolving technologies, market dynamics, and growth opportunities in the advanced (chemical or feedstock) recycling sector. As global plastic production reaches unprecedented levels and environmental concerns intensify, advanced recycling emerges as a critical solution for transforming plastic waste into valuable chemical feedstocks and materials. This report delivers essential insights for stakeholders across the value chain, from technology developers and investors to consumer product companies and policymakers.

Report contents include:

The report features extensive data on polymer demand segmented by recycling technology, life cycle assessments comparing different recycling methods, and detailed price and yield analyses.

The report provides comprehensive profiles of 193 key players in the advanced recycling market, including Accurec Recycling, Aduro Clean Technologies, Advanced Plastic Purification International, Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, DOPS Recycling Technology, Dow Chemical, DyeRecycle, Descycle, Eastman Chemical, Eco Fuel Technology, Ecopek, Ecoplasteam, ECO RnS, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions, Epoch Biodesign, Equipolymers, Evonik Industries, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical, Kaneka, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, METYCLE, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group, Novoloop, Olefy Technologies, OMV, Orlen Unipetrol, PETRONAS Chemicals Group, PlastEco, Plastic Back, Plastic Energy, Plastic2Oil, Plasta Rei, Plastogaz, Poliloop, Polycycl, Polynate, PolyStyreneLoop, Polystyvert, Poseidon Plastics and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

4. THE ADVANCED RECYCLING MARKET

5. ADVANCED (CHEMICAL OR FEEDSTOCK) RECYCLING TECHNOLOGIES

6. MATERIALS ANALYSIS

7. END PRODUCT ANALYSIS

8. COMPANY PROFILES (193 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â