¼¼°èÀÇ Ã·´Ü ź¼Ò Àç·á ½ÃÀå(2025-2035³â)
The Global Market for Advanced Carbon Materials 2025-2035
»óǰÄÚµå
:
1680888
¸®¼Ä¡»ç
:
Future Markets, Inc.
¹ßÇàÀÏ
:
2025³â 03¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹® 1074 Pages, 245 Tables, 185 Figures
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
ÀÌ º¸°í¼´Â ÀüÅëÀûÀΠź¼Ò¼¶À¯¿¡¼ ±×·¡ÇÉ ¹× ź¼Ò³ª³ëÆ©ºê¿Í °°Àº ÃÖ÷´Ü ³ª³ë¹°Áú¿¡ À̸£±â±îÁö ź¼Ò Àç·á »ýŰè Àüü¸¦ ÀÚ¼¼È÷ ºÐ¼®ÇÕ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ¹ßÀü°ú ±×¸°¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ ÃßÁøµÇ°í ÀÖ´Â °¡¿îµ¥, ÷´Ü ź¼Ò Àç·á´Â Â÷¼¼´ë ±â¼úÀ» ½ÇÇöÇϴµ¥ ÀÖ¾î¼ Á¡Á¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ³ôÀº °µµ ´ë Áß·®ºñ, ¿ Àüµµ¼º, Àü±â Àüµµ¼º, ÈÇÐÀû ¾ÈÁ¤¼º µîÀÇ Å¹¿ùÇÑ Æ¯¼ºÀº ´Ù¾çÇÑ »ê¾÷¿¡¼ º¹ÀâÇÑ ¿£Áö´Ï¾î¸µ ¹®Á¦¿¡ ´ëÀÀÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
ÀÌ º¸°í¼´Â ¼¼°è ÷´Ü ź¼Ò Àç·á ½ÃÀå¿¡ ´ëÇÑ Á¶»ç ºÐ¼®, ź¼Ò Àç·áÀÇ ±â¼úÀû, »ó¾÷Àû ¹× ½ÃÀåÀû Ãø¸éÀ» °ËÁõÇϰí, »ý»ê ±â¼ú, °ø±Þ¸Á, °æÀï ±¸µµ, ¼ºÀå ±âȸ¿¡ ´ëÇÑ Àü·«Àû Áö½ÄÀ» Á¦°øÇÕ´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÷´Ü ź¼Ò Àç·á ½ÃÀå
½ÃÀå °³¿ä
ÁÖ¿ä ¿ëµµ
±×¸°ÀÌÇà¿¡ ÀÖ¾î¼ÀÇ Ã·´Ü ź¼Ò Àç·áÀÇ ¿ªÇÒ
Á¦2Àå ź¼Ò¼¶À¯
ź¼Ò¼¶À¯ÀÇ Æ¯¼º
Àü±¸Ã¼ Àç·áÀÇ À¯Çü
½ÃÀå°ú ¿ëµµ
½ÃÀå ºÐ¼®
±â¾÷ ÇÁ·ÎÆÄÀÏ
Á¦3Àå Ä«º»ºí·¢
»ó¿ë Ä«º»ºí·¢
Ư¼º
Á¦Á¶ °øÁ¤
½ÃÀå°ú ¿ëµµ
Ư¼ö Ä«º»ºí·¢
ȸ¼ö Ä«º»ºí·¢(rCB)
½ÃÀå ºÐ¼®
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 51°³ ÇÁ·ÎÆÄÀÏ)
Á¦4Àå Èæ¿¬
Èæ¿¬ÀÇ À¯Çü
õ¿¬ Èæ¿¬
ÇÕ¼º Èæ¿¬
½Å±â¼ú
Èæ¿¬Àç·áÀÇ ÀçȰ¿ë
½ÃÀå°ú ¿ëµµ
Èæ¿¬ °¡°Ý
¼¼°èÀÇ Èæ¿¬ »ý»ê
¼¼°èÀÇ Èæ¿¬ ½ÃÀå ¼ö¿ä : ÃÖÁ¾ ¿ëµµ ½ÃÀ庰(2016³â-2035³â)
Èæ¿¬ ¼ö¿ä : ÃÖÁ¾ ¿ëµµ ½ÃÀ庰(2023³â)
Èæ¿¬ ¼ö¿ä : ÃÖÁ¾ ¿ëµµ ½ÃÀ庰(2035³â)
¼ö¿ä : Áö¿ªº°
Èæ¿¬ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎ
Èæ¿¬ ½ÃÀåÀÇ ¼ºÀå ¾ïÁ¦¿äÀÎ
ÁÖ¿ä ½ÃÀå ±â¾÷
½ÃÀå °ø±Þ¸Á
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 102°³ ÇÁ·ÎÆÄÀÏ)
Á¦5Àå ¹ÙÀÌ¿ÀÂ÷
¹ÙÀÌ¿ÀÂ÷
ź¼Ò °Ý¸®
¹ÙÀÌ¿ÀÂ÷ÀÇ Æ¯¼º
½ÃÀå°ú ¿ëµµ
¹ÙÀÌ¿ÀÂ÷ »ý»ê
¿ø·á
»ý»ê °øÁ¤
Ä«º» Å©·¹µðÆ®
¹ÙÀÌ¿ÀÂ÷ ½ÃÀå
½ÃÀå ºÐ¼®
¼¼°è ½ÃÀå
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 130°³ ÇÁ·ÎÆÄÀÏ)
Á¦6Àå ±×·¡ÇÉ
±×·¡ÇÉÀÇ À¯Çü
Ư¼º
½ÃÀå ºÐ¼®
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 368°³ ÇÁ·ÎÆÄÀÏ)
Á¦7Àå ź¼Ò³ª³ëÆ©ºê
Ư¼º
´ÙÁߺ® ź¼Ò³ª³ëÆ©ºê(MWCNT)
´ÜÃþ ź¼Ò³ª³ëÆ©ºê(SWCNT)
±âŸ À¯Çü
Á¦8Àå ź¼Ò³ª³ë¼¶À¯
Ư¼º
ÇÕ¼º
½ÃÀå
½ÃÀå ºÐ¼®
¼¼°è ½ÃÀåÀÇ ¼öÀÍ
±â¾÷(±â¾÷ 12°³ ÇÁ·ÎÆÄÀÏ)
Á¦9Àå Ç®·¯·»
Ư¼º
½ÃÀå°ú ¿ëµµ
±â¼ú¼º¼÷µµ(TRL)
½ÃÀå ºÐ¼®
Á¦Á¶¾÷ü(±â¾÷ 20°³ ÇÁ·ÎÆÄÀÏ)
Á¦10Àå ³ª³ë ´ÙÀ̾Ƹóµå
¼Ò°³
À¯Çü
½ÃÀå°ú ¿ëµµ
½ÃÀå ºÐ¼®
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 30°³ ÇÁ·ÎÆÄÀÏ)
Á¦11Àå ±×·¡ÇÉ ¾çÀÚÁ¡
¾çÀÚÁ¡°úÀÇ ºñ±³
Ư¼º
ÇÕ¼º
¿ëµµ
±×·¡ÇÉ ¾çÀÚÁ¡ÀÇ °¡°Ý ¼³Á¤
±×·¡ÇÉ ¾çÀÚÁ¡ Á¦Á¶¾÷ü(±â¾÷ 9°³ ÇÁ·ÎÆÄÀÏ)
Á¦12Àå Ä«º»Æû
À¯Çü
Ư¼º
¿ëµµ
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 9°³ ÇÁ·ÎÆÄÀÏ)
Á¦13Àå DLC ÄÚÆÃ
Ư¼º
¿ëµµ¿Í ½ÃÀå
¼¼°è ½ÃÀå ±Ô¸ð
±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 9°³ ÇÁ·ÎÆÄÀÏ)
Á¦14Àå Ȱ¼ºÅº
°³¿ä
À¯Çü
»ý»ê
½ÃÀå°ú ¿ëµµ
½ÃÀå ºÐ¼®
¼¼°è ½ÃÀåÀÇ ¼öÀÍ(2020³â-2035³â)
±â¾÷(±â¾÷ 22°³ ÇÁ·ÎÆÄÀÏ)
Á¦15Àå ź¼Ò ¿¡¾î·ÎÁ©, Á¦·ÎÁ©
°³¿ä
À¯Çü
½ÃÀå°ú ¿ëµµ
½ÃÀå ºÐ¼®
¼¼°è ½ÃÀå
±â¾÷(±â¾÷ 10°³ ÇÁ·ÎÆÄÀÏ)
Á¦16Àå ź¼Ò Æ÷Áý ¹× Ȱ¿ë(CCU)À» ÅëÇÑ Åº¼Ò ¼ÒÀç
¹èÃâÁöÁ¡¿¡¼ CO2 Æ÷Áý
ÁÖ¿ä ź¼Ò Æ÷Áý °øÁ¤
ź¼Ò ºÐ¸® ±â¼ú
´ë±âÁß ÀÌ»êÈź¼Ò Á÷Á¢ Æ÷Áý(DAC)
±â¾÷(±â¾÷ 4°³ ÇÁ·ÎÆÄÀÏ)
Á¦17Àå Á¶»ç ¹æ¹ý
Á¦18Àå Âü°í¹®Çå
SHW
¿µ¹® ¸ñÂ÷
Advanced carbon materials are transforming industries through applications in:
Lightweight, high-strength composites for aerospace and automotive
Next-generation batteries and supercapacitors
Thermal management in electronics
Medical implants and drug delivery systems
Water purification and environmental remediation
Sensors and electronic components
Their commercial importance continues to grow as manufacturing processes mature, reducing costs and enabling broader adoption across multiple sectors where conventional materials cannot meet increasingly demanding performance requirements. "The Global Market for Advanced Carbon Materials 2025-2035" provides an in-depth analysis of the entire carbon materials ecosystem, from traditional carbon fibers to cutting-edge nanomaterials like graphene and carbon nanotubes. With the push for sustainable development and the transition to green energy, advanced carbon materials are playing an increasingly critical role in enabling next-generation technologies. Their exceptional properties-including high strength-to-weight ratios, thermal and electrical conductivity, and chemical stability-make them indispensable in addressing complex engineering challenges across multiple industries.
This report examines the technical, commercial, and market aspects of carbon materials, offering strategic insights into production technologies, supply chains, competitive landscapes, and growth opportunities.
Report contents include:
Market Analysis and Forecasts:
Comprehensive market sizing and growth projections through 2035 for all advanced carbon material categories
Detailed regional analysis covering North America, Europe, Asia-Pacific, and emerging markets
End-user industry breakdown with application-specific forecasts
Pricing trends and cost analyses across the entire carbon materials spectrum
Production capacities by material type and leading manufacturers
Material Coverage:
Carbon Fibers: PAN-based, pitch-based, bio-based, and recycled carbon fibers
Carbon Black: Conventional, specialty, and recovered carbon black
Graphite: Natural flake, synthetic, spherical, and expandable graphite
Graphene: Few-layer, multi-layer, graphene oxide, and graphene nanoplatelets
Carbon Nanotubes: Single-walled, multi-walled, and vertically aligned CNTs
Nanodiamonds: Detonation nanodiamonds and fluorescent nanodiamonds
Other Carbon Materials: Carbon aerogels, fullerenes, carbon nanofibers, and biochar
Application Analysis:
Thermal Management: Interface materials, heat spreaders, and thermal solutions
Energy Storage: Battery additives, supercapacitors, and fuel cell components
Composites: Aerospace, automotive, wind energy, and sporting goods
Electronics: Conductive inks, sensors, EMI shielding, and flexible electronics
Environmental Technologies: Carbon capture, water purification, and remediation
Technology Assessment:
Manufacturing processes and innovations for each carbon material type
Technology readiness levels (TRL) and commercialization timelines
Emerging synthesis methods and their potential impact on markets
Key technical challenges and R&D priorities
Competitive Landscape:
Detailed profiles of 1000+ companies across the carbon materials value chain. Companies profiled include Arkema, Birla Carbon, Black Bear Carbon, Black Semiconductor GmbH, C12, Carbon Conversions, Carbice, Cabot Corporation, Directa Plus, DowAksa, Eden Innovations, First Graphene, Fujitsu Laboratories, GrafTech International, Graphene Manufacturing Group, Graphenea, GraphEnergy Tech, Graphjet Technology, Hexcel Corporation, Huntsman Corporation, HydroGraph, Imerys, INBRAIN Neuroelectronics, Levidian Nanosystems, Lyten, Mersen, Nanocomp Technologies, Naieel Technology, NanoXplore, NDB Technology, OCSiAl Group, Paragraf, Perpetuus Carbon Group, Premier Graphene, Resonac, Samsung, SGL Carbon, Skeleton Technologies, Syrah Resources, Talga Resources, Teijin Limited, Thomas Swan, Toray Industries, TrimTabs, Universal Matter, Vartega, Versarien, and Zeon Specialty Materials.
Strategic analysis of key market players including producers and product developers, including product portfolios and business models
Mergers, acquisitions, and strategic partnerships reshaping the industry
Emerging start-ups and innovators disrupting traditional markets
Sustainability and Regulatory Analysis:
Environmental impact assessments of production processes
Carbon footprint comparisons across material types
Regulatory frameworks affecting carbon materials globally
Recycling and circular economy initiatives
TABLE OF CONTENTS
1. THE ADVANCED CARBON MATERIALS MARKET
1.1. Market overview
1.2. Main Applications
1.2.1. Thermal Management in Electronics
1.2.2. Conductive Battery Additives and Electrodes
1.2.3. Composites
1.3. Role of advanced carbon materials in the green transition
2. CARBON FIBERS
2.1. Properties of carbon fibers
2.1.1. Types by modulus
2.1.2. Types by the secondary processing
2.2. Precursor material types
2.2.1. PAN: Polyacrylonitrile
2.2.1.1. Spinning
2.2.1.2. Stabilizing
2.2.1.3. Carbonizing
2.2.1.4. Surface treatment
2.2.1.5. Sizing
2.2.1.6. Pitch-based carbon fibers
2.2.1.7. Isotropic pitch
2.2.1.8. Mesophase pitch
2.2.1.9. Viscose (Rayon)-based carbon fibers
2.2.2. Bio-based and alternative precursors
2.2.2.1. Lignin
2.2.2.2. Polyethylene
2.2.2.3. Vapor grown carbon fiber (VGCF)
2.2.2.4. Textile PAN
2.2.3. Recycled carbon fibers (r-CF)
2.2.3.1. Recycling processes
2.2.3.2. Companies
2.2.4. Carbon Fiber 3D Printing
2.2.5. Plasma oxidation
2.2.6. Carbon fiber reinforced polymer (CFRP)
2.3. Markets and applications
2.3.1. Aerospace
2.3.2. Wind energy
2.3.3. Sports & leisure
2.3.4. Automotive
2.3.5. Pressure vessels
2.3.6. Oil and gas
2.4. Market analysis
2.4.1. Market Growth Drivers and Trends
2.4.2. Regulations
2.4.3. Price and Costs Analysis
2.4.4. Supply Chain
2.4.5. Competitive Landscape
2.4.5.1. Annual capacity, by producer
2.4.5.2. Market share, by capacity
2.4.6. Future Outlook
2.4.7. Addressable Market Size
2.4.8. Risks and Opportunities
2.4.9. Global market
2.4.9.1. Global carbon fiber demand 2016-2035, by industry (MT)
2.4.9.2. Global carbon fiber revenues 2016-2035, by industry (billions USD)
2.4.9.3. Global carbon fiber demand 2016-2035, by region (MT)
2.5. Company profiles
2.5.1. Carbon fiber producers (29 company profiles)
2.5.2. Carbon Fiber composite producers (62 company profiles)
2.5.3. Carbon fiber recyclers (16 company profiles)
3. CARBON BLACK
3.1. Commercially available carbon black
3.2. Properties
3.2.1. Particle size distribution
3.2.2. Structure-Aggregate size
3.2.3. Surface chemistry
3.2.4. Agglomerates
3.2.5. Colour properties
3.2.6. Porosity
3.2.7. Physical form
3.3. Manufacturing processes
3.4. Markets and applications
3.4.1. Tires and automotive
3.4.2. Non-Tire Rubber (Industrial rubber)
3.4.3. Other markets
3.5. Specialty carbon black
3.5.1. Global market size for specialty CB
3.6. Recovered carbon black (rCB)
3.6.1. Pyrolysis of End-of-Life Tires (ELT)
3.6.2. Discontinuous ("batch") pyrolysis
3.6.3. Semi-continuous pyrolysis
3.6.4. Continuous pyrolysis
3.6.5. Key players
3.6.6. Global market size for Recovered Carbon Black
3.7. Market analysis
3.7.1. Market Growth Drivers and Trends
3.7.2. Regulations
3.7.3. Supply chain
3.7.4. Price and Costs Analysis
3.7.4.1. Feedstock
3.7.4.2. Commercial carbon black
3.7.5. Competitive Landscape
3.7.5.1. Production capacities
3.7.6. Future Outlook
3.7.7. Customer Segmentation
3.7.8. Addressable Market Size
3.7.9. Risks and Opportunities
3.7.10. Global market
3.7.10.1. By market (tons)
3.7.10.2. By market (revenues)
3.7.10.3. By region (Tons)
3.8. Company profiles (51 company profiles)
4. GRAPHITE
4.1. Types of graphite
4.1.1. Natural vs synthetic graphite
4.2. Natural graphite
4.2.1. Classification
4.2.2. Processing
4.2.3. Flake
4.2.3.1. Grades
4.2.3.2. Applications
4.2.3.3. Spherical graphite
4.2.3.4. Expandable graphite
4.2.4. Amorphous graphite
4.2.5. Crystalline vein graphite
4.3. Synthetic graphite
4.3.1. Classification
4.3.1.1. Primary synthetic graphite
4.3.1.2. Secondary synthetic graphite
4.3.2. Processing
4.3.2.1. Processing for battery anodes
4.3.3. Issues with synthetic graphite production
4.3.4. Isostatic Graphite
4.3.4.1. Description
4.3.4.2. Markets
4.3.4.3. Producers and production capacities
4.3.5. Graphite electrodes
4.3.6. Extruded Graphite
4.3.7. Vibration Molded Graphite
4.3.8. Die-molded graphite
4.4. New technologies
4.5. Recycling of graphite materials
4.6. Markers and applications
4.7. Graphite pricing (ton)
4.8. Global production of graphite
4.8.1. The graphite market in 2024 and beyond
4.8.2. China dominance
4.8.3. United States subsidies/loans and tariffs on Chinese imports
4.8.4. Global mine production and reserves of natural graphite
4.8.5. Global graphite production in tonnes, 2016-2023
4.8.6. Estimated global graphite production in tonnes, 2024-2035
4.8.7. Synthetic graphite supply
4.9. Global market demand for graphite by end use market 2016-2035, tonnes
4.9.1. Natural graphite
4.9.2. Synthetic graphite
4.10. Demand for graphite by end use markets, 2023
4.11. Demand for graphite by end use markets, 2035
4.12. Demand by region
4.12.1. China
4.12.1.1. Diversification of global supply and production
4.12.2. Asia-Pacific
4.12.2.1. Synthetic graphite
4.12.2.2. Natural graphite
4.12.3. North America
4.12.3.1. Synthetic graphite
4.12.3.2. Natural graphite
4.12.4. Europe
4.12.4.1. Natural graphite
4.12.5. Brazil
4.13. Factors that aid graphite market growth
4.14. Factors that hinder graphite market growth
4.15. Main market players
4.15.1. Natural graphite
4.15.2. Synthetic graphite
4.16. Market supply chain
4.17. Company profiles (102 company profiles)
5. BIOCHAR
5.1. What is biochar?
5.2. Carbon sequestration
5.3. Properties of biochar
5.4. Markets and applications
5.5. Biochar production
5.6. Feedstocks
5.7. Production processes
5.7.1. Sustainable production
5.7.2. Pyrolysis
5.7.2.1. Slow pyrolysis
5.7.2.2. Fast pyrolysis
5.7.3. Gasification
5.7.4. Hydrothermal carbonization (HTC)
5.7.5. Torrefaction
5.7.6. Equipment manufacturers
5.8. Carbon credits
5.8.1. Overview
5.8.2. Removal and reduction credits
5.8.3. The advantage of biochar
5.8.4. Price
5.8.5. Buyers of biochar credits
5.8.6. Competitive materials and technologies
5.8.6.1. Geologic carbon sequestration
5.8.6.2. Bioenergy with Carbon Capture and Storage (BECCS)
5.8.6.3. Direct Air Carbon Capture and Storage (DACCS)
5.8.6.4. Enhanced mineral weathering with mineral carbonation
5.8.6.5. Ocean alkalinity enhancement
5.8.6.6. Forest preservation and afforestation
5.9. Markets for biochar
5.9.1. Agriculture & livestock farming
5.9.1.1. Market drivers and trends
5.9.1.2. Applications
5.9.2. Construction materials
5.9.2.1. Market drivers and trends
5.9.2.2. Applications
5.9.3. Wastewater treatment
5.9.3.1. Market drivers and trends
5.9.3.2. Applications
5.9.4. Filtration
5.9.4.1. Market drivers and trends
5.9.4.2. Applications
5.9.5. Carbon capture
5.9.5.1. Market drivers and trends
5.9.5.2. Applications
5.9.6. Cosmetics
5.9.6.1. Market drivers and trends
5.9.6.2. Applications
5.9.7. Textiles
5.9.7.1. Market drivers and trends
5.9.7.2. Applications
5.9.8. Additive manufacturing
5.9.8.1. Market drivers and trends
5.9.8.2. Applications
5.9.9. Ink
5.9.9.1. Market drivers and trends
5.9.9.2. Applications
5.9.10. Polymers
5.9.10.1. Market drivers and trends
5.9.10.2. Applications
5.9.11. Packaging
5.9.11.1. Market drivers and trends
5.9.11.2. Applications
5.9.12. Steel and metal
5.9.12.1. Market drivers and trends
5.9.12.2. Applications
5.9.13. Energy
5.9.13.1. Market drivers and trends
5.9.13.2. Applications
5.10. Market analysis
5.10.1. Market Growth Drivers and Trends
5.10.2. Regulations
5.10.3. Price and Costs Analysis
5.10.4. Supply Chain
5.10.5. Competitive Landscape
5.10.6. Future Outlook
5.10.7. Customer Segmentation
5.10.8. Addressable Market Size
5.10.9. Risks and Opportunities
5.11. Global market
5.11.1. By market
5.11.2. By region
5.11.3. By feedstocks
5.11.3.1. China and Asia-Pacific
5.11.3.2. North America
5.11.3.3. Europe
5.11.3.4. South America
5.11.3.5. Africa
5.11.3.6. Middle East
5.12. Company profiles (130 company profiles)
6. GRAPHENE
6.1. Types of graphene
6.2. Properties
6.3. Market analysis
6.3.1. Market Growth Drivers and Trends
6.3.2. Regulations
6.3.3. Price and Costs Analysis
6.3.3.1. Pristine graphene flakes pricing/CVD graphene
6.3.3.2. Few-Layer graphene pricing
6.3.3.3. Graphene nanoplatelets pricing
6.3.3.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
6.3.3.5. Multi-Layer graphene (MLG) pricing
6.3.3.6. Graphene ink
6.3.4. Markets and applications
6.3.4.1. Batteries
6.3.4.2. Supercapacitors
6.3.4.3. Polymer additives
6.3.4.4. Sensors
6.3.4.5. Conductive inks
6.3.4.6. Transparent conductive films
6.3.4.7. Transistors and integrated circuits
6.3.4.8. Filtration
6.3.4.9. Thermal management
6.3.4.10. 3D printing
6.3.4.11. Adhesives
6.3.4.12. Aerospace
6.3.4.13. Automotive
6.3.4.14. Fuel cells
6.3.4.15. Biomedical and healthcare
6.3.4.16. Paints and coatings
6.3.4.17. Photovoltaics
6.3.5. Supply Chain
6.3.6. Future Outlook
6.3.7. Addressable Market Size
6.3.8. Risks and Opportunities
6.3.9. Global demand 2018-2035, tons
6.3.9.1. Global demand by graphene material (tons)
6.3.9.2. Global demand by end user market
6.3.9.3. Graphene market, by region
6.4. Company profiles (368 company profiles)
7. CARBON NANOTUBES
7.1. Properties
7.1.1. Comparative properties of CNTs
7.2. Multi-walled carbon nanotubes (MWCNTs)
7.2.1. Properties
7.2.2. Markets and applications
7.3. Single-walled carbon nanotubes (SWCNTs)
7.3.1. Properties
7.3.2. Markets and applications
7.3.3. Company profiles (152 company profiles)
7.4. Other types
7.4.1. Double-walled carbon nanotubes (DWNTs)
7.4.1.1. Properties
7.4.1.2. Applications
7.4.2. Vertically aligned CNTs (VACNTs)
7.4.2.1. Properties
7.4.2.2. Applications
7.4.3. Few-walled carbon nanotubes (FWNTs)
7.4.3.1. Properties
7.4.3.2. Applications
7.4.4. Carbon Nanohorns (CNHs)
7.4.4.1. Properties
7.4.4.2. Applications
7.4.5. Carbon Onions
7.4.5.1. Properties
7.4.5.2. Applications
7.4.6. Boron Nitride nanotubes (BNNTs)
7.4.6.1. Properties
7.4.6.2. Applications
7.4.6.3. Production
7.4.7. Companies (6 company profiles)
8. CARBON NANOFIBERS
8.1. Properties
8.2. Synthesis
8.2.1. Chemical vapor deposition
8.2.2. Electrospinning
8.2.3. Template-based
8.2.4. From biomass
8.3. Markets
8.3.1. Energy storage
8.3.1.1. Batteries
8.3.1.2. Supercapacitors
8.3.1.3. Fuel cells
8.3.2. CO2 capture
8.3.3. Composites
8.3.4. Filtration
8.3.5. Catalysis
8.3.6. Sensors
8.3.7. Electromagnetic Interference (EMI) Shielding
8.3.8. Biomedical
8.3.9. Concrete
8.4. Market analysis
8.4.1. Market Growth Drivers and Trends
8.4.2. Price and Costs Analysis
8.4.3. Supply Chain
8.4.4. Future Outlook
8.4.5. Addressable Market Size
8.4.6. Risks and Opportunities
8.5. Global market revenues
8.6. Companies (12 company profiles)
9. FULLERENES
9.1. Properties
9.2. Markets and applications
9.3. Technology Readiness Level (TRL)
9.4. Market analysis
9.4.1. Market Growth Drivers and Trends
9.4.2. Price and Costs Analysis
9.4.3. Supply Chain
9.4.4. Future Outlook
9.4.5. Customer Segmentation
9.4.6. Addressable Market Size
9.4.7. Risks and Opportunities
9.4.8. Global market demand
9.5. Producers (20 company profiles)
10. NANODIAMONDS
10.1. Introduction
10.2. Types
10.2.1. Detonation Nanodiamonds
10.2.2. Fluorescent nanodiamonds (FNDs)
10.3. Markets and applications
10.4. Market analysis
10.4.1. Market Growth Drivers and Trends
10.4.2. Regulations
10.4.3. Price and Costs Analysis
10.4.4. Supply Chain
10.4.5. Future Outlook
10.4.6. Risks and Opportunities
10.4.7. Global demand 2018-2035, tonnes
10.5. Company profiles (30 company profiles)
11. GRAPHENE QUANTUM DOTS
11.1. Comparison to quantum dots
11.2. Properties
11.3. Synthesis
11.3.1. Top-down method
11.3.2. Bottom-up method
11.4. Applications
11.5. Graphene quantum dots pricing
11.6. Graphene quantum dot producers (9 company profiles)
12. CARBON FOAM
12.1. Types
12.1.1. Carbon aerogels
12.1.1.1. Carbon-based aerogel composites
12.2. Properties
12.3. Applications
12.4. Company profiles (9 company profiles)
13. DIAMOND-LIKE CARBON (DLC) COATINGS
13.1. Properties
13.2. Applications and markets
13.3. Global market size
13.4. Company profiles (9 company profiles)
14. ACTIVATED CARBON
14.1. Overview
14.2. Types
14.2.1. Powdered Activated Carbon (PAC)
14.2.2. Granular Activated Carbon (GAC)
14.2.3. Extruded Activated Carbon (EAC)
14.2.4. Impregnated Activated Carbon
14.2.5. Bead Activated Carbon (BAC
14.2.6. Polymer Coated Carbon
14.3. Production
14.3.1. Coal-based Activated Carbon
14.3.2. Wood-based Activated Carbon
14.3.3. Coconut Shell-based Activated Carbon
14.3.4. Fruit Stone and Nutshell-based Activated Carbon
14.3.5. Polymer-based Activated Carbon
14.3.6. Activated Carbon Fibers (ACFs)
14.4. Markets and applications
14.4.1. Water Treatment
14.4.2. Air Purification
14.4.3. Food and Beverage Processing
14.4.4. Pharmaceutical and Medical Applications
14.4.5. Chemical and Petrochemical Industries
14.4.6. Mining and Precious Metal Recovery
14.4.7. Environmental Remediation
14.5. Market analysis
14.5.1. Market Growth Drivers and Trends
14.5.2. Regulations
14.5.3. Price and Costs Analysis
14.5.4. Supply Chain
14.5.5. Future Outlook
14.5.6. Customer Segmentation
14.5.7. Addressable Market Size
14.5.8. Risks and Opportunities
14.6. Global market revenues 2020-2035
14.7. Companies (22 company profiles)
15. CARBON AEROGELS AND XEROGELS
15.1. Overview
15.2. Types
15.2.1. Resorcinol-Formaldehyde (RF) Carbon Aerogels and Xerogels
15.2.2. Phenolic-Furfural (PF) Carbon Aerogels and Xerogels
15.2.3. Melamine-Formaldehyde (MF) Carbon Aerogels and Xerogels
15.2.4. Biomass-derived Carbon Aerogels and Xerogels
15.2.5. Doped Carbon Aerogels and Xerogels
15.2.6. Composite Carbon Aerogels and Xerogels
15.3. Markets and applications
15.3.1. Energy Storage
15.3.2. Thermal Insulation
15.3.3. Catalysis
15.3.4. Environmental Remediation
15.3.5. Other Applications
15.4. Market analysis
15.4.1. Market Growth Drivers and Trends
15.4.2. Regulations
15.4.3. Price and Costs Analysis
15.4.4. Supply Chain
15.4.5. Future Outlook
15.4.6. Customer Segmentation
15.4.7. Addressable Market Size
15.4.8. Risks and Opportunities
15.5. Global market
15.6. Companies(10 company profiles)
16. CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION
16.1. CO2 capture from point sources
16.1.1. Transportation
16.1.2. Global point source CO2 capture capacities
16.1.3. By source
16.1.4. By endpoint
16.2. Main carbon capture processes
16.2.1. Materials
16.2.2. Post-combustion
16.2.3. Oxy-fuel combustion
16.2.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
16.2.5. Pre-combustion
16.3. Carbon separation technologies
16.3.1. Absorption capture
16.3.2. Adsorption capture
16.3.3. Membranes
16.3.4. Liquid or supercritical CO2 (Cryogenic) capture
16.3.5. Chemical Looping-Based Capture
16.3.6. Calix Advanced Calciner
16.3.7. Other technologies
16.3.7.1. Solid Oxide Fuel Cells (SOFCs)
16.3.8. Comparison of key separation technologies
16.3.9. Electrochemical conversion of CO2
16.3.9.1. Process overview
16.4. Direct air capture (DAC)
16.5. Companies (4 company profiles)
17. RESEARCH METHODOLOGY
18. REFERENCES
°ü·ÃÀÚ·á