세계 수소 시장은 기존의 산업적 용도에서 세계 에너지 전환의 초석이 될 수 있도록 진화하는 매우 중요한 순간에 서 있습니다. 현재 시장 규모는 약 2,000억 달러에 달하며, 역사적으로 암모니아 제조, 석유 정제, 화학 제조에 주로 사용되는 탄소 회수가 없는 천연가스에서 생산되는 '회색 수소'가 시장의 대부분을 차지해 왔습니다. 이 시장은 탈탄소화 요구로 인해 근본적인 전환이 요구되고 있습니다. 그린 수소(재생에너지 전기분해로 생산)와 블루 수소(천연가스에서 탄소회수를 통해 생산)는 국가와 기업이 넷제로 목표를 달성하기 위해 노력하면서 성장세를 보이고 있습니다. 이러한 변화를 뒷받침하는 것은 재생 가능 전력 비용의 급락, 전해조 기술의 발전, 그리고 전 세계적인 정책적 지원의 확대입니다.
수소 개발을 주도하는 주요 지역으로는 EU가 있으며, EU는 수소 전략의 일환으로 2030년까지 40GW의 전해조 용량을 도입할 것을 약속했습니다. 마찬가지로 일본, 한국, 중국은 국내 생산과 국제 공급망 모두에 초점을 맞춘 야심찬 수소 로드맵을 수립했습니다. 미국은 Bipartisan Infrastructure Law와 Inflation Reduction Act에 대한 막대한 투자를 통해 수소 야망을 가속화하고 미국 전역에 수소 허브를 설립했습니다.
운송 부문은 수소의 가장 유망한 용도 중 하나이며, 특히 배터리 전기화 문제가 대두되고 있는 대형 차량, 해운, 항공에 대한 활용이 기대되고 있습니다. 주요 자동차 제조업체들은 연료전지 자동차에 투자하고 있으며, 수소 연료 공급 인프라는 소규모이지만 전 세계적으로 지속적으로 확대되고 있습니다. 산업 부문에서는 철강 생산이 석탄을 대체하는 환원제로서 수소의 활용을 개발하고 있으며, 유럽에서는 이미 여러 실증 프로젝트가 가동되고 있습니다. 에너지 저장은 또 다른 중요한 기회를 제공합니다. 수소는 재생 가능 에너지의 잉여 전력을 장기간 저장하는 수단으로 작용하여 간헐성 문제를 해결할 수 있습니다. 또한, 기존 천연가스 네트워크에 수소를 혼합하는 것은 과도기적 탈탄소화 전략으로 시험되고 있습니다.
이러한 진전에도 불구하고, 시장은 여전히 큰 문제에 직면해 있습니다. 그린수소의 생산 비용은 화석연료 대체품보다 여전히 높지만, 그 차이는 줄어들고 있지만 여전히 높은 수준입니다. 운송 및 저장 인프라에 대한 막대한 투자가 필요하며, 규제 프레임워크는 아직 개발 중입니다. 안전에 대한 우려와 사회적 인식 문제도 표준화와 교육을 통해 해결해야 합니다. 시장 전망은 점점 더 좋아지고 있습니다. 예측에 따르면 수소는 2050년까지 세계 에너지 수요의 최대 24%를 충족시킬 수 있으며, 시장 규모는 2040년까지 7,000억 달러에 달할 가능성이 있습니다. 그린 수소의 비용은 2030년까지 60%-80% 하락하여 많은 지역에서 회색 수소와 동등한 수준으로 떨어질 것으로 예상됩니다. 연간 생산량은 현재 약 9,000만 톤에서 2050년까지 5억-7억 톤으로 증가할 수 있습니다.
투자 동향은 이러한 낙관적인 전망을 뒷받침하고 있으며, 2024년까지 전 세계적으로 3,000억 달러 이상의 수소 프로젝트가 발표되었으나, 대부분 계획 단계에 머물러 있습니다. 산업이 파일럿 프로젝트에서 상업적 규모로 전환하는 향후 10년은 매우 중요하며, 지속적인 정책적 지원, 기술 혁신, 부문 간 협력이 필요합니다.
이 보고서는 2025-2035년 수소 시장 현황을 상세하게 분석했으며, 수소 가치사슬, 신기술, 경쟁 역학, 지역 시장 개발 등의 정보를 제공합니다.
목차
제1장 서론
수소 분류
세계의 에너지 수요와 소비
수소 경제와 생산
수소 생산에서의 CO2 배출 감축
수소 밸류체인
국가의 수소 이니셔티브
시장이 해결해야 할 과제
제2장 수소 시장 분석
산업 발전(2020년-2025년)
시장 맵
세계의 수소 생산
제3장 수소 유형
비교 분석
그린 수소
블루 수소(저탄소 수소)
핑크 수소
터키옥 수소
제4장 수소 저장과 운송
시장 개요
수소 운송 방법
수소 압축, 액화 및 저장
시장 진출기업
제5장 수소 이용
수소 연료전지
대체연료 생산
수소 자동차
항공
암모니아 생산
메탄올 생산
제철
전력 및 열 생성
해운
연료전지 열차
제6장 기업 개요(기업 285개사 개요)
제7장 조사 방법
제8장 참고 문헌
LSH
영문 목차
영문목차
The global hydrogen market stands at a pivotal moment in its evolution, transitioning from its traditional industrial applications to becoming a cornerstone of the global energy transition. Currently valued at approximately $200 billion, the market has historically been dominated by "gray hydrogen" produced from natural gas without carbon capture, primarily serving ammonia production, petroleum refining, and chemical manufacturing. The market is undergoing a fundamental transformation driven by decarbonization imperatives. Green hydrogen (produced via renewable-powered electrolysis) and blue hydrogen (produced from natural gas with carbon capture) are gaining momentum as countries and corporations commit to net-zero targets. This shift is supported by plummeting costs of renewable electricity, technological advancements in electrolyzers, and expanding policy support worldwide.
Key regions leading hydrogen development include the European Union, which has committed to installing 40GW of electrolyzer capacity by 2030 as part of its Hydrogen Strategy. Similarly, Japan, South Korea, and China have established ambitious hydrogen roadmaps focusing on both domestic production and international supply chains. The United States has accelerated its hydrogen ambitions through significant investments in the Bipartisan Infrastructure Law and Inflation Reduction Act, establishing hydrogen hubs across the country.
The transportation sector represents one of hydrogen's most promising applications, particularly for heavy-duty vehicles, shipping, and aviation where battery electrification faces challenges. Major automotive manufacturers are investing in fuel cell vehicles, while hydrogen fueling infrastructure continues to expand globally, albeit from a small base. In the industrial sector, steel production is pioneering hydrogen use as a reduction agent to replace coal, with several demonstration projects already operational in Europe. Energy storage presents another significant opportunity, with hydrogen serving as a means to store excess renewable electricity over extended periods, addressing intermittency challenges. Additionally, hydrogen blending into existing natural gas networks is being tested as a transitional decarbonization strategy.
Despite this progress, the market faces substantial challenges. Production costs for green hydrogen remain higher than fossil alternatives, though the gap is narrowing. Infrastructure for transportation and storage requires massive investment, while regulatory frameworks are still evolving. Safety concerns and public perception issues also need addressing through standardization and education. The market outlook appears increasingly favorable. Projections suggest hydrogen could meet up to 24% of global energy demand by 2050, with the market potentially reaching $700 billion by 2040. Costs for green hydrogen are expected to decrease by 60-80% by 2030, achieving cost parity with gray hydrogen in many regions. Annual production could grow from approximately 90 million tonnes today to 500-700 million tonnes by 2050.
Investment trends confirm this optimistic outlook, with over $300 billion in hydrogen projects announced globally by 2024, though many remain in planning stages. The coming decade will be critical as the industry moves from pilot projects to commercial scale, requiring continued policy support, technological innovation, and cross-sector collaboration.
"The Global Hydrogen Market 2025-2035" provides an in-depth analysis of the hydrogen market landscape from 2025-2035, covering all aspects of the hydrogen value chain, emerging technologies, competitive dynamics, and regional market developments.
Report contents include:
Market Overview and Dynamics
Detailed classification of hydrogen types: green, blue, pink, turquoise, and gray hydrogen by production method and carbon intensity
Deep analysis of national hydrogen initiatives across major regions including the European Union, United States, Japan, China, and emerging markets
Critical examination of market challenges including infrastructure needs, regulatory frameworks, and cost competitiveness
Hydrogen Production Technologies
Comprehensive technology breakdown of electrolysis methods including PEM, alkaline, solid oxide, and AEM technologies
Detailed assessment of blue hydrogen production including SMR, ATR, and emerging pyrolysis methods
Analysis of carbon capture technologies including pre-combustion, post-combustion, and direct air capture methods
Evaluation of nuclear-powered hydrogen production (pink hydrogen) and its role in the energy transition
Emerging production methods including plasma technologies, photosynthesis, bacterial processes, and biomimicry approaches
Storage and Transportation
Market analysis of compression, liquefaction, and alternative carrier technologies
Pipeline infrastructure development projections and investment forecasts
Road, rail, and maritime transport solutions and technological advancements
Underground storage potential and regional capacity assessment
Comprehensive evaluation of material innovations for hydrogen-compatible infrastructure
Hydrogen Utilization and Applications
Fuel cell market dynamics across transportation, stationary power, and portable applications
Hydrogen mobility adoption forecasts for light vehicles, heavy-duty transportation, marine applications, and aviation
Industrial decarbonization pathways focusing on steel production, ammonia synthesis, and methanol manufacturing
Power generation applications including turbines, combined cycle systems, and grid balancing capabilities
Synthetic fuel production analysis including e-fuels, methanol, and sustainable aviation fuels
Regional Market Analysis
United States hydrogen market with detailed assessment of DOE hydrogen hubs and regional production capacity
European Union developments including the European Hydrogen Strategy and national roadmaps
Asia-Pacific market expansion focusing on China, Japan, South Korea, and Australia
Middle East and North Africa emerging as major green hydrogen export regions
Latin America and Africa developing hydrogen potential through renewable resources
Competitive Landscape
Comprehensive profiles of over 280 companies across the hydrogen value chain. Companies Profiled include 8Rivers, Adani Green Energy, Advanced Ionics, ACSYNAM, Advent Technologies, Aemetis, AFC Energy, Agfa-Gevaert, Air Liquide, Air Products, Aker Horizons, Alchemr, AlGalCo, AMBARtec, Amogy, Aepnus, Arcadia eFuels, Asahi Kasei, Atawey, Atmonia, Atomis, Aurora Hydrogen, AquaHydrex, AREVA H2Gen, Avantium, AvCarb Material Solutions, Avium, Ballard Power Systems, BASF, Battolyser Systems, BayoTech, Blastr Green Steel, Bloom Energy, Boson Energy, BP, Bramble Energy, Brineworks, bse Methanol, Bspkl, Carbon Engineering, Carbon Recycling International, Carbon Sink, Cavendish Renewable Technology, Celcibus, Cemvita Factory, Ceres Power Holdings, Chevron Corporation, CHARBONE Hydrogen, Chiyoda Corporation, Cipher Neutron, Climate Horizon, CO2 Capsol, Cockerill Jingli Hydrogen, Constellation Energy, Convion, Croft, Cummins, Cutting-Edge Nanomaterials, Cryomotive, C-Zero, Deep Branch Biotechnology, Destinus, Dimensional Energy, Dioxide Materials, Domsjo Fabriker, Dynelectro, Elcogen, Ecolectro, EH Group Engineering, Electric Hydrogen, Electriq Global, Electrochaea, Elogen H2, ENEOS Corporation, Ekona Power, Element 1 Corp, Endua, Enapter, Epro Advance Technology, Equatic, Erredue, Ergosup, Everfuel, EvolOH, Evolve Hydrogen, Evonik Industries, Fabrum, FirstElement Fuel, Flexens, FuelCell Energy, FuelPositive, FuMA-Tech BWY, Fusion Fuel, GenCell Energy, Graforce, GenHydro, GenH2, GeoPura, GKN Hydrogen, Green Fuel, Green Hydrogen Systems, GRZ Technologies, Hazer Group, Heimdal CCU, Heliogen, Hexagon Purus, HevenDrones, HiiROC, Hitachi Zosen, H2B2 Electrolysis Technologies, H2Electro, H2GO Power, H2Greem, H2 Green Steel, H2Pro, H2U Technologies, H2Vector Energy Technologies, H2X Global, Hoeller Electrolyzer, Honda, Honeywell UOP, Horisont Energi, Horizon Fuel Cell Technologies, H Quest Vanguard, H-Tec Systems, Hybitat, HYBRIT, Hycamite TCD Technologies, Hygenco, Hymeth, Hynamics, HydGene Renewables, Hydra Energy, Hydrogen in Motion, Hydrogenious Technologies, HydrogenPro, Hydrogenera, HydroLite, Hyundai Motor Company, HySiLabs, Hynertech, Hysata, Hystar, Hyzon Motors, IdunnH2, Immaterial, Inergio Technologies, Infinium Electrofuels, Inpex, Innova Hydrogen, Ionomr Innovations, ITM Power, Johnson Matthey, Jolt Electrodes, Kawasaki Heavy Industries, Keyou, Kobelco, Koloma, Krajete, Kyros Hydrogen Solutions, Lavo, Leidong Zhichuang, Levidian Nanosystems, Lhyfe, The Linde Group, Lingniu Hydrogen Energy Technology, Liquid Wind, LONGi Hydrogen and more....
Strategic initiatives and development roadmaps of key market players
Investment analysis of major funding rounds, mergers, acquisitions, and joint ventures
Technological positioning and intellectual property landscape
Start-up ecosystem evaluation and innovation hotspots
Investment Analysis and Future Outlook
Capital expenditure forecasts across production, infrastructure, and end-use applications
Levelized cost projections for different hydrogen production pathways through 2035
Policy and incentive analysis across major markets and influence on investment decisions
Risk assessment for hydrogen projects including regulatory, technological, and market risks
Long-term market scenarios under different energy transition pathways and climate policies
TABLE OF CONTENTS
1 INTRODUCTION
1.1 Hydrogen classification
1.2 Global energy demand and consumption
1.3 The hydrogen economy and production
1.4 Removing CO2 emissions from hydrogen production
1.5 Hydrogen value chain
1.5.1 Production
1.5.2 Transport and storage
1.5.3 Utilization
1.6 National hydrogen initiatives
1.7 Market challenges
2 HYDROGEN MARKET ANALYSIS
2.1 Industry developments 2020-2025
2.2 Market map
2.3 Global hydrogen production
2.3.1 Industrial applications
2.3.2 Hydrogen energy
2.3.2.1 Stationary use
2.3.2.2 Hydrogen for mobility
2.3.3 Current Annual H2 Production
2.3.4 Hydrogen production processes
2.3.4.1 Hydrogen as by-product
2.3.4.2 Reforming
2.3.4.2.1 SMR wet method
2.3.4.2.2 Oxidation of petroleum fractions
2.3.4.2.3 Coal gasification
2.3.4.3 Reforming or coal gasification with CO2 capture and storage
2.3.4.4 Steam reforming of biomethane
2.3.4.5 Water electrolysis
2.3.4.6 The "Power-to-Gas" concept
2.3.4.7 Fuel cell stack
2.3.4.8 Electrolysers
2.3.4.9 Other
2.3.4.9.1 Plasma technologies
2.3.4.9.2 Photosynthesis
2.3.4.9.3 Bacterial or biological processes
2.3.4.9.4 Oxidation (biomimicry)
2.3.5 Production costs
2.3.6 Global hydrogen demand forecasts
2.3.7 Hydrogen Production in the United States
2.3.7.1 Gulf Coast
2.3.7.2 California
2.3.7.3 Midwest
2.3.7.4 Northeast
2.3.7.5 Northwest
2.3.8 DOE Hydrogen Hubs
2.3.9 US Hydrogen Electrolyzer Capacities, Planned and Installed