»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
¾ÐÀü ¸¶ÀÌÅ©·Î Àü±â±â°è ¼¾¼ ¹× ¾×Ãß¿¡ÀÌÅÍ´Â ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Á¤Àü ¿ë·® MEMS¿Í ºñ±³ÇÏ¿© ¾ÐÀü MEMS´Â ¿ì¼öÇÑ ¼º´É°ú Á¦Á¶ È¿À²À» Á¦°øÇÕ´Ï´Ù. ¾ÐÀü ¹Ú¸·, ƯÈ÷ PZT´Â ¸¶ÀÌÅ© ¹× ¸¶ÀÌÅ©·Î ¹Ì·¯, °¡½º ¼¾¼, À̹ÌÁö ¾ÈÁ¤±â, ÃÊÀ½ÆÄ Æ®·£½ºµà¼, ¿ì¼öÇÑ Àμ⠰á°ú¸¦ Á¦°øÇÏ´Â ÇÇ¿¡Á¶ ÇÁ¸°ÅÍ, AR ±Û·¡½º, Åë½Å °È¿ë RF ÇÊÅÍ µî °í¼ºÀå MEMS Á¦Ç°ÀÇ »õ·Î¿î ±âÃʸ¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
¾ÐÀü MEMS ºÎ¹®Àº ±¤¹üÀ§ÇÑ MEMS »ê¾÷¿¡¼ Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ¼ÒºñÀÚ °¡Àü, Åë½Å ¹× »õ·Î¿î IoT ÀÀ¿ë ºÐ¾ß¿¡¼ °·ÂÇÑ Á¸Àç°¨À» º¸À̰í ÀÖ½À´Ï´Ù.
¾ÐÀü MEMS ½ÃÀåÀº ´ÙÀ½°ú °°Àº ¿äÀÎÀ¸·Î ÀÎÇØ ±¤¹üÀ§ÇÑ MEMS ½ÃÀ庸´Ù ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
5G ³×Æ®¿öÅ© °³¹ß ¹× ÇâÈÄ 6G °³¹ß
ÀÚµ¿Â÷ ¾ÈÀü ¹× ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ µµÀÔ È®´ë
ÀÇ·á ¿µ»ó ¹× Áø´Ü ¿ëµµÀÇ ¼ºÀå
»õ·Î¿î ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° ÀÀ¿ë ºÐ¾ß µîÀå
ƯÈ÷ IoT, ÀÚµ¿Â÷, ÀÇ·á ºÐ¾ß¿¡¼ÀÇ »õ·Î¿î ¿ëµµÀÇ µîÀåÀº ¾çÀÚ ÄÄÇ»ÆÃ, ÷´Ü ¼¾½Ì ½Ã½ºÅÛ µî »õ·Î¿î ºÐ¾ß¿¡¼ ȹ±âÀûÀÎ ÀÀ¿ë °¡´É¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, 2035³â±îÁö Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀÌ º¸°í¼´Â ¼¼°è ¾ÐÀü MEMS ½ÃÀåÀ» ºÐ¼®Çϰí 2025-2035³â ±â¼ú °³¹ß, ½ÃÀå µ¿Çâ ¹× ¼ºÀå ±âȸ¿¡ ´ëÇÑ »ó¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ƯÈ÷ ½Å±â¼ú°ú ½ÃÀå ¿ªÇп¡ ÁßÁ¡À» µÎ°í Àç·á¿Í Á¦Á¶¿¡¼ ÃÖÁ¾ ¿ëµµ±îÁö Àüü ¹ë·ùüÀÎÀ» Á¶»çÇß½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ¼·Ð
¼¼°èÀÇ MEMS ½ÃÀå
¾ÐÀü ±â¼ú °³¿ä
¾ÐÀü MEMS ±â¼úÀÇ ÁøÈ
¾ÐÀü MEMS ½ÃÀå(2020³â-2024³â)
±â¼ú »óȲ
±ÔÁ¦ ±¸Á¶
Á¦2Àå ¾ÐÀü Àç·á¿Í ±â¼ú
¾ÐÀü Àç·áÀÇ ±âÃÊ
Àç·á Ä«Å×°í¸®
°¡°ø ±â¼ú
Á¦3Àå ½ÃÀå ºÐ¼®°ú ¿¹Ãø(2025³â-2035³â)
½ÃÀå ±Ô¸ð¿Í ¼ºÀå
¼¼°èÀÇ ¸ÅÃâ ¿¹Ãø
¼ö·® ¿¹Ãø
Áö¿ª ºÐ¼®
½ÃÀå ¼¼ºÐÈ
µð¹ÙÀ̽º À¯Çüº°
Àç·á À¯Çüº°
ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°
¿þÀÌÆÛ ·¹º§ ºÐ¼®
¿þÀÌÆÛ ½ºÅ¸Æ® : Àç·áº°
¿þÀÌÆÛ »çÀÌÁî µ¿Çâ
Á¦Á¶´É·Â
Áö¿ª »ý»ê ºÐÆ÷
Á¦4Àå ¿ëµµ ºÎ¹®
¼¾¼
¸¶ÀÌÅ©
°¡¼Óµµ°è
Æ÷½º ¼¾¼
½ÃÀå ¿¹Ãø
¾×Ãß¿¡ÀÌÅÍ
À×Å©Á¬ ÇÁ¸°Æ® Çìµå
¸¶ÀÌÅ©·Î ½ºÇÇÄ¿
±¤ÇÐ MEMS
½ÃÀå ¿¹Ãø
Æ®·£½ºµà¼
ÃÊÀ½ÆÄ Áö¹® ¼¾¼
ÀÇ·á¿ë ¿µ»ó
½ÃÀå ¿¹Ãø
RFÇÊÅÍ
BAW 񃬣
FBAR/SMR ¼Ö·ç¼Ç
½ÃÀå ¿¹Ãø
Á¦5Àå °ø±Þ¸Á
Á¦6Àå ±â¼ú µ¿Çâ°ú Çõ½Å
Àç·á Çõ½Å
Á¦Á¶ Áøº¸
µð¹ÙÀ̽º Çõ½Å
Á¦7Àå °úÁ¦¿Í ±âȸ
±â¼úÀû °úÁ¦
½ÃÀå À庮
¼ºÀå ±âȸ
ÇâÈÄ ¿ëµµ
Á¦8Àå ±â¾÷ °³¿ä(±â¾÷ 106°³»ç °³¿ä)
Á¦9Àå ºÎ·Ï
Á¦10Àå Âü°í ¹®Çå
LSH
Piezoelectric microelectromechanical sensors and actuators are used in a wide variety of applications. Compared to traditional capacitive MEMS, piezoelectric MEMS deliver superior performance and manufacturing efficiency. Piezoelectric thin films, particularly PZT, form the new basis for high-growth MEMS products such as microphones and micromirrors, gas sensors, image stabilizers, ultrasonic transducers, piezo printers that deliver excellent printing results, AR glasses and RF filters for enhanced telecommunications.
The piezoMEMS sector represents a significant segment within the broader MEMS industry, with particularly strong presence in consumer electronics, telecommunications, and emerging IoT applications.
The piezoMEMS market is expected to grow significantly faster than the broader MEMS driven by:
Expansion of 5G networks and eventual 6G development
Increasing adoption in automotive safety and autonomous systems
Growth in medical imaging and diagnostic applications
Emergence of new consumer electronics applications
The emergence of new applications, particularly in IoT, automotive, and medical sectors, is expected to drive sustained growth through 2035, with potential for breakthrough applications in emerging fields such as quantum computing and advanced sensing systems.
"The Global PiezoMEMS Market 2025-2035" report analyzes the global piezoelectric MEMS (PiezoMEMS) sector, providing detailed insights into technology developments, market trends, and growth opportunities from 2025 to 2035. The study examines the entire value chain from materials and manufacturing to end-user applications, with particular focus on emerging technologies and market dynamics.
Report contents include:
Extensive analysis of the PiezoMEMS industry, including detailed market forecasts, technology assessments, and competitive analysis.
Key applications such as RF filters, sensors, actuators, and transducers across various sectors including consumer electronics, automotive, medical, and industrial applications.
Key Market Segments covered include:
Sensors (microphones, accelerometers, force sensors)
Actuators (inkjet printheads, microspeakers, optical MEMS)
Transducers (ultrasonic fingerprint sensors, medical imaging)
RF Filters (BAW technology, FBAR/SMR solutions)
Detailed market analysis including:
Global revenue projections (2025-2035)
Volume forecasts by device type
Regional market analysis
Production capacity assessment
Wafer-level analysis
Supply chain evaluation
Technology roadmaps and development trends
Manufacturing strategies and challenges
Regional market dynamics
Detailed analysis of key application areas:
Consumer electronics (smartphones, wearables)
Automotive sensors and actuators
Medical devices and imaging systems
Industrial applications
IoT and emerging applications
Manufacturing and Production:
Wafer fabrication processes
Integration technologies
Quality control methods
Capacity utilization
Regional production distribution
Cost analysis
Technology Trends and Innovation:
Material innovations and enhancements
Manufacturing advances
Device miniaturization
Performance improvements
Novel applications
Integration strategies
Market opportunities and growth drivers:
Technical barriers and solutions
Market adoption factors
Competition analysis
Environmental considerations
Regulatory compliance
Future opportunities
Comprehensive profiles of over 100 companies including:
Major MEMS manufacturers
Material suppliers
Equipment providers
Technology developers
End-product manufacturers
Companies covered include:
AAC Technologies
Aeponyx
AKM
Akoustis
AlphaMOS
Alps Alpine
AMFitzgerald-MEMS Infinity
Amphenol
Analog Devices
Anello Photonics
Asia Pacific Microsystems
ASMC (Advanced Semiconductor Manufacturing Corporation Limited)
Aspinity
Atomica
Beijing Zhixin Tech
Blickfeld
Bosch
Broadcom
Butterfly Network
Canon Inc.
CEA Leti
Cirrus Logic
Denso
EpicMEMS
eXo
Flusso
Formfactor
Fraunhofer IPMS
Fujifilm Dimatix
Gettop
GMEMS Technologies
Goermicro
Goertek
Guide Sensmart Technology Co. Ltd.
GWIC (Guangdong WIT Integrated Circuits Co. Ltd.)
Hanking Electronics
Heimann Sensor
Hewlett Packard
Hikvision (Hikmicro)
Honeywell
HuaHong Grace Semiconductor Manufacturing Corporation
Huntersun
Hypernano
IceMOS Technology Ltd.
Illumina
Infineon Technologies
InfiRay
Instrumems
Melexis
MEMJET
MEMSCAP SA
MEMSDrive
MEMSensing
MEMSIC
MEMSonics
Merit Sensor
Merry Electronics
Microchip Technology Inc.
Microfab Technologies Inc.
Micronit Microtechnologies B.V.
Minebea Mitsumi
Mirrorcle
Murata
Nanox
and more......
TABLE OF CONTENTS
1. INTRODUCTION
1.1. The Global MEMS market
1.1.1. Historical
1.1.2. Current market (2024-2025)
1.2. Overview of Piezoelectric Technology
1.2.1. Fundamentals of Piezoelectricity
1.2.2. Direct and Inverse Piezoelectric Effects
1.2.3. Key Parameters and Measurements
1.2.4. Design Considerations
1.3. Evolution of PiezoMEMS Technology
1.4. PiezoMEMS Market 2020-2024
1.4.1. Market Size and Growth Trends
1.4.2. Application Development
1.4.3. Technology Advancement
1.5. Technology Landscape
1.5.1. Core Technologies
1.5.2. PiezoMEMS technology as a key enabler for implementing generative AI capabilities in edge devices
1.5.3. Integration Approaches
1.5.4. Competing Technologies
1.5.5. Technology Readiness Levels
1.6. Regulatory Framework
1.6.1. Environmental Regulations
1.6.2. Safety Requirements
1.6.3. Certification Processes
1.6.4. Future Regulatory Trends
2. PIEZOELECTRIC MATERIALS AND TECHNOLOGIES
2.1. Fundamentals of Piezoelectric Materials
2.1.1. Working Principles
2.1.1.1. Crystal Structure
2.1.1.2. Polarization Mechanisms
2.1.1.3. Electromechanical Coupling
2.1.1.4. Material Physics
2.1.2. Key Performance Metrics
2.1.2.1. Piezoelectric Coefficients
2.1.2.2. Coupling Factors
2.1.2.3. Quality Factors
2.1.2.4. Temperature Stability
2.1.2.5. Reliability Metrics
2.1.3. Manufacturing Processes
2.1.3.1. Thin Film Deposition
2.1.3.2. Material Processing
2.1.3.3. Quality Control
2.1.3.4. Process Integration
2.1.3.5. Yield Management
2.2. Material Categories
2.2.1. Aluminum Nitride (AlN)
2.2.1.1. Properties and Characteristics
2.2.1.2. Applications
2.2.1.3. Cost Structure
2.2.2. Scandium-doped AlN
2.2.2.1. Doping Effects
2.2.2.2. Performance Improvements
2.2.2.3. Manufacturing Challenges
2.2.2.4. Cost-Benefit Analysis
2.2.2.5. Market Adoption
2.2.3. Lead Zirconate Titanate (PZT)
2.2.3.1. Material Properties
2.2.3.2. Processing Methods
2.2.3.3. Performance Characteristics
2.2.3.4. Environmental Concerns
2.2.3.5. Application Areas
2.2.4. Emerging Materials
2.2.4.1. KNN
2.2.4.2. LiNbO3
2.3. Processing Technologies
2.3.1. Thin-film Deposition
2.3.1.1. Sputtering Techniques
2.3.1.2. Chemical Vapor Deposition
2.3.1.3. Sol-Gel Processing
2.3.1.4. Other Methods
2.3.2. Integration Techniques
2.3.2.1. CMOS Integration
2.3.2.2. Wafer Bonding
2.3.2.3. Packaging Solutions
2.3.2.4. Novel Approaches
2.3.3. Quality Control Methods
3. MARKET ANALYSIS AND FORECASTS 2025-2035
3.1. Market Size and Growth
3.1.1. Global Revenue Projections
3.1.2. Volume Forecasts
3.1.2.1. Unit Production Trends
3.1.2.2. Volume by Device Type
3.1.2.3. Production Capacity Analysis
3.1.2.4. Capacity Utilization Rates
3.1.3. Regional Analysis
3.1.3.1. North America
3.1.3.2. Europe
3.1.3.3. Asia Pacific
3.1.3.4. China
3.2. Market Segmentation
3.2.1. By Device Type
3.2.2. By Material Type
3.2.3. By End-user Industry
3.3. Wafer-level Analysis
3.3.1. Wafer Starts by Material
3.3.2. Wafer Size Trends
3.3.3. Manufacturing Capacity
3.3.4. Regional Production Distribution
4. APPLICATION SEGMENTS
4.1. Sensors
4.1.1. Microphones
4.1.2. Accelerometers
4.1.3. Force Sensors
4.1.4. Market Forecast
4.2. Actuators
4.2.1. Inkjet Printheads
4.2.2. Microspeakers
4.2.3. Optical MEMS
4.2.4. Market Forecast
4.3. Transducers
4.3.1. Ultrasonic Fingerprint Sensors
4.3.2. Medical Imaging
4.3.3. Market Forecast
4.4. RF Filters
4.4.1. BAW Technology
4.4.2. FBAR/SMR Solutions
4.4.3. Market Forecast
5. SUPPLY CHAIN
6. TECHNOLOGY TRENDS AND INNOVATION
6.1. Material Innovations
6.1.1. Enhanced Performance Materials
6.1.2. Lead-free Alternatives
6.1.3. Novel Compositions
6.2. Manufacturing Advances
6.2.1. Process Improvements
6.2.2. Integration Technologies
6.2.3. Quality Control Methods
6.3. Device Innovations
6.3.1. Miniaturization Trends
6.3.2. Performance Enhancements
6.3.3. New Applications
7. CHALLENGES AND OPPORTUNITIES
7.1. Technical Challenges
7.2. Market Barriers
7.3. Growth Opportunities
7.4. Future Applications
8. COMPANY PROFILES (106 company profiles)
9. APPENDICES
9.1. Research Methodology
9.2. Abbreviations
10. REFERENCES