»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
¸ÞŸ¹°ÁúÀº ÀÚ¿¬°è¿¡ Á¸ÀçÇÏ´Â ¹°Áú¿¡¼ º¼ ¼ö ¾ø´Â Ư¼ºÀ» º¸À̴ ȹ±âÀûÀÎ Àΰø Àç·áÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀΰøÀûÀ¸·Î ±¸Á¶ÈµÈ Àç·á´Â Àü·Ê ¾ø´Â ¹æ½ÄÀ¸·Î ÀüÀÚ±âÆÄ, À½ÆÄ, ¿À» Á¶ÀÛÇÒ ¼ö ÀÖÀ¸¸ç, ¿©·¯ »ê¾÷¿¡ °ÉÃÄ È¹±âÀûÀÎ ÀÀ¿ëÀÌ °¡´ÉÇÕ´Ï´Ù. ÇöÀç ¸ÞŸ¹°Áú ½ÃÀåÀº ÁÖ·Î Åë½Å, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ÀÚµ¿Â÷ ºÎ¹®ÀÇ ÀÀ¿ëÀÌ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä ¹ßÀü
5G Åë½ÅÀ» À§ÇÑ ¸ÞŸ¹°Áú ±â¹Ý ¾ÈÅ׳ª °³¹ß
ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷¿¡ ¸ÞŸ¹°Áú ·¹ÀÌ´õ¿Í LiDAR ½Ã½ºÅÛ ÅëÇÕ
½ºÅÚ½º ±â¼ú ¹× ÀüÀÚ±â Â÷Æó °³¹ß
ÀüÀÚ±â±â¿ë ÷´Ü ¿ °ü¸® ¼Ö·ç¼Ç
½ÃÀå¿¡¼ ¸ÞŸ¹°Áú ±â¼úÀÇ »ó¿ëȰ¡ ÁøÇà ÁßÀ̸ç, ½ÇÇè½Ç¿¡¼ ½Ç¿ëÀûÀÎ ¿ëµµ·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Åë½Å, ÀÚµ¿Â÷ ¼¾½Ì, CE(Consumer Electronics) ºÐ¾ß¿¡ ÃÊÁ¡À» ¸ÂÃá ¸ÞŸ¹°Áú ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¸ÞŸ¹°ÁúÀÌ Áß¿äÇÑ ÀÌÀ¯
Â÷¼¼´ë ¹«¼±Åë½Å ½Ã½ºÅÛ ±¸Çö
ÀüÀÚ ÀåºñÀÇ È¿À²¼º°ú ¼º´É Çâ»ó
¿ °ü¸®¿¡ Ź¿ùÇÑ ¼Ö·ç¼Ç Á¦°ø
»õ·Î¿î ±¤ÇÐ ¹× ¼¾½Ì ±â´ÉÀÇ ½ÇÇö
¼ÒÀ½ °¨¼Ò ¹× Áøµ¿ Á¦¾î¿¡ ÀÖÀ¸¸ç, µ¶º¸ÀûÀÎ ÀÌÁ¡ Á¦°ø
ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
°í¼º´É ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
5G/6G ³×Æ®¿öÅ© È®Àå
ÀÚÀ²ÁÖÇàÂ÷ ¹× ÷´Ü ¼¾½ÌÀÇ ºÎ»ó
¿ °ü¸® ¼Ö·ç¼ÇÀÇ °³¼± ¿ä±¸ »çÇ×
¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½É Áõ°¡
¸ÞŸ¹°Áú ½ÃÀåÀÇ Å« ¼ºÀå ÃËÁø¿äÀÎ(-2035³â)
¹«¼±Åë½Å¸Á È®´ë
÷´Ü ÀÚµ¿Â÷ ·¹ÀÌ´õ ¹× °¨Áö ½Ã½ºÅÛ
¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ »õ·Î¿î ¿ëµµ
»õ·Î¿î ÀÇ·á ¿µ»ó ±â¼ú
¿¡³ÊÁö¼öÈ®±â¼ú ¹× ¿ °ü¸® ºÐ¾ßÀÇ Çõ½Å
´Ü±âÀûÀ¸·Î °¡Àå À¯¸ÁÇÑ ´Ü±âÀû ±âȸ ºÐ¾ß
1. 5G/6G ³×Æ®¿öÅ©ÀÇ Åë½Å ÀÎÇÁ¶ó
2. ÀÚµ¿Â÷¿ë ¼¾½Ì ·¹ÀÌ´õ ½Ã½ºÅÛ
3. ÀüÀÚ ÀåºñÀÇ ¿ °ü¸®
4. °í±Þ ±¤ÇÐ ½Ã½ºÅÛ ¹× µð½ºÇ÷¹ÀÌ
5. Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷ ºÐ¾ß
Á¦Á¶ °øÁ¤ÀÇ È®´ë, Á¦Á¶ ºñ¿ë Àý°¨, Àç·áÀÇ ¼º´É ¹× ³»±¸¼º Çâ»ó µîÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀÌ·¯ÇÑ °úÁ¦µéÀÌ ÇØ°áµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ÞŸ¹°ÁúÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ Çõ½ÅÀûÀÎ ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô ÇÒ °ÍÀ¸·Î º¸À̸ç, ½ÃÀå Àü¸ÁÀº ¿©ÀüÈ÷ ¸Å¿ì ¹à½À´Ï´Ù. Á¦Á¶ ´É·ÂÀÌ Çâ»óµÇ°í ºñ¿ëÀÌ °¨¼ÒÇÔ¿¡ µû¶ó ƯÈ÷ ¸ÞŸ¹°ÁúÀÌ ±âÁ¸ ¼Ö·ç¼Ç¿¡ ºñÇØ °íÀ¯ÇÑ ÀÌÁ¡À» Á¦°øÇÏ´Â °íºÎ°¡°¡Ä¡ ¿ëµµ¿¡¼ äÅÃÀÌ °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ ¸ÞŸ¹°Áú ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ¸ÞŸ¹°Áú ±â¼ú, Á¦Á¶ ÇÁ·Î¼¼½º, ¾ÖÇø®ÄÉÀÌ¼Ç Á¾ÇÕÀû ºÐ¼® ¹× 2035³â±îÁö »ó¼¼ÇÑ ½ÃÀå ±Ô¸ð¿Í ¼ºÀå ¿¹Ãø, ÁÖ¿ä ±â¾÷ÀÇ Æò°¡¿Í °æÀï ±¸µµ µîÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå °³¿ä
¸ÞŸ¹°Áú ½ÃÀåÀÇ ¿ª»çÀû ÃßÀÌ
ÃÖ±Ù ¼ºÀå
ÇöÀç »ó¾÷ »óȲ
¼¼°è ½ÃÀåÀÇ ¸ÅÃâ, ÇöȲ°ú ¿¹Ãø
Áö¿ªÀÇ ºÐ¼®
½ÃÀå ±âȸÀÇ Æò°¡
¸ÞŸ¹°Áú¿¡ ´ëÇÑ ÅõÀÚ ÀÚ±Ý
½ÃÀå°ú ±â¼úÀÇ °úÁ¦
»ê¾÷ µ¿Çâ(2020-2024³â)
Á¦2Àå ¸ÞŸ¹°ÁúÀÇ °³¿ä
¸ÞŸ¹°ÁúÀ̶õ?
À¯Çü
¸ÞŸǥ¸é
»ý»ê ¹æ½Ä
ÆÐ½Ãºê vs. ¾×Ƽºê ¸ÞŸ¹°Áú
Á¦3Àå ±¤ÇÐ ¸ÞŸ¹°Áú
°³¿ä
»ó¾÷ ¿¹
LiDAR ºö ½ºÆ¼¾î¸µ
Æ÷Åä´Ð ¸ÞŸ¹°Áú
±¤ÇÐ ÇÊÅÍ¿Í ¹Ý»ç ¹æÁö ÄÚÆÃ
Á¶Á¤ °¡´ÉÇÑ ¸ÞŸ¹°Áú
Á֯ļö ¼±Åüº Ç¥¸é(FSS) ±â¹Ý ¸ÞŸ¹°Áú
ÇöóÁî¸ð´Ð ¸ÞŸ¹°Áú
Åõ¸í ¸ÁÅä
¿ÏÀü Èí¼öü
±¤³ª³ë ȸ·Î
¸ÞŸ¹°Áú ·»Áî(Metalenses)
Ȧ·Î±×·¥
Àç·á ¼±ÅÃ
¿ëµµ
Á¦4Àå ¹«¼± Á֯ļö(RF) ¸ÞŸ¹°Áú
°³¿ä
ÁÖ¿ä Æ¯Â¡
Àڱ⠱¸¼ºÇü Áö´ÉÇü Ç¥¸é(RIS)
·¹ÀÌ´õ
EMI Â÷Æó
MRI °È
ºñħ½À¼º Ç÷´ç ¸ð´ÏÅ͸µ
Á֯ļö ¼±Åüº Ç¥¸é
Á¶Á¤ °¡´ÉÇÑ RF ¸ÞŸ¹°Áú
Èí¼öü
Luneburg lens
RF ÇÊÅÍ
¿ëµµ
Á¦5Àå Å×¶óÇ츣Ã÷ ¸ÞŸ¹°Áú
THz ¸ÞŸǥ¸é
¾çÀÚ ¸ÞŸ¹°Áú
±×·¡ÇÉ ¸ÞŸ¹°Áú
Ç÷º¼ºí/¿þ¾î·¯ºí THz ¸ÞŸ¹°Áú
THz º¯Á¶±â
THz ½ºÀ§Ä¡
THz Èí¼öü
THz ¾ÈÅ׳ª
THz À̹Ì¡ ÄÄÆ÷³ÍÆ®
Á¦6Àå À½Çâ ¸ÞŸ¹°Áú
¼Ò´Ð Å©¸®½ºÅ»
À½Çâ ¸ÞŸǥ¸é
Locally resonantÇü Àç·á
À½Çâ Ŭ·ÎÅ©
ÇÏÀÌÆÛ ·»Áî
¼Ò´Ð ¿ø ¿þÀÌ ½ÃÆ®
À½Çâ ´ÙÀÌ¿Àµå
ÈíÀ½Àç
¿ëµµ
Á¦7Àå ¿ ¸ÞŸ¹°Áú
Á¦8Àå Á¶Á¤ °¡´ÉÇÑ ¸ÞŸ¹°Áú
Á¶Á¤ °¡´ÉÇÑ ÀüÀÚ ¸ÞŸ¹°Áú
Á¶Á¤ °¡´ÉÇÑ THz ¸ÞŸ¹°Áú
Á¶Á¤ °¡´ÉÇÑ À½Çâ ¸ÞŸ¹°Áú
Á¶Á¤ °¡´ÉÇÑ ±¤ ¸ÞŸ¹°Áú
¿ëµµ
ºñ¼±Çü ¸ÞŸ¹°Áú
Àڱ⠺¯Çü ¸ÞŸ¹°Áú
ÅäÆú·ÎÁöÄà ¸ÞŸ¹°Áú
¸ÞŸ¹°Áú·Î »ç¿ëµÇ´Â Àç·á
Á¦9Àå ¸ÞŸ¹°Áú ½ÃÀå°ú ¿ëµµ
°æÀï ±¸µµ
¸ÞŸ¹°Áú ±â¼úÀÇ ¼º¼÷µµ
SWOT ºÐ¼®
ÇâÈÄ ½ÃÀå Àü¸Á
À½Çâ
Åë½Å
ÀÚµ¿Â÷
Ç×°ø¿ìÁÖ¡¤¹æÀ§¡¤º¸¾È
ÄÚÆÃ¡¤Çʸ§
ž籤¹ßÀü
ÀÇ·á¿ë ¿µ»ó
CE(Consumer Electronics)¡¤µð½ºÇ÷¹ÀÌ
º¹ÇÕÀç·á
Á¦10Àå ±â¾÷ °³¿ä(±â¾÷ 74»çÀÇ °³¿ä)
Á¦11Àå Á¶»ç ¹æ¹ý
Á¦12Àå Âü°í ¹®Çå
KSA
Metamaterials represent a revolutionary class of engineered materials that exhibit properties not found in naturally occurring materials. These artificially structured materials can manipulate electromagnetic waves, sound waves, and heat in unprecedented ways, enabling breakthrough applications across multiple industries. The current metamaterials market is primarily driven by applications in telecommunications, aerospace & defense, and automotive sectors.
Key developments include:
Deployment of metamaterial-based antennas for 5G communications
Integration of metamaterial radar and LiDAR systems in autonomous vehicles
Development of stealth technologies and electromagnetic shielding
Advanced thermal management solutions for electronics
The market is seeing increased commercialization of metamaterial technologies, moving beyond research laboratories into practical applications. Major investments are flowing into metamaterial start-ups, particularly those focused on communications, automotive sensing, and consumer electronics applications.
Why Metamaterials Matter:
Enable next-generation wireless communications systems
Improve efficiency and performance of electronic devices
Provide superior solutions for thermal management
Enable novel optical and sensing capabilities
Offer unique advantages in noise reduction and vibration control
Key Market Drivers include:
Growing demand for high-performance electronic devices
Expansion of 5G/6G networks
Rise of autonomous vehicles and advanced sensing
Need for improved thermal management solutions
Increasing focus on energy efficiency
The metamaterials market is expected to see significant growth through 2035, driven by:
Expansion of wireless communication networks
Advanced automotive radar and sensing systems
New applications in consumer electronics
Emerging medical imaging technologies
Innovation in energy harvesting and thermal management
The most promising near-term opportunities lie in:
1. Communications infrastructure for 5G/6G networks
2. Automotive sensing and radar systems
3. Thermal management for electronics
4. Advanced optical systems and displays
5. Aerospace and defense applications
Challenges include scaling up manufacturing processes, reducing production costs, and improving material performance and durability. However, ongoing technological advances and increasing investment in R&D are expected to address these challenges over time. The market outlook remains highly positive, with metamaterials poised to enable transformative applications across multiple industries. As manufacturing capabilities improve and costs decrease, adoption is expected to accelerate, particularly in high-value applications where metamaterials offer unique advantages over conventional solutions.
"The Global Metamaterials Market 2025-2035" provides a detailed analysis of the rapidly evolving global metamaterials sector, covering optical, radio frequency (RF), terahertz, acoustic, and thermal metamaterials across key application sectors including communications, automotive, aerospace & defense, medical imaging, consumer electronics, and more.
The report offers granular market forecasts from 2025-2035, analyzing revenue opportunities by:
Metamaterial type (optical, RF, acoustic, thermal, etc.)
End-use applications and markets
Geographic regions (North America, Europe, Asia Pacific, Rest of World)
Technology segments (passive vs. active, fixed vs. tunable)
Manufacturing methods and material choices
Key Report Features:
Comprehensive analysis of metamaterial technologies, manufacturing processes, and applications
Detailed market sizing and growth projections through 2035
Assessment of key players and competitive landscape
In-depth coverage of emerging applications like 5G/6G communications, autonomous vehicles, medical devices
Evaluation of technology readiness levels across different metamaterial types
Analysis of market drivers, challenges and opportunities
Profiles of 70+ companies developing metamaterial technologies. Companies profiled include 2Pi Optics, Acoustic Metamaterials Group Ltd., Alphacore Inc., Armory Technologies, Anywaves, BlueHalo LLC, Breylon, DoCoMo, Droneshield Limited, Echodyne Inc., Edgehog Advanced Technologies, Emrod, Evolv Technologies Inc., EM Infinity, Face Companies, Filled Void Materials (FVMat) Ltd., Fractal Antenna Systems Inc., Greenerwave, H-Chip Technology Group, HyMet Thermal Interfaces SIA, Imagia, Imuzak Co. Ltd., Kuang-Chi Technologies, Kymeta Corporation, LATYS, Leadoptik Inc., Lumotive, Magic Shields Inc., Magment AG, Metaboards Limited, Metafold 3D, Metahelios, Metalenz Inc., Metamagnetics Inc., META, MetaSeismic, MetaShield LLC, Metasonixx, Metavoxel Technologies, Metawave Corporation, Morphotonics, Moxtek, Multiwave Imaging, Nanohmics Inc., Nature Architects, Neurophos LLC, NIL Technology, Nissan Motor Co., and more.
Market contents include:
Executive summary and market overview
Detailed analysis of metamaterial types and properties
Manufacturing methods and scalability assessment
Applications analysis across major end-use sectors
Market forecasts and opportunity assessment
Competitive landscape and company profiles
Technology roadmaps and future outlook
The report provides essential insights for:
Technology companies and startups
Materials and component manufacturers
Electronics and telecommunications companies
Automotive and aerospace manufacturers
Investment firms and VCs
R&D organizations and universities
Detailed Coverage Includes:
Optical Metamaterials: LiDAR, metalenses, holograms, filters
RF Metamaterials: Antennas, radar, EMI shielding, wireless communications
Acoustic Metamaterials: Sound insulation, vibration damping
Thermal Metamaterials: Cooling, heat management, energy harvesting
Emerging Applications: Quantum metamaterials, self-transforming structures
Manufacturing: From lab-scale to commercial production methods
Market Analysis: Drivers, trends, opportunities and challenges
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. Historical metamaterials market
1.2. Recent growth
1.3. Current commercial landscape
1.4. Global market revenues, current and forecast
1.4.1. By type
1.4.2. By end-use market
1.5. Regional analysis
1.6. Market opportunity assessment
1.7. Investment funding in metamaterials
1.8. Market and technology challenges
1.9. Industry developments 2020-2024
2. METAMATERIALS OVERVIEW
2.1. What are metamaterials?
2.2. Types
2.3. Metasurfaces
2.3.1. Meta-Lens
2.3.2. Metasurface holograms
2.3.3. Flexible metasurfaces
2.3.4. Reconfigurable intelligent surfaces (RIS)
2.4. Manufacturing methods
2.4.1. Wet etching
2.4.2. Dry phase patterning
2.4.3. Roll-to-roll (R2R) printing
2.4.4. Wafer-scale nanoimprint lithography
2.4.5. E-beam lithography and atomic layer deposition (ALD
2.4.6. Laser ablation
2.4.7. Deep ultraviolet (DUV) photolithography
2.4.8. RF metamaterials manufacturing
2.4.9. Optical metamaterials manufacturing
2.5. Passive vs active metamaterials
3. OPTICAL METAMATERIALS
3.1. Overview
3.2. Commercial examples
3.3. LiDAR Beam Steering
3.3.1. Overview
3.3.2. Types
3.3.3. Advantages of Metamaterial LiDAR
3.3.4. Liquid crystals
3.3.5. Commerical examples
3.4. Photonic metamaterials
3.5. Optical filters and antireflective coatings
3.5.1. Overview
3.5.2. Electromagnetic (EM) filters
3.5.3. Types
3.5.4. ARCs
3.5.5. Applications of Metamaterial anti-reflection coatings
3.6. Tunable metamaterials
3.7. Frequency selective surface (FSS) based metamaterials
3.8. Plasmonic metamaterials
3.9. Invisibility cloaks
3.10. Perfect absorbers
3.11. Optical nanocircuits
3.12. Metamaterial lenses (Metalenses)
3.12.1. Overview
3.12.2. Light manipulation
3.12.3. Applications
3.13. Holograms
3.14. Materials selection
3.15. Applications
4. RADIO FREQUENCY (RF) METAMATERIALS
4.1. Overview
4.2. Key characteristics
4.3. Reconfigurable Intelligent Surfaces (RIS)
4.3.1. Overview
4.3.2. Key features
4.3.3. Frequencies
4.3.4. Transparent Antennas
4.3.5. Comparison with Other Smart Electromagnetic (EM) Devices
4.4. Radar
4.4.1. Overview
4.4.2. Advantages
4.4.3. Antennas
4.4.4. Metamaterial beamforming
4.5. EMI shielding
4.5.1. Overview
4.5.2. Double negative (DNG) metamaterials
4.5.3. Single negative metamaterials
4.5.4. Electromagnetic bandgap metamaterials (EBG)
4.5.5. Bi-isotropic and bianisotropic metamaterials
4.5.6. Chiral metamaterials
4.5.7. Applications
4.6. MRI Enhancement
4.6.1. Overview
4.6.2. Applications
4.7. Non-Invasive Glucose Monitoring
4.7.1. Overview
4.7.2. Advantages
4.7.3. Commercial examples
4.8. Frequency selective surfaces
4.9. Tunable RF metamaterials
4.10. Absorbers
4.11. Luneburg lens
4.12. RF filters
4.13. Applications
5. TERAHERTZ METAMATERIALS
5.1. THz metasurfaces
5.2. Quantum metamaterials
5.3. Graphene metamaterials
5.4. Flexible/wearable THz metamaterials
5.5. THz modulators
5.6. THz switches
5.7. THz absorbers
5.8. THz antennas
5.9. THz imaging components
6. ACOUSTIC METAMATERIALS
6.1. Sonic crystals
6.2. Acoustic metasurfaces
6.3. Locally resonant materials
6.4. Acoustic cloaks
6.5. Hyperlenses
6.6. Sonic one-way sheets
6.7. Acoustic diodes
6.8. Acoustic absorbers
6.9. Applications
7. THERMAL METAMATERIALS
7.1. Overview
7.1.1. Advanced 3D printing
7.1.2. Functionally Graded Materials
7.1.3. Thermoelectric Enhancement
7.2. Applications
7.2.1. Static radiative cooling materials
7.2.2. Photonic Cooling
7.2.3. Ultra-conductive Thermal Metamaterials
7.2.4. Thermal Convective Metamaterials
7.2.5. Thermal Cloaking Metamaterials
7.2.6. Thermal Concentrators
7.2.7. Thermal Diodes
7.2.8. Thermal Expanders
7.2.9. Thermal Rotators
7.2.10. Greenhouses and Windows
7.2.11. Industrial heat harvesting
7.2.12. Thermal metalenses
7.2.13. Microchip Cooling
7.2.14. Photovoltaics Cooling
7.2.15. Space applications
7.2.16. Electronic packaging
7.2.17. Advanced cooling textiles
7.2.18. Automotive thermal management
7.2.19. Passive daytime radiative cooling (PDRC)
8. TUNABLE METAMATERIALS
8.1. Tunable electromagnetic metamaterials
8.2. Tunable THz metamaterials
8.3. Tunable acoustic metamaterials
8.4. Tunable optical metamaterials
8.5. Applications
8.6. Nonlinear metamaterials
8.7. Self-Transforming Metamaterials
8.8. Topological Metamaterials
8.9. Materials used with metamaterials
9. MARKETS AND APPLICATIONS FOR METAMATERIALS
9.1. Competitive landscape
9.2. Readiness levels of metamaterial technologies
9.3. SWOT analysis
9.4. Future market outlook
9.5. ACOUSTICS
9.5.1. Market drivers and trends
9.5.2. Applications
9.5.2.1. Sound insulation
9.5.2.2. Vibration dampers
9.5.3. Global revenues
9.6. COMMUNICATIONS
9.6.1. Market drivers and trends
9.6.2. Applications
9.6.2.1. Wireless Networks
9.6.2.1.1. Reconfigurable antennas
9.6.2.1.2. Wireless sensing
9.6.2.1.3. Wi-Fi/Bluetooth
9.6.2.1.4. Transparent conductive films
9.6.2.1.5. 5G and 6G Metasurfaces for Wireless Communications
9.6.2.2. Radomes
9.6.2.3. Fiber Optic Communications
9.6.2.4. Satellite Communications
9.6.2.5. Thermal management
9.6.3. Global revenues
9.7. AUTOMOTIVE
9.7.1. Market drivers and trends
9.7.2. Applications
9.7.2.1. Radar and sensors
9.7.2.1.1. LiDAR
9.7.2.1.2. Beamforming
9.7.2.2. Anti-reflective plastics
9.7.3. Global revenues 2020-2035
9.8. AEROSPACE, DEFENCE & SECURITY
9.8.1. Market drivers and trends
9.8.2. Applications
9.8.2.1. Stealth technology
9.8.2.2. Radar
9.8.2.3. Optical sensors
9.8.2.4. Security screening
9.8.2.5. Composites
9.8.2.6. Windscreen films
9.8.2.7. Protective eyewear for pilots
9.8.2.8. EMI and RFI shielding
9.8.2.9. Thermal management
9.8.3. Global revenues 2020-2035
9.9. COATINGS AND FILMS
9.9.1. Market drivers and trends
9.9.2. Applications
9.9.2.1. Cooling films
9.9.2.2. Anti-reflection surfaces
9.9.2.3. Optical solar reflection coatings
9.9.3. Global revenues 2020-2035
9.10. PHOTOVOLTAICS
9.10.1. Market drivers and trends
9.10.2. Applications
9.10.2.1. Solar-thermal absorber
9.10.2.2. Coatings
9.10.3. Global revenues 2020-2035
9.11. MEDICAL IMAGING
9.11.1. Market drivers and trends
9.11.2. Applications
9.11.2.1. MRI imaging
9.11.2.2. Non-invasive glucose monitoring
9.11.3. Global revenues
9.12. CONSUMER ELECTRONICS & DISPLAYS
9.12.1. Market drivers and trends
9.12.2. Applications
9.12.2.1. Holographic displays
9.12.2.2. Metalenses in smartphones
9.12.2.3. AR/VR
9.12.2.4. Multiview displays
9.12.2.5. Stretchable displays
9.12.2.6. Soft materials
9.12.2.7. Anti-reflection (AR) coatings
9.12.3. Global revenues
9.13. COMPOSITES
9.13.1. Market drivers and trends
9.13.2. Applications
10. COMPANY PROFILES (74 company profiles)
11. RESEARCH METHODOLOGY
11.1. Report scope
11.2. Research methodology
12. REFERENCES