»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
¼¼°èÀÇ Ã·´Ü ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Àç·á ½ÃÀåÀº ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡, Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â, ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ºü¸¥ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¼®À¯ ±â¹Ý ¹× ±âŸ ºñÁö¼Ó°¡´É ¼ÒÀçÀÇ ´ëüǰÀ¸·Î °³¹ßµÇ°í ÀÖÀ¸¸ç, ȯ°æÀû ¼º´É°ú ¼øÈ¯¼ºÀ» Çâ»ó½ÃŰ¸é¼ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ °³¹ßµÇ°í ÀÖ½À´Ï´Ù.
ÁÖ¿ä ÃËÁø¿äÀÎ
ÀÌ»êÈź¼Ò ¹èÃâ ¹× È¯°æ ¿µÇâ °¨¼Ò ÃßÁø
Áö¼Ó°¡´ÉÇÑ Àç·á¸¦ ÃËÁøÇÏ´Â Á¤ºÎ ±ÔÁ¦
±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼Ó
ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ
¼®À¯°è Àç·áÀÇ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä
»ý»ê ±â¼ú ¹ßÀü
¹ÙÀÌ¿À Á¦Á¶¾÷¿¡ ´ëÇÑ ÅõÀÚ
ÇöÀç ½ÃÀå ±Ô¸ð´Â 1,000¾ï ´Þ·¯°¡ ³Ñ°í ¿¬°£ 10-15%¾¿ ¼ºÀåÇϰí ÀÖ´Â °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, ¹ÙÀÌ¿ÀÆú¸®¸Ó¿Í Áö¼Ó°¡´ÉÇÑ Æ÷ÀåÀÌ °¡Àå Å« ºÐ¾ß·Î ²ÅÈ÷°í ÀÖ½À´Ï´Ù.
Å« ±âȸ°¡ ÀÖ´Â ºÐ¾ß
¼®À¯ÈÇÐÁ¦Ç° ȣȯǰ
Ư¼ºÀÌ °³¼±µÈ »õ·Î¿î ¹ÙÀÌ¿ÀÆú¸®¸Ó
ÀÚµ¿Â÷ ¹× °ÇÃà¿ë õ¿¬¼¶À¯ º¹ÇÕÀç·á
Áö¼Ó°¡´ÉÇÑ °ÇÃàÀÚÀç¿Í ±×¸° ½ºÆ¿
¹ÙÀÌ¿À Æ÷Àå ¼Ö·ç¼Ç
Â÷¼¼´ë Áö¼Ó°¡´ÉÇÑ ¼¶À¯
Àç»ý ¹°Áú·Î ¸¸µç ÀüÀÚ±â±â
±â¼úÀÇ ¼º¼÷°ú ºñ¿ë °¨¼Ò·Î ÀÎÇØ Àü¸ÁÀº °è¼Ó ¹à½À´Ï´Ù. Á¦Á¶¾÷üµéÀÌ È¯°æ ¸ñÇ¥¿Í ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Áö¼Ó°¡´ÉÇÑ ¼ÒÀçÀÇ Ã¤ÅÃÀ» ´Ã¸®¸é¼ ¼ºÀåÀÌ °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ½ÃÀåÀÎ ¹Ý¸é, À¯·´Àº ±â¼ú °³¹ß ¹× äÅÿ¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù.
¼¼°èÀÇ Ã·´Ü ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Àç·á ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ±Þ¼ºÀåÇÏ´Â ½ÃÀåÀÇ »ó¼¼ÇÑ µ¥ÀÌÅͶó°í ºÐ¼®À» Á¦°øÇϰí ÀÖ½À´Ï´Ù. 10³â°£ »ó¼¼ÇÑ ¿¹Ãø, 1,000»ç ÀÌ»óÀÇ °æÀï ºÐ¼®, ±â¼ú, Á¦Á¶ ÇÁ·Î¼¼½º, ÃÖÁ¾ ¿ëµµ ½ÃÀåÀÇ »ó¼¼ÇÑ Æò°¡°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå Á¶»ç ¹æ¹ý
Á¦2Àå ¼·Ð
Áö¼Ó°¡´É ¹ÙÀÌ¿À ±â¹Ý Àç·áÀÇ Á¤ÀÇ
¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Àç·áÀÇ Á߿伺°ú ÀÌÁ¡
Á¦3Àå ¹ÙÀÌ¿À ±â¹Ý ÈÇÐÁ¦Ç°¡¤Áß°£Ã¼
¹ÙÀÌ¿À¸®ÆÄÀ̳ʸ®
¹ÙÀÌ¿À ±â¹Ý ¿ø·á¡¤ÅäÁö ÀÌ¿ë
½Ä¹° À¯·¡
Æó±â¹°
¹Ì»ý¹°¡¤±¤¹°¿ø
°¡½º»ó
±â¾÷ °³¿ä(±â¾÷ 128»çÀÇ °³¿ä)
Á¦4Àå ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¡¤ÇÃ¶ó½ºÆ½
°³¿ä
»ýºÐÇØ¼º ÅðºñÈ °¡´É ÇÃ¶ó½ºÆ½
À¯Çü
ÁÖ¿ä ½ÃÀå ±â¾÷
ÇÕ¼º ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó
õ¿¬ ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó
¹ÙÀÌ¿À ·¯¹ö
ÀÜ·ù¹° À¯·¡ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½
»ý»ê : Áö¿ªº°
ÃÖÁ¾ ¿ëµµ ½ÃÀå
¸®±×´Ñ
±â¾÷ °³¿ä(±â¾÷ 526»çÀÇ °³¿ä)
Á¦5Àå õ¿¬ ¼¶À¯ ÇÃ¶ó½ºÆ½¡¤º¹ÇÕÀç·á
¼·Ð
ÇÃ¶ó½ºÆ½ º¹ÇÕÀç·á¿¡ »ç¿ëµÇ´Â õ¿¬ ¼¶À¯ À¯Çü
õ¿¬ ¼¶À¯ °¡°ø°ú ó¸®
õ¿¬ ¼¶À¯¿Í ÇÃ¶ó½ºÆ½ ¸ÅÆ®¸¯½º °è¸é°ú ÀûÇÕ¼º
Á¦Á¶ ÇÁ·Î¼¼½º
õ¿¬ ¼¶À¯ ¼¼°è ½ÃÀå
¸ñÀç º¹ÇÕÀç·á
°æÀï ±¸µµ
ÇâÈÄ Àü¸Á
¸ÅÃâ
±â¾÷ °³¿ä(±â¾÷ 67»çÀÇ °³¿ä)
Á¦6Àå Áö¼Ó°¡´É °ÇÃàÀÚÀç
½ÃÀåÀÇ °³¿ä
¼¼°èÀÇ ¸ÅÃâ
Áö¼Ó°¡´É °ÇÃàÀÚÀç À¯Çü
ź¼Ò Æ÷Áý¡¤ÀÌ¿ë
±×¸° ö°
½ÃÀå°ú ¿ëµµ
±â¾÷ °³¿ä(±â¾÷ 144»çÀÇ °³¿ä)
Á¦7Àå ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á
½ÃÀåÀÇ °³¿ä
Àç·á
ÇÕ¼º ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á
õ¿¬ ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á
¿ëµµ
Æ÷Àå¿¡¼ÀÇ ¹ÙÀÌ¿À ±â¹Ý Çʸ§¡¤ÄÚÆÃ
Æ÷Àå¿ë ź¼Ò Æ÷Áý À¯·¡ Àç·á
¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý Æ÷Àå ½ÃÀå
±â¾÷ °³¿ä(±â¾÷ 207»çÀÇ °³¿ä)
Á¦8Àå Áö¼Ó°¡´É ÅØ½ºÅ¸ÀÏ¡¤ÀÇ·ù
¹ÙÀÌ¿À ±â¹Ý ¼¶À¯ À¯Çü
¹ÙÀÌ¿À ±â¹Ý ÈÇÐÁ¦Ç°
¹ÙÀÌ¿À ±â¹Ý ¼¶À¯ÀÇ ÀçȰ¿ë °¡´É¼º
¸®¿À¼¿
¹ÚÅ׸®¾Æ ¼¿·ê·Î¿À½º
Á¶·ù ¼¶À¯
¹ÙÀÌ¿À ±â¹Ý ·¹´õ
½ÃÀå
¼¼°è ½ÃÀåÀÇ ¸ÅÃâ
±â¾÷ °³¿ä(±â¾÷ 67»çÀÇ °³¿ä)
Á¦9Àå ¹ÙÀÌ¿À ±â¹Ý ÄÚÆÃ¡¤¼öÁö
ȣȯǰ
¹ÙÀÌ¿À ±â¹Ý ¼öÁö
»ê¾÷¿ë¡¤º¸È£ ÄÚÆÃ¿¡¼ ź¼Ò¹ßÀÚ±¹ÀÇ »è°¨
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
¹ÙÀÌ¿À ±â¹Ý ÄÚÆÃÀÇ °úÁ¦
À¯Çü
±â¾÷ °³¿ä(±â¾÷ 168»çÀÇ °³¿ä)
Á¦10Àå ¹ÙÀÌ¿À¿¬·á
ȼ®¿¬·á¶ó´Â ºñ±³
¼øÈ¯Çü °æÁ¦¿¡¼ ¿ªÇÒ
½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
¾×ü ¹ÙÀÌ¿À¿¬·á ½ÃÀå
¼¼°èÀÇ ¹ÙÀÌ¿À¿¬·á ½ÃÀå
SWOT ºÐ¼® : ¹ÙÀÌ¿À¿¬·á ½ÃÀå
¹ÙÀÌ¿À¿¬·á ºñ¿ëÀÇ ºñ±³ : À¯Çüº°(2023³â)
À¯Çü
¿ø·á
źȼö¼Ò ¹ÙÀÌ¿À¿¬·á
¾ËÄÚ¿Ã ¿¬·á
¹ÙÀÌ¿À¸Å½º °¡½º
¹ÙÀÌ¿À¿¬·á¿ë ÄɹÌÄà ÀçȰ¿ë
ÇÕ¼º¿¬·á(e-fuel, power-to-gas/liquids/fuels)
Á¶·ù À¯·¡ ¹ÙÀÌ¿À¿¬·á
±×¸° ¾Ï¸ð´Ï¾Æ
ź¼Ò Æ÷Áý À¯·¡ ¹ÙÀÌ¿À¿¬·á
¹ÙÀÌ¿À ¿ÀÀÏ(¿ºÐÇØÀ¯)
Æó±â¹° À¯·¡ ¿¬·á(RDF)
±â¾÷ °³¿ä(±â¾÷ 211»çÀÇ °³¿ä)
Á¦11Àå Áö¼Ó°¡´É ÀÏ·ºÆ®·Î´Ð½º
°³¿ä
±×¸° ÀÏ·ºÆ®·Î´Ð½º Á¦Á¶
¼¼°è ½ÃÀå
±â¾÷ °³¿ä(±â¾÷ 45»çÀÇ °³¿ä)
Á¦12Àå ¹ÙÀÌ¿À ±â¹Ý Á¢ÂøÁ¦¡¤½Ç¶õÆ®
°³¿ä
À¯Çü
¼¼°èÀÇ ¸ÅÃâ
±â¾÷ °³¿ä(±â¾÷ 15»çÀÇ °³¿ä)
Á¦13Àå Âü°í ¹®Çå
KSA
The global market for advanced bio-based and sustainable materials is experiencing rapid growth driven by increasing environmental concerns, regulatory pressure for sustainable solutions, and growing consumer demand for eco-friendly products. These materials are being developed to replace petroleum-based and other non-sustainable materials across multiple industries while offering improved environmental performance and circularity.
Key drivers include:
Push to reduce carbon emissions and environmental impact
Government regulations promoting sustainable materials
Corporate sustainability commitments
Consumer preference for eco-friendly products
Need for alternatives to petroleum-based materials
Advancement in production technologies
Investment in bio-based manufacturing
The market encompasses multiple material categories including bio-based chemicals, polymers, composites, and advanced materials for construction, packaging, textiles, and electronics applications. Current market size is estimated at over $100 billion and growing at 10-15% annually, with bio-based polymers and sustainable packaging representing the largest segments.
Significant opportunities exist in:
Drop-in replacements for petroleum-based chemicals
Novel bio-based polymers with enhanced properties
Natural fiber composites for automotive and construction
Sustainable building materials and green steel
Bio-based packaging solutions
Next-generation sustainable textiles
Electronics from renewable materials
The outlook remains highly positive as technologies mature and costs decrease. Growth is expected to accelerate as manufacturers increase adoption of sustainable materials to meet environmental goals and consumer demands. Asia Pacific represents the fastest growing market, while Europe leads in technology development and adoption.
This extensive 2200+ page report provides detailed market data and analysis of the rapidly growing advanced bio-based and sustainable materials market, covering bio-based chemicals, polymers, composites, construction materials, packaging, textiles, adhesives, and electronics applications. The report includes granular 10-year forecasts, competitive analysis of over 1,000 companies, and in-depth assessment of technologies, manufacturing processes, and end-use markets.
Key Report Features:
Comprehensive analysis of bio-based chemicals and intermediates including starch, glucose, lignin, and plant-based feedstocks
Detailed market sizing and forecasts for bio-based polymers and plastics including PLA, PHA, bio-PE, bio-PET
Assessment of natural fiber composites and wood composites market opportunities
Analysis of sustainable construction materials including bio-concrete, green steel, and thermal materials
Deep dive into bio-based packaging applications and markets
Coverage of sustainable textiles and bio-based leather alternatives
Evaluation of bio-based adhesives, coatings and electronic materials
Company profiles of over 1,000 companies developing advanced sustainable materials. Companies profiled include ADBioplastics, AlgiKnit, Allbirds Materials, Ananas Anam, Anellotech, Avantium, Basilisk, BASF, Blue Planet, Bluepha, Bolt Threads, Borealis, Braskem, Carbios, CarbonCure, Cargill, Cathay Biotech, CJ Biomaterials, Danimer Scientific, DuPont, Ecologic Brands, Ecovative, FlexSea, Futamura, Genomatica, GRECO, Helian Polymers BV, Huitong Biomaterials, Interface, Kaneka, Kingfa Science and Technology, Lactips, Loliware, MarinaTex, Modern Meadow, Mogu, Mushroom Packaging, MycoWorks, Natural Fiber Welding, NatureWorks, Newlight Technologies, Notpla, Novamont, Novozymes, Orange Fiber, Origin Materials, Ourobio, Paptic, Plantic Technologies, PlantSea, Prometheus Materials, Roquette, RWDC Industries, Solidia Technologies, Spinnova, Succinity, Sulapac, Sulzer, TerraVerdae Bioworks, Tipa Corp, Total Corbion, TotalEnergies Corbion, Trinseo, UPM, Vitrolabs, Wear Once, Xampla, Yield10 Bioscience, Zoa BioFabrics and more....
Detailed Coverage Includes:
Raw material sourcing and feedstock analysis
Production processes and manufacturing methods
Material properties and performance characteristics
End-use applications and market opportunities
Competitive landscape and company strategies
Technology roadmaps and future outlook
Regional market analysis
Regulatory considerations
Sustainability metrics and environmental impact
The report segments the market by:
Material Type:
Bio-based chemicals and intermediates
Bio-based polymers and plastics
Natural fiber composites
Sustainable construction materials
Bio-based packaging
Sustainable textiles
Bio-based adhesives and coatings
Sustainable electronics
End-Use Markets:
Packaging
Construction
Automotive
Textiles & Apparel
Electronics
Consumer Products
Industrial Applications
Geographic Regions:
North America
Europe
Asia Pacific
Rest of World
TABLE OF CONTENTS
1. RESEARCH METHODOLOGY
2. INTRODUCTION
2.1. Definition of Sustainable and Bio-based Materials
2.2. Importance and Benefits of Bio-based and Sustainable Materials
3. BIOBASED CHEMICALS AND INTERMEDIATES
3.1. BIOREFINERIES
3.2. BIO-BASED FEEDSTOCK AND LAND USE
3.3. PLANT-BASED
3.3.1. STARCH
3.3.1.1. Overview
3.3.1.2. Sources
3.3.1.3. Global production
3.3.1.4. Lysine
3.3.1.4.1. Source
3.3.1.4.2. Applications
3.3.1.4.3. Global production
3.3.1.5. Glucose
3.3.1.5.1. HMDA
3.3.1.5.1.1. Overview
3.3.1.5.1.2. Sources
3.3.1.5.1.3. Applications
3.3.1.5.1.4. Global production
3.3.1.5.2. 1,5-diaminopentane (DA5)
3.3.1.5.2.1. Overview
3.3.1.5.2.2. Sources
3.3.1.5.2.3. Applications
3.3.1.5.2.4. Global production
3.3.1.5.3. Sorbitol
3.3.1.5.3.1. Isosorbide
3.3.1.5.3.1.1. Overview
3.3.1.5.3.1.2. Sources
3.3.1.5.3.1.3. Applications
3.3.1.5.3.1.4. Global production
3.3.1.5.4. Lactic acid
3.3.1.5.4.1. Overview
3.3.1.5.4.2. D-lactic acid
3.3.1.5.4.3. L-lactic acid
3.3.1.5.4.4. Lactide
3.3.1.5.5. Itaconic acid
3.3.1.5.5.1. Overview
3.3.1.5.5.2. Sources
3.3.1.5.5.3. Applications
3.3.1.5.5.4. Global production
3.3.1.5.6. 3-HP
3.3.1.5.6.1. Overview
3.3.1.5.6.2. Sources
3.3.1.5.6.3. Applications
3.3.1.5.6.4. Global production
3.3.1.5.6.5. Acrylic acid
3.3.1.5.6.5.1. Overview
3.3.1.5.6.5.2. Applications
3.3.1.5.6.5.3. Global production
3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
3.3.1.5.6.6.1. Overview
3.3.1.5.6.6.2. Applications
3.3.1.5.6.6.3. Global production
3.3.1.5.7. Succinic Acid
3.3.1.5.7.1. Overview
3.3.1.5.7.2. Sources
3.3.1.5.7.3. Applications
3.3.1.5.7.4. Global production
3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
3.3.1.5.7.5.1. Overview
3.3.1.5.7.5.2. Applications
3.3.1.5.7.5.3. Global production
3.3.1.5.7.6. Tetrahydrofuran (THF)
3.3.1.5.7.6.1. Overview
3.3.1.5.7.6.2. Applications
3.3.1.5.7.6.3. Global production
3.3.1.5.8. Adipic acid
3.3.1.5.8.1. Overview
3.3.1.5.8.2. Applications
3.3.1.5.8.3. Caprolactame
3.3.1.5.8.3.1. Overview
3.3.1.5.8.3.2. Applications
3.3.1.5.8.3.3. Global production
3.3.1.5.9. Isobutanol
3.3.1.5.9.1. Overview
3.3.1.5.9.2. Sources
3.3.1.5.9.3. Applications
3.3.1.5.9.4. Global production
3.3.1.5.9.5. p-Xylene
3.3.1.5.9.5.1. Overview
3.3.1.5.9.5.2. Sources
3.3.1.5.9.5.3. Applications
3.3.1.5.9.5.4. Global production
3.3.1.5.9.5.5. Terephthalic acid
3.3.1.5.9.5.6. Overview
3.3.1.5.10. 1,3 Proppanediol
3.3.1.5.10.1.1. Overview
3.3.1.5.10.2. Sources
3.3.1.5.10.3. Applications
3.3.1.5.10.4. Global production
3.3.1.5.11. Monoethylene glycol (MEG)
3.3.1.5.11.1. Overview
3.3.1.5.11.2. Sources
3.3.1.5.11.3. Applications
3.3.1.5.11.4. Global production
3.3.1.5.12. Ethanol
3.3.1.5.12.1. Overview
3.3.1.5.12.2. Sources
3.3.1.5.12.3. Applications
3.3.1.5.12.4. Global production
3.3.1.5.12.5. Ethylene
3.3.1.5.12.5.1. Overview
3.3.1.5.12.5.2. Applications
3.3.1.5.12.5.3. Global production
3.3.1.5.12.5.4. Propylene
3.3.1.5.12.5.5. Vinyl chloride
3.3.1.5.12.6. Methly methacrylate
3.3.2. SUGAR CROPS
3.3.2.1. Saccharose
3.3.2.1.1. Aniline
3.3.2.1.1.1. Overview
3.3.2.1.1.2. Applications
3.3.2.1.1.3. Global production
3.3.2.1.2. Fructose
3.3.2.1.2.1. Overview
3.3.2.1.2.2. Applications
3.3.2.1.2.3. Global production
3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
3.3.2.1.2.4.1. Overview
3.3.2.1.2.4.2. Applications
3.3.2.1.2.4.3. Global production
3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
3.3.2.1.2.5.1. Overview
3.3.2.1.2.5.2. Applications
3.3.2.1.2.5.3. Global production
3.3.2.1.2.6. Levulinic Acid
3.3.2.1.2.6.1. Overview
3.3.2.1.2.6.2. Applications
3.3.2.1.2.6.3. Global production
3.3.2.1.2.7. FDME
3.3.2.1.2.7.1. Overview
3.3.2.1.2.7.2. Applications
3.3.2.1.2.7.3. Global production
3.3.2.1.2.8. 2,5-FDCA
3.3.2.1.2.8.1. Overview
3.3.2.1.2.8.2. Applications
3.3.2.1.2.8.3. Global production
3.3.3. LIGNOCELLULOSIC BIOMASS
3.3.3.1. Levoglucosenone
3.3.3.1.1. Overview
3.3.3.1.2. Applications
3.3.3.1.3. Global production
3.3.3.2. Hemicellulose
3.3.3.2.1. Overview
3.3.3.2.2. Biochemicals from hemicellulose
3.3.3.2.3. Global production
3.3.3.2.4. Furfural
3.3.3.2.4.1. Overview
3.3.3.2.4.2. Applications
3.3.3.2.4.3. Global production
3.3.3.2.4.4. Furfuyl alcohol
3.3.3.2.4.4.1. Overview
3.3.3.2.4.4.2. Applications
3.3.3.2.4.4.3. Global production
3.3.3.3. Lignin
3.3.3.3.1. Overview
3.3.3.3.2. Sources
3.3.3.3.3. Applications
3.3.3.3.3.1. Aromatic compounds
3.3.3.3.3.1.1. Benzene, toluene and xylene
3.3.3.3.3.1.2. Phenol and phenolic resins
3.3.3.3.3.1.3. Vanillin
3.3.3.3.3.2. Polymers
3.3.3.3.4. Global production
3.3.4. PLANT OILS
3.3.4.1. Overview
3.3.4.2. Glycerol
3.3.4.2.1. Overview
3.3.4.2.2. Applications
3.3.4.2.3. Global production
3.3.4.2.4. MPG
3.3.4.2.4.1. Overview
3.3.4.2.4.2. Applications
3.3.4.2.4.3. Global production
3.3.4.2.5. ECH
3.3.4.2.5.1. Overview
3.3.4.2.5.2. Applications
3.3.4.2.5.3. Global production
3.3.4.3. Fatty acids
3.3.4.3.1. Overview
3.3.4.3.2. Applications
3.3.4.3.3. Global production
3.3.4.4. Castor oil
3.3.4.4.1. Overview
3.3.4.4.2. Sebacic acid
3.3.4.4.2.1. Overview
3.3.4.4.2.2. Applications
3.3.4.4.2.3. Global production
3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
3.3.4.4.3.1. Overview
3.3.4.4.3.2. Applications
3.3.4.4.3.3. Global production
3.3.4.5. Dodecanedioic acid (DDDA)
3.3.4.5.1. Overview
3.3.4.5.2. Applications
3.3.4.5.3. Global production
3.3.4.6. Pentamethylene diisocyanate
3.3.4.6.1. Overview
3.3.4.6.2. Applications
3.3.4.6.3. Global production
3.3.5. NON-EDIBIBLE MILK
3.3.5.1. Casein
3.3.5.1.1. Overview
3.3.5.1.2. Applications
3.3.5.1.3. Global production
3.4. WASTE
3.4.1. Food waste
3.4.1.1. Overview
3.4.1.2. Products and applications
3.4.1.2.1. Global production
3.4.2. Agricultural waste
3.4.2.1. Overview
3.4.2.2. Products and applications
3.4.2.3. Global production
3.4.3. Forestry waste
3.4.3.1. Overview
3.4.3.2. Products and applications
3.4.3.3. Global production
3.4.4. Aquaculture/fishing waste
3.4.4.1. Overview
3.4.4.2. Products and applications
3.4.4.3. Global production
3.4.5. Municipal solid waste
3.4.5.1. Overview
3.4.5.2. Products and applications
3.4.5.3. Global production
3.4.6. Industrial waste
3.4.7. Waste oils
3.4.7.1. Overview
3.4.7.2. Products and applications
3.4.7.3. Global production
3.5. MICROBIAL & MINERAL SOURCES
3.5.1. Microalgae
3.5.1.1. Overview
3.5.1.2. Products and applications
3.5.1.3. Global production
3.5.2. Macroalgae
3.5.2.1. Overview
3.5.2.2. Products and applications
3.5.2.3. Global production
3.5.3. Mineral sources
3.5.3.1. Overview
3.5.3.2. Products and applications
3.6. GASEOUS
3.6.1. Biogas
3.6.1.1. Overview
3.6.1.2. Products and applications
3.6.1.3. Global production
3.6.2. Syngas
3.6.2.1. Overview
3.6.2.2. Products and applications
3.6.2.3. Global production
3.6.3. Off gases - fermentation CO2, CO
3.6.3.1. Overview
3.6.3.2. Products and applications
3.7. COMPANY PROFILES (128 company profiles)
4. BIOBASED POLYMERS AND PLASTICS
4.1. Overview
4.1.1. Drop-in bio-based plastics
4.1.2. Novel bio-based plastics
4.2. Biodegradable and compostable plastics
4.2.1. Biodegradability
4.2.2. Compostability
4.3. Types
4.4. Key market players
4.5. Synthetic biobased polymers
4.5.1. Polylactic acid (Bio-PLA)
4.5.1.1. Market analysis
4.5.1.2. Production
4.5.1.3. Producers and production capacities, current and planned
4.5.1.3.1. Lactic acid producers and production capacities
4.5.1.3.2. PLA producers and production capacities
4.5.1.3.3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
4.5.2. Polyethylene terephthalate (Bio-PET)
4.5.2.1. Market analysis
4.5.2.2. Producers and production capacities
4.5.2.3. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
4.5.3. Polytrimethylene terephthalate (Bio-PTT)
4.5.3.1. Market analysis
4.5.3.2. Producers and production capacities
4.5.3.3. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
4.5.4. Polyethylene furanoate (Bio-PEF)
4.5.4.1. Market analysis
4.5.4.2. Comparative properties to PET
4.5.4.3. Producers and production capacities
4.5.4.3.1. FDCA and PEF producers and production capacities
4.5.4.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
4.5.5. Polyamides (Bio-PA)
4.5.5.1. Market analysis
4.5.5.2. Producers and production capacities
4.5.5.3. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
4.5.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
4.5.6.1. Market analysis
4.5.6.2. Producers and production capacities
4.5.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
4.5.7. Polybutylene succinate (PBS) and copolymers
4.5.7.1. Market analysis
4.5.7.2. Producers and production capacities
4.5.7.3. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
4.5.8. Polyethylene (Bio-PE)
4.5.8.1. Market analysis
4.5.8.2. Producers and production capacities
4.5.8.3. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
4.5.9. Polypropylene (Bio-PP)
4.5.9.1. Market analysis
4.5.9.2. Producers and production capacities
4.5.9.3. Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
4.6. Natural biobased polymers
4.6.1. Polyhydroxyalkanoates (PHA)
4.6.1.1. Technology description
4.6.1.2. Types
4.6.1.2.1. PHB
4.6.1.2.2. PHBV
4.6.1.3. Synthesis and production processes
4.6.1.4. Market analysis
4.6.1.5. Commercially available PHAs
4.6.1.6. Markets for PHAs
4.6.1.6.1. Packaging
4.6.1.6.2. Cosmetics
4.6.1.6.2.1. PHA microspheres
4.6.1.6.3. Medical
4.6.1.6.3.1. Tissue engineering
4.6.1.6.3.2. Drug delivery
4.6.1.6.4. Agriculture
4.6.1.6.4.1. Mulch film
4.6.1.6.4.2. Grow bags
4.6.1.7. Producers and production capacities
4.6.2. Cellulose
4.6.2.1. Microfibrillated cellulose (MFC)
4.6.2.1.1. Market analysis
4.6.2.1.2. Producers and production capacities
4.6.2.2. Nanocellulose
4.6.2.2.1. Cellulose nanocrystals
4.6.2.2.1.1. Synthesis
4.6.2.2.1.2. Properties
4.6.2.2.1.3. Production
4.6.2.2.1.4. Applications
4.6.2.2.1.5. Market analysis
4.6.2.2.1.6. Producers and production capacities
4.6.2.2.2. Cellulose nanofibers
4.6.2.2.2.1. Applications
4.6.2.2.2.2. Market analysis
4.6.2.2.2.3. Producers and production capacities
4.6.2.2.3. Bacterial Nanocellulose (BNC)
4.6.2.2.3.1. Production
4.6.2.2.3.2. Applications
4.6.3. Protein-based bioplastics
4.6.3.1. Types, applications and producers
4.6.4. Algal and fungal
4.6.4.1. Algal
4.6.4.1.1. Advantages
4.6.4.1.2. Production
4.6.4.1.3. Producers
4.6.4.2. Mycelium
4.6.4.2.1. Properties
4.6.4.2.2. Applications
4.6.4.2.3. Commercialization
4.6.5. Chitosan
4.6.5.1. Technology description
4.7. Bio-rubber
4.7.1. Overview
4.7.2. Applications
4.7.3. Importance of Recycling and Residue Utilization
4.7.4. Raw Material Sourcing and Selection
4.7.5. Production Methods and Processing Techniques
4.7.6. Environmental Impact and Benefits
4.7.7. Material Properties and Testing
4.7.8. Comparison with Conventional Rubber
4.7.9. Applications in Construction
4.7.9.1. Bio-Rubber Use in Building Panels
4.7.9.2. Thermal and Acoustic Insulation
4.7.10. Applications in the Automotive Industry
4.7.10.1. Automotive Parts and Components
4.7.11. Applications in Personal Protective Equipment (PPE)
4.7.11.1. Gloves, Boots, and Safety Equipment
4.7.11.2. Enhancing Durability and Comfort
4.7.11.3. 2. Standards Compliance and Health Implications
4.7.11.4. Challenges and Limitations
4.7.12. Technological Challenges in Bio-Rubber Production
4.7.13. Cost and Economic Viability
4.7.14. Regulatory and Safety Concerns
4.7.15. Sustainability and Environmental Impact Analysis
4.7.16. Growth Prospects in Construction, Automotive, and PPE Sectors
4.8. Bio-plastic from residues
4.8.1. Overview
4.8.2. Production and Properties
4.8.3. Manufacturing Processes and Techniques
4.8.4. Material Properties: Biodegradability, Food-Safe, and Recyclability
4.8.5. Applications
4.8.5.1. Caps and Closures
4.8.5.1.1. Bottle Caps and Sealing Solutions
4.8.5.1.2. Compatibility with Food and Beverage Standards
4.8.5.2. Personal Protective Equipment (PPE)
4.8.5.2.1. Bio-Plastic in Face Shields, Gloves, and Masks
4.8.5.2.2. Biodegradability and Safety Standards
4.8.5.2.3. Market Trends in Eco-Friendly PPE
4.8.5.3. Healthcare and Medical Products
4.8.5.3.1. Disposable Medical Tools, Packaging, and Devices
4.8.5.3.2. Sterility, Safety, and Bio-Compatibility Standards
4.8.5.3.3. Adoption by Healthcare Providers
4.8.5.4. Agriculture
4.8.5.4.1. Mulch Films, Plant Pots, and Seed Coatings
4.8.5.5. Cosmetics and Food
4.8.5.5.1. Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps
4.8.5.5.2. Food Contact Safety and Aesthetic Appeal
4.8.5.5.3. Demand Trends for Sustainable Cosmetic and Food Packaging
4.8.5.6. Automotive Interior Components
4.8.5.6.1. Bio-Plastic in Dashboards, Panels, and Upholstery
4.8.5.6.2. Performance and Durability Standards
4.8.5.6.3. Market Adoption in Eco-Friendly Automotive Solutions
4.9. Production by region
4.9.1. North America
4.9.2. Europe
4.9.3. Asia-Pacific
4.9.3.1. China
4.9.3.2. Japan
4.9.3.3. Thailand
4.9.3.4. Indonesia
4.9.4. Latin America
4.10. End use markets
4.10.1. Packaging
4.10.1.1. Processes for bioplastics in packaging
4.10.1.2. Applications
4.10.1.3. Flexible packaging
4.10.1.3.1. Production volumes 2019-2035
4.10.1.4. Rigid packaging
4.10.1.4.1. Production volumes 2019-2035
4.10.2. Consumer products
4.10.2.1. Applications
4.10.2.2. Production volumes 2019-2035
4.10.3. Automotive
4.10.3.1. Applications
4.10.3.2. Production volumes 2019-2035
4.10.4. Construction
4.10.4.1. Applications
4.10.4.2. Production volumes 2019-2035
4.10.5. Textiles
4.10.5.1. Apparel
4.10.5.2. Footwear
4.10.5.3. Medical textiles
4.10.5.4. Production volumes 2019-2035
4.10.6. Electronics
4.10.6.1. Applications
4.10.6.2. Production volumes 2019-2035
4.10.7. Agriculture and horticulture
4.10.7.1. Production volumes 2019-2035
4.11. Lignin
4.11.1. Introduction
4.11.1.1. What is lignin?
4.11.1.1.1. Lignin structure
4.11.1.2. Types of lignin
4.11.1.2.1. Sulfur containing lignin
4.11.1.2.2. Sulfur-free lignin from biorefinery process
4.11.1.3. Properties
4.11.1.4. The lignocellulose biorefinery
4.11.1.5. Markets and applications
4.11.1.6. Challenges for using lignin
4.11.2. Lignin production processes
4.11.2.1. Lignosulphonates
4.11.2.2. Kraft Lignin
4.11.2.2.1. LignoBoost process
4.11.2.2.2. LignoForce method
4.11.2.2.3. Sequential Liquid Lignin Recovery and Purification
4.11.2.2.4. A-Recovery+
4.11.2.3. Soda lignin
4.11.2.4. Biorefinery lignin
4.11.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and. processes
4.11.2.5. Organosolv lignins
4.11.2.6. Hydrolytic lignin
4.11.3. Markets for lignin
4.11.3.1. Market drivers and trends for lignin
4.11.3.2. Production capacities
4.11.3.2.1. Technical lignin availability (dry ton/y)
4.11.3.2.2. Biomass conversion (Biorefinery)
4.11.3.3. Global consumption of lignin
4.11.3.3.1. By type
4.11.3.3.2. By market
4.11.3.5. Heat and power energy
4.11.3.6. Pyrolysis and syngas
4.11.3.7. Aromatic compounds
4.11.3.7.1. Benzene, toluene and xylene
4.11.3.7.2. Phenol and phenolic resins
4.11.3.7.3. Vanillin
4.11.3.8. Plastics and polymers
4.12. COMPANY PROFILES (526 company profiles)
5. NATURAL FIBER PLASTICS AND COMPOSITES
5.1. Introduction
5.1.1. What are natural fiber materials?
5.1.2. Benefits of natural fibers over synthetic
5.1.3. Markets and applications for natural fibers
5.1.4. Commercially available natural fiber products
5.1.5. Market drivers for natural fibers
5.1.6. Market challenges
5.1.7. Wood flour as a plastic filler
5.2. Types of natural fibers in plastic composites
5.2.1. Plants
5.2.1.1. Seed fibers
5.2.1.1.1. Kapok
5.2.1.1.2. Luffa
5.2.1.2. Bast fibers
5.2.1.2.1. Jute
5.2.1.2.2. Hemp
5.2.1.2.3. Flax
5.2.1.2.4. Ramie
5.2.1.2.5. Kenaf
5.2.1.3. Leaf fibers
5.2.1.3.1. Sisal
5.2.1.3.2. Abaca
5.2.1.4. Fruit fibers
5.2.1.4.1. Coir
5.2.1.4.2. Banana
5.2.1.4.3. Pineapple
5.2.1.5. Stalk fibers from agricultural residues
5.2.1.5.1. Rice fiber
5.2.1.5.2. Corn
5.2.1.6. Cane, grasses and reed
5.2.1.6.1. Switchgrass
5.2.1.6.2. Sugarcane (agricultural residues)
5.2.1.6.3. Bamboo
5.2.1.6.4. Fresh grass (green biorefinery)
5.2.1.7. Modified natural polymers
5.2.1.7.1. Mycelium
5.2.1.7.2. Chitosan
5.2.1.7.3. Alginate
5.2.2. Animal (fibrous protein)
5.2.3. Wood-based natural fibers
5.2.3.1. Cellulose fibers
5.2.3.1.1. Market overview
5.2.3.1.2. Producers
5.2.3.2. Microfibrillated cellulose (MFC)
5.2.3.2.1. Market overview
5.2.3.2.2. Producers
5.2.3.3. Cellulose nanocrystals
5.2.3.3.1. Market overview
5.2.3.3.2. Producers
5.2.3.4. Cellulose nanofibers
5.2.3.4.1. Market overview
5.2.3.4.2. Producers
5.3. Processing and Treatment of Natural Fibers
5.4. Interface and Compatibility of Natural Fibers with Plastic Matrices
5.4.1. Adhesion and Bonding
5.4.2. Moisture Absorption and Dimensional Stability
5.4.3. Thermal Expansion and Compatibility
5.4.4. Dispersion and Distribution
5.4.5. Matrix Selection
5.4.6. Fiber Content and Alignment
5.4.7. Manufacturing Techniques
5.5. Manufacturing processes
5.5.1. Injection molding
5.5.2. Compression moulding
5.5.3. Extrusion
5.5.4. Thermoforming
5.5.5. Thermoplastic pultrusion
5.5.6. Additive manufacturing (3D printing)
5.6. Global market for natural fibers
5.6.1. Automotive
5.6.1.1. Applications
5.6.1.2. Commercial production
5.6.1.3. SWOT analysis
5.6.2. Packaging
5.6.2.1. Applications
5.6.2.2. SWOT analysis
5.6.3. Construction
5.6.3.1. Applications
5.6.3.2. SWOT analysis
5.6.4. Appliances
5.6.4.1. Applications
5.6.4.2. SWOT analysis
5.6.5. Consumer electronics
5.6.5.1. Applications
5.6.5.2. SWOT analysis
5.6.6. Furniture
5.6.6.1. Applications
5.6.6.2. SWOT analysis
5.7. Wood composites
5.7.1. Applications
5.7.2. Importance of Wood Composite in Sustainable Manufacturing
5.7.3. Market Overview and Dynamics of Wood Composite Market
5.7.4. Production and Material Properties
5.7.5. Types of Wood Composite Materials
5.7.6. Performance Characteristics
5.7.7. Applications
5.7.7.1. Tools and Appliances
5.7.7.1.1. Wood Composite Use in Industrial Tools
5.7.7.1.2. Bearings, Including Sliding Bearings
5.7.7.1.3. Advantages of Wood Composite Bearings in Load-Bearing Applications
5.7.7.1.4. Case Studies
5.7.7.1.5. Industry Trends
5.7.7.2. Construction and Building Materials
5.7.7.2.1. Wood Composite in Floor Plates, Panels, and Walls
5.7.7.2.2. Benefits in Construction: Strength, Insulation, and Aesthetics
5.7.7.2.3. Case Studies
5.7.7.3. Engine Components
5.7.7.3.1. Benefits of Wood Composite in Weight Reduction and Insulation
5.7.7.3.2. Analysis of Wood Composite Performance in High-Stress Environments
5.7.8. Technological Barriers
5.7.9. Environmental and Sustainability Considerations
5.7.10. Emerging Technologies in Wood Composite Manufacturing
5.8. Competitive landscape
5.9. Future outlook
5.10. Revenues
5.10.1. By end use market
5.10.2. By Material Type
5.10.3. By Plastic Type
5.10.4. By region
5.11. Company profiles (67 company profiles)
6. SUSTAINABLE CONSTRUCTION MATERIALS
6.1. Market overview
6.1.1. Benefits of Sustainable Construction
6.1.2. Global Trends and Drivers
6.2. Global revenues
6.2.1. By materials type
6.2.2. By market
6.3. Types of sustainable construction materials
6.3.1. Established bio-based construction materials
6.3.2. Hemp-based Materials
6.3.2.1. Hemp Concrete (Hempcrete)
6.3.2.2. Hemp Fiberboard
6.3.2.3. Hemp Insulation
6.3.3. Mycelium-based Materials
6.3.3.1. Insulation
6.3.3.2. Structural Elements
6.3.3.3. Acoustic Panels
6.3.3.4. Decorative Elements
6.3.4. Sustainable Concrete and Cement Alternatives
6.3.4.1. Geopolymer Concrete
6.3.4.2. Recycled Aggregate Concrete
6.3.4.3. Lime-Based Materials
6.3.4.4. Self-healing concrete
6.3.4.4.1. Bioconcrete
6.3.4.4.2. Fiber concrete
6.3.4.5. Microalgae biocement
6.3.4.6. Carbon-negative concrete
6.3.4.7. Biomineral binders
6.3.5. Natural Fiber Composites
6.3.5.1. Types of Natural Fibers
6.3.5.2. Properties
6.3.5.3. Applications in Construction
6.3.6. Cellulose nanofibers
6.3.6.1. Sandwich composites
6.3.6.2. Cement additives
6.3.6.3. Pump primers
6.3.6.4. Insulation materials
6.3.6.5. Coatings and paints
6.3.6.6. 3D printing materials
6.3.7. Sustainable Insulation Materials
6.3.7.1. Types of sustainable insulation materials
6.3.7.2. Aerogel Insulation
6.3.7.2.1. Silica aerogels
6.3.7.2.1.1. Properties
6.3.7.2.1.2. Thermal conductivity
6.3.7.2.1.3. Mechanical
6.3.7.2.1.4. Silica aerogel precursors
6.3.7.2.1.5. Products
6.3.7.2.1.5.1. Monoliths
6.3.7.2.1.5.2. Powder
6.3.7.2.1.5.3. Granules
6.3.7.2.1.5.4. Blankets
6.3.7.2.1.5.5. Aerogel boards
6.3.7.2.1.5.6. Aerogel renders
6.3.7.2.1.6. 3D printing of aerogels
6.3.7.2.1.7. Silica aerogel from sustainable feedstocks
6.3.7.2.1.8. Silica composite aerogels
6.3.7.2.1.8.1. Organic crosslinkers
6.3.7.2.1.9. Cost of silica aerogels
6.3.7.2.1.10. Main players
6.3.7.2.2. Aerogel-like foam materials
6.3.7.2.2.1. Properties
6.3.7.2.2.2. Applications
6.3.7.2.3. Metal oxide aerogels
6.3.7.2.4. Organic aerogels
6.3.7.2.4.1. Polymer aerogels
6.3.7.2.5. Biobased and sustainable aerogels (bio-aerogels)
6.3.7.2.5.1. Cellulose aerogels
6.3.7.2.5.1.1. Cellulose nanofiber (CNF) aerogels
6.3.7.2.5.1.2. Cellulose nanocrystal aerogels
6.3.7.2.5.1.3. Bacterial nanocellulose aerogels
6.3.7.2.5.2. Lignin aerogels
6.3.7.2.5.3. Alginate aerogels
6.3.7.2.5.4. Starch aerogels
6.3.7.2.5.5. Chitosan aerogels
6.3.7.2.6. Carbon aerogels
6.3.7.2.6.1. Carbon nanotube aerogels
6.3.7.2.6.2. Graphene and graphite aerogels
6.3.7.2.7. Additive manufacturing (3D printing)
6.3.7.2.7.1. Carbon nitride
6.3.7.2.7.2. Gold
6.3.7.2.7.3. Cellulose
6.3.7.2.7.4. Graphene oxide
6.3.7.2.8. Hybrid aerogels
6.4. Carbon capture and utilization
6.4.1. Overview
6.4.2. Market structure
6.4.3. CCUS technologies in the cement industry
6.4.4. Products
6.4.4.1. Carbonated aggregates
6.4.4.2. Additives during mixing
6.4.4.3. Carbonates from natural minerals
6.4.4.4. Carbonates from waste
6.4.5. Concrete curing
6.4.6. Costs
6.4.7. Challenges
6.5. Green steel
6.5.1. Current Steelmaking processes
6.5.1.1.1. Capturing then sequestering or utilizing carbon emissions from conventional steel mills.
6.5.2. Decarbonization target and policies
6.5.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
6.5.3. Advances in clean production technologies
6.5.4. Production technologies
6.5.4.1. The role of hydrogen
6.5.4.2. Comparative analysis
6.5.4.3. Hydrogen Direct Reduced Iron (DRI)
6.5.4.4. Electrolysis
6.5.4.5. Carbon Capture, Utilization and Storage (CCUS)
6.5.4.6. Biochar replacing coke
6.5.4.7. Hydrogen Blast Furnace
6.5.4.8. Renewable energy powered processes
6.5.4.9. Flash ironmaking
6.5.4.10. Hydrogen Plasma Iron Ore Reduction
6.5.4.11. Ferrous Bioprocessing
6.5.4.12. Microwave Processing
6.5.4.13. Additive Manufacturing
6.5.4.14. Technology readiness level (TRL)
6.5.5. Properties
6.6. Markets and applications
6.6.1. Residential Buildings
6.6.2. Commercial and Office Buildings
6.6.3. Infrastructure
6.7. Company profiles (144 company profiles)
7. BIOBASED PACKAGING MATERIALS
7.1. Market overview
7.1.1. Current global packaging market and materials
7.1.2. Market trends
7.1.3. Drivers for recent growth in bioplastics in packaging
7.1.4. Challenges for bio-based and sustainable packaging
7.2. Materials
7.2.1. Materials innovation
7.2.2. Active packaging
7.2.3. Monomaterial packaging
7.2.4. Conventional polymer materials used in packaging
7.2.4.1. Polyolefins: Polypropylene and polyethylene
7.2.4.2. PET and other polyester polymers
7.2.4.3. Renewable and bio-based polymers for packaging
7.2.4.4. Comparison of synthetic fossil-based and bio-based polymers
7.2.4.5. Processes for bioplastics in packaging
7.2.4.6. End-of-life treatment of bio-based and sustainable packaging
7.3. Synthetic bio-based packaging materials
7.3.1. Polylactic acid (Bio-PLA)
7.3.1.1. Properties
7.3.1.2. Applicaitons
7.3.2. Polyethylene terephthalate (Bio-PET)
7.3.2.1. Properties
7.3.2.2. Applications
7.3.2.3. Advantages of Bio-PET in Packaging
7.3.2.4. Challenges and Limitations
7.3.3. Polytrimethylene terephthalate (Bio-PTT)
7.3.3.1. Production Process
7.3.3.2. Properties
7.3.3.3. Applications
7.3.3.4. Advantages of Bio-PTT in Packaging
7.3.3.5. Challenges and Limitations
7.3.4. Polyethylene furanoate (Bio-PEF)
7.3.4.1. Properties
7.3.4.2. Applications
7.3.4.3. Advantages of Bio-PEF in Packaging
7.3.4.4. Challenges and Limitations
7.3.5. Bio-PA
7.3.5.1. Properties
7.3.5.2. Applications in Packaging
7.3.5.3. Advantages of Bio-PA in Packaging
7.3.5.4. Challenges and Limitations
7.3.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
7.3.6.1. Properties
7.3.6.2. Applications in Packaging
7.3.6.3. Advantages of Bio-PBAT in Packaging
7.3.6.4. Challenges and Limitations
7.3.7. Polybutylene succinate (PBS) and copolymers
7.3.7.1. Properties
7.3.7.2. Applications in Packaging
7.3.7.3. Advantages of Bio-PBS and Co-polymers in Packaging
7.3.7.4. Challenges and Limitations
7.3.8. Polypropylene (Bio-PP)
7.3.8.1. Properties
7.3.8.2. Applications in Packaging
7.3.8.3. Advantages of Bio-PP in Packaging
7.3.8.4. Challenges and Limitations
7.4. Natural bio-based packaging materials
7.4.1. Polyhydroxyalkanoates (PHA)
7.4.1.1. Properties
7.4.1.2. Applications in Packaging
7.4.1.3. Advantages of PHA in Packaging
7.4.1.4. Challenges and Limitations
7.4.2. Starch-based blends
7.4.2.1. Properties
7.4.2.2. Applications in Packaging
7.4.2.3. Advantages of Starch-Based Blends in Packaging
7.4.2.4. Challenges and Limitations
7.4.3. Cellulose
7.4.3.1. Feedstocks
7.4.3.1.1. Wood
7.4.3.1.2. Plant
7.4.3.1.3. Tunicate
7.4.3.1.4. Algae
7.4.3.1.5. Bacteria
7.4.3.2. Microfibrillated cellulose (MFC)
7.4.3.3. Nanocellulose
7.4.3.3.1. Cellulose nanocrystals
7.4.3.3.1.1. Applications in packaging
7.4.3.3.2. Cellulose nanofibers
7.4.3.3.2.1. Applications in packaging
7.4.3.3.2.1.1. Reinforcement and barrier
7.4.3.3.2.1.2. Biodegradable food packaging foil and films
7.4.3.3.2.1.3. Paperboard coatings
7.4.3.3.3. Bacterial Nanocellulose (BNC)
7.4.3.3.3.1. Applications in packaging
7.4.4. Protein-based bioplastics in packaging
7.4.5. Lipids and waxes for packaging
7.4.6. Seaweed-based packaging
7.4.6.1. Production
7.4.6.2. Applications in packaging
7.4.6.3. Producers
7.4.7. Mycelium
7.4.7.1. Applications in packaging
7.4.8. Chitosan
7.4.8.1. Applications in packaging
7.4.9. Bio-naphtha
7.4.9.1. Overview
7.4.9.2. Markets and applications
7.5. Applications
7.5.1. Paper and board packaging
7.5.2. Food packaging
7.5.2.1. Bio-Based films and trays
7.5.2.2. Bio-Based pouches and bags
7.5.2.3. Bio-Based textiles and nets
7.5.2.4. Bioadhesives
7.5.2.4.1. Starch
7.5.2.4.2. Cellulose
7.5.2.4.3. Protein-Based
7.5.2.5. Barrier coatings and films
7.5.2.5.1. Polysaccharides
7.5.2.5.1.1. Chitin
7.5.2.5.1.2. Chitosan
7.5.2.5.1.3. Starch
7.5.2.5.2. Poly(lactic acid) (PLA)
7.5.2.5.3. Poly(butylene Succinate)
7.5.2.5.4. Functional Lipid and Proteins Based Coatings
7.5.2.6. Active and Smart Food Packaging
7.5.2.6.1. Active Materials and Packaging Systems
7.5.2.6.2. Intelligent and Smart Food Packaging
7.5.2.7. Antimicrobial films and agents
7.5.2.7.1. Natural
7.5.2.7.2. Inorganic nanoparticles
7.5.2.7.3. Biopolymers
7.5.2.8. Bio-based Inks and Dyes
7.5.2.9. Edible films and coatings
7.6. Biobased films and coatings in packaging
7.6.1. Challenges using bio-based paints and coatings
7.6.2. Types of bio-based coatings and films in packaging
7.6.2.1. Polyurethane coatings
7.6.2.1.1. Properties
7.6.2.1.2. Bio-based polyurethane coatings
7.6.2.1.3. Products
7.6.2.2. Acrylate resins
7.6.2.2.1. Properties
7.6.2.2.2. Bio-based acrylates
7.6.2.2.3. Products
7.6.2.3. Polylactic acid (Bio-PLA)
7.6.2.3.1. Properties
7.6.2.3.2. Bio-PLA coatings and films
7.6.2.4. Polyhydroxyalkanoates (PHA) coatings
7.6.2.5. Cellulose coatings and films
7.6.2.5.1. Microfibrillated cellulose (MFC)
7.6.2.5.2. Cellulose nanofibers
7.6.2.5.2.1. Properties
7.6.2.5.2.2. Product developers
7.6.2.6. Lignin coatings
7.6.2.7. Protein-based biomaterials for coatings
7.6.2.7.1. Plant derived proteins
7.6.2.7.2. Animal origin proteins
7.7. Carbon capture derived materials for packaging
7.7.1. Benefits of carbon utilization for plastics feedstocks
7.7.2. CO2-derived polymers and plastics
7.7.3. CO2 utilization products
7.8. Global biobased packaging markets
7.8.1. Flexible packaging
7.8.2. Rigid packaging
7.8.3. Coatings and films
7.9. Company profiles (207 company profiles)
8. SUSTAINABLE TEXTILES AND APPAREL
8.1. Types of bio-based fibres
8.1.1. Natural fibres
8.1.2. Main-made bio-based fibres
8.2. Bio-based synthetics
8.3. Recyclability of bio-based fibres
8.4. Lyocell
8.5. Bacterial cellulose
8.6. Algae textiles
8.7. Bio-based leather
8.7.1. Properties of bio-based leathers
8.7.1.1. Tear strength.
8.7.1.2. Tensile strength
8.7.1.3. Bally flexing
8.7.2. Comparison with conventional leathers
8.7.3. Comparative analysis of bio-based leathers
8.7.4. Plant-based leather
8.7.4.1. Overview
8.7.4.2. Production processes
8.7.4.2.1. Feedstocks
8.7.4.2.1.1. Agriculture Residues
8.7.4.2.1.2. Food Processing Waste
8.7.4.2.1.3. Invasive Plants
8.7.4.2.1.4. Culture-Grown Inputs
8.7.4.2.2. Textile-Based
8.7.4.2.3. Bio-Composite
8.7.4.3. Products
8.7.4.4. Market players
8.7.5. Mycelium leather
8.7.5.1. Overview
8.7.5.2. Production process
8.7.5.2.1. Growth conditions
8.7.5.2.2. Tanning Mycelium Leather
8.7.5.2.3. Dyeing Mycelium Leather
8.7.5.3. Products
8.7.5.4. Market players
8.7.6. Microbial leather
8.7.6.1. Overview
8.7.6.2. Production process
8.7.6.3. Fermentation conditions
8.7.6.4. Harvesting
8.7.6.5. Products
8.7.6.6. Market players
8.7.7. Lab grown leather
8.7.7.1. Overview
8.7.7.2. Production process
8.7.7.3. Products
8.7.7.4. Market players
8.7.8. Protein-based leather
8.7.8.1. Overview
8.7.8.2. Production process
8.7.8.3. Commercial activity
8.7.9. Sustainable textiles coatings and dyes
8.7.9.1. Overview
8.7.9.1.1. Coatings
8.7.9.1.2. Dyes
8.7.9.2. Commercial activity
8.8. Markets
8.8.1. Footwear
8.8.2. Fashion & Accessories
8.8.3. Automotive & Transport
8.8.4. Furniture
8.9. Global market revenues
8.9.1. By region
8.9.2. By end use market
8.10. Company profiles. (67 company profiles)
9. BIOBASED COATINGS AND RESINS
9.1. Drop-in replacements
9.2. Bio-based resins
9.3. Reducing carbon footprint in industrial and protective coatings
9.4. Market drivers
9.5. Challenges using bio-based coatings
9.6. Types
9.6.1. Eco-friendly coatings technologies
9.6.1.1. UV-cure
9.6.1.2. Waterborne coatings
9.6.1.3. Treatments with less or no solvents
9.6.1.4. Hyperbranched polymers for coatings
9.6.1.5. Powder coatings
9.6.1.6. High solid (HS) coatings
9.6.1.7. Use of bio-based materials in coatings
9.6.1.7.1. Biopolymers
9.6.1.7.2. Coatings based on agricultural waste
9.6.1.7.3. Vegetable oils and fatty acids
9.6.1.7.4. Proteins
9.6.1.7.5. Cellulose
9.6.1.7.6. Plant-Based wax coatings
9.6.2. Barrier coatings
9.6.2.1. Polysaccharides
9.6.2.1.1. Chitin
9.6.2.1.2. Chitosan
9.6.2.1.3. Starch
9.6.2.2. Poly(lactic acid) (PLA)
9.6.2.3. Poly(butylene Succinate
9.6.2.4. Functional Lipid and Proteins Based Coatings
9.6.3. Alkyd coatings
9.6.3.1. Alkyd resin properties
9.6.3.2. Bio-based alkyd coatings
9.6.3.3. Products
9.6.4. Polyurethane coatings
9.6.4.1. Properties
9.6.4.2. Bio-based polyurethane coatings
9.6.4.2.1. Bio-based polyols
9.6.4.2.2. Non-isocyanate polyurethane (NIPU)
9.6.4.3. Products
9.6.5. Epoxy coatings
9.6.5.1. Properties
9.6.5.2. Bio-based epoxy coatings
9.6.5.3. Prod
9.6.5.4. Products
9.6.6. Acrylate resins
9.6.6.1. Properties
9.6.6.2. Bio-based acrylates
9.6.6.3. Products
9.6.7. Polylactic acid (Bio-PLA)
9.6.7.1. Properties
9.6.7.2. Bio-PLA coatings and films
9.6.8. Polyhydroxyalkanoates (PHA)
9.6.8.1. Properties
9.6.8.2. PHA coatings
9.6.8.3. Commercially available PHAs
9.6.9. Cellulose
9.6.9.1. Microfibrillated cellulose (MFC)
9.6.9.1.1. Properties
9.6.9.1.2. Applications in coatings
9.6.9.2. Cellulose nanofibers
9.6.9.2.1. Properties
9.6.9.2.2. Applications in coatings
9.6.9.3. Cellulose nanocrystals
9.6.9.4. Bacterial Nanocellulose (BNC)
9.6.10. Rosins
9.6.11. Bio-based carbon black
9.6.11.1. Lignin-based
9.6.11.2. Algae-based
9.6.12. Lignin coatings
9.6.13. Edible films and coatings
9.6.14. Antimicrobial films and agents
9.6.14.1. Natural
9.6.14.2. Inorganic nanoparticles
9.6.14.3. Biopolymers
9.6.15. Nanocoatings
9.6.16. Protein-based biomaterials for coatings
9.6.16.1. Plant derived proteins
9.6.16.2. Animal origin proteins
9.6.17. Algal coatings
9.6.18. Polypeptides
9.6.19. Global market revenues
9.7. Company profiles (168 company profiles)
10. BIOFUELS
10.1. Comparison to fossil fuels
10.2. Role in the circular economy
10.3. Market drivers
10.4. Market challenges
10.5. Liquid biofuels market
10.5.1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
10.5.2. Liquid biofuels market 2020-2035, by type and production.
10.6. The global biofuels market
10.6.1. Diesel substitutes and alternatives
10.6.2. Gasoline substitutes and alternatives
10.7. SWOT analysis: Biofuels market
10.8. Comparison of biofuel costs 2023, by type
10.9. Types
10.9.1. Solid Biofuels
10.9.2. Liquid Biofuels
10.9.3. Gaseous Biofuels
10.9.4. Conventional Biofuels
10.9.5. Advanced Biofuels
10.10. Feedstocks
10.10.1. First-generation (1-G)
10.10.2. Second-generation (2-G)
10.10.2.1. Lignocellulosic wastes and residues
10.10.2.2. Biorefinery lignin
10.10.3. Third-generation (3-G)
10.10.3.1. Algal biofuels
10.10.3.1.1. Properties
10.10.3.1.2. Advantages
10.10.4. Fourth-generation (4-G)
10.10.5. Advantages and disadvantages, by generation
10.10.6. Energy crops
10.10.6.1. Feedstocks
10.10.6.2. SWOT analysis
10.10.7. Agricultural residues
10.10.7.1. Feedstocks
10.10.7.2. SWOT analysis
10.10.8. Manure, sewage sludge and organic waste
10.10.8.1. Processing pathways
10.10.8.2. SWOT analysis
10.10.9. Forestry and wood waste
10.10.9.1. Feedstocks
10.10.9.2. SWOT analysis
10.10.10. Feedstock costs
10.11. Hydrocarbon biofuels
10.11.1. Biodiesel
10.11.1.1. Biodiesel by generation
10.11.1.2. SWOT analysis
10.11.1.3. Production of biodiesel and other biofuels
10.11.1.3.1. Pyrolysis of biomass
10.11.1.3.2. Vegetable oil transesterification
10.11.1.3.3. Vegetable oil hydrogenation (HVO)
10.11.1.3.3.1. Production process
10.11.1.3.4. Biodiesel from tall oil
10.11.1.3.5. Fischer-Tropsch BioDiesel
10.11.1.3.6. Hydrothermal liquefaction of biomass
10.11.1.3.7. CO2 capture and Fischer-Tropsch (FT)
10.11.1.3.8. Dymethyl ether (DME)
10.11.1.4. Prices
10.11.1.5. Global production and consumption
10.11.2. Renewable diesel
10.11.2.1. Production
10.11.2.2. SWOT analysis
10.11.2.3. Global consumption
10.11.2.4. Prices
10.11.3. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
10.11.3.1. Description
10.11.3.2. SWOT analysis
10.11.3.3. Global production and consumption
10.11.3.4. Production pathways
10.11.3.5. Prices
10.11.3.6. Bio-aviation fuel production capacities
10.11.3.7. Market challenges
10.11.3.8. Global consumption
10.11.4. Bio-naphtha
10.11.4.1. Overview
10.11.4.2. SWOT analysis
10.11.4.3. Markets and applications
10.11.4.4. Prices
10.11.4.5. Production capacities, by producer, current and planned
10.11.4.6. Production capacities, total (tonnes), historical, current and planned
10.12. Alcohol fuels
10.12.1. Biomethanol
10.12.1.1. SWOT analysis
10.12.1.2. Methanol-to gasoline technology
10.12.1.2.1. Production processes
10.12.1.2.1.1. Anaerobic digestion
10.12.1.2.1.2. Biomass gasification
10.12.1.2.1.3. Power to Methane
10.12.2. Ethanol
10.12.2.1. Technology description
10.12.2.2. 1G Bio-Ethanol
10.12.2.3. SWOT analysis
10.12.2.4. Ethanol to jet fuel technology
10.12.2.5. Methanol from pulp & paper production
10.12.2.6. Sulfite spent liquor fermentation
10.12.2.7. Gasification
10.12.2.7.1. Biomass gasification and syngas fermentation
10.12.2.7.2. Biomass gasification and syngas thermochemical conversion
10.12.2.8. CO2 capture and alcohol synthesis
10.12.2.9. Biomass hydrolysis and fermentation
10.12.2.9.1. Separate hydrolysis and fermentation
10.12.2.9.2. Simultaneous saccharification and fermentation (SSF)
10.12.2.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
10.12.2.9.4. Simultaneous saccharification and co-fermentation (SSCF)
10.12.2.9.5. Direct conversion (consolidated bioprocessing) (CBP)
10.12.2.10. Global ethanol consumption
10.12.3. Biobutanol
10.12.3.1. Production
10.12.3.2. Prices
10.13. Biomass-based Gas
10.13.1. Feedstocks
10.13.1.1. Biomethane
10.13.1.2. Production pathways
10.13.1.2.1. Landfill gas recovery
10.13.1.2.2. Anaerobic digestion
10.13.1.2.3. Thermal gasification
10.13.1.3. SWOT analysis
10.13.1.4. Global production
10.13.1.5. Prices
10.13.1.5.1. Raw Biogas
10.13.1.5.2. Upgraded Biomethane
10.13.1.6. Bio-LNG
10.13.1.6.1. Markets
10.13.1.6.1.1. Trucks
10.13.1.6.1.2. Marine
10.13.1.6.2. Production
10.13.1.6.3. Plants
10.13.1.7. bio-CNG (compressed natural gas derived from biogas)
10.13.1.8. Carbon capture from biogas
10.13.2. Biosyngas
10.13.2.1. Production
10.13.2.2. Prices
10.13.3. Biohydrogen
10.13.3.1. Description
10.13.3.2. SWOT analysis
10.13.3.3. Production of biohydrogen from biomass
10.13.3.3.1. Biological Conversion Routes
10.13.3.3.1.1. Bio-photochemical Reaction
10.13.3.3.1.2. Fermentation and Anaerobic Digestion
10.13.3.3.2. Thermochemical conversion routes
10.13.3.3.2.1. Biomass Gasification
10.13.3.3.2.2. Biomass Pyrolysis
10.13.3.3.2.3. Biomethane Reforming
10.13.3.4. Applications
10.13.3.5. Prices
10.13.4. Biochar in biogas production
10.13.5. Bio-DME
10.14. Chemical recycling for biofuels
10.14.1. Plastic pyrolysis
10.14.2. Used tires pyrolysis
10.14.2.1. Conversion to biofuel
10.14.3. Co-pyrolysis of biomass and plastic wastes
10.14.4. Gasification
10.14.4.1. Syngas conversion to methanol
10.14.4.2. Biomass gasification and syngas fermentation
10.14.4.3. Biomass gasification and syngas thermochemical conversion
10.14.5. Hydrothermal cracking
10.14.6. SWOT analysis
10.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
10.15.1. Introduction
10.15.2. Benefits of e-fuels
10.15.3. Feedstocks
10.15.3.1. Hydrogen electrolysis
10.15.3.2. CO2 capture
10.15.4. SWOT analysis
10.15.5. Production
10.15.5.1. eFuel production facilities, current and planned
10.15.6. Electrolysers
10.15.6.1. Commercial alkaline electrolyser cells (AECs)
10.15.6.2. PEM electrolysers (PEMEC)
10.15.6.3. High-temperature solid oxide electrolyser cells (SOECs)
10.15.7. Prices
10.15.8. Market challenges
10.15.9. Companies
10.16. Algae-derived biofuels
10.16.1. Technology description
10.16.2. Conversion pathways
10.16.3. SWOT analysis
10.16.4. Production
10.16.5. Market challenges
10.16.6. Prices
10.16.7. Producers
10.17. Green Ammonia
10.17.1. Production
10.17.1.1. Decarbonisation of ammonia production
10.17.1.2. Green ammonia projects
10.17.2. Green ammonia synthesis methods
10.17.2.1. Haber-Bosch process
10.17.2.2. Biological nitrogen fixation
10.17.2.3. Electrochemical production
10.17.2.4. Chemical looping processes
10.17.3. SWOT analysis
10.17.4. Blue ammonia
10.17.4.1. Blue ammonia projects
10.17.5. Markets and applications
10.17.5.1. Chemical energy storage
10.17.5.1.1. Ammonia fuel cells
10.17.5.2. Marine fuel
10.17.6. Prices
10.17.7. Estimated market demand
10.17.8. Companies and projects
10.18. Biofuels from carbon capture
10.18.1. Overview
10.18.2. CO2 capture from point sources
10.18.3. Production routes
10.18.4. SWOT analysis
10.18.5. Direct air capture (DAC)
10.18.5.1. Description
10.18.5.2. Deployment
10.18.5.3. Point source carbon capture versus Direct Air Capture
10.18.5.4. Technologies
10.18.5.4.1. Solid sorbents
10.18.5.4.2. Liquid sorbents
10.18.5.4.3. Liquid solvents
10.18.5.4.4. Airflow equipment integration
10.18.5.4.5. Passive Direct Air Capture (PDAC)
10.18.5.4.6. Direct conversion
10.18.5.4.7. Co-product generation
10.18.5.4.8. Low Temperature DAC
10.18.5.4.9. Regeneration methods
10.18.5.5. Commercialization and plants
10.18.5.6. Metal-organic frameworks (MOFs) in DAC
10.18.5.7. DAC plants and projects-current and planned
10.18.5.8. Markets for DAC
10.18.5.9. Costs
10.18.5.10. Challenges
10.18.5.11. Players and production
10.18.6. Carbon utilization for biofuels
10.18.6.1. Production routes
10.18.6.1.1. Electrolyzers
10.18.6.1.2. Low-carbon hydrogen
10.18.6.2. Products & applications
10.18.6.2.1. Vehicles
10.18.6.2.2. Shipping
10.18.6.2.3. Aviation
10.18.6.2.4. Costs
10.18.6.2.5. Ethanol
10.18.6.2.6. Methanol
10.18.6.2.7. Sustainable Aviation Fuel
10.18.6.2.8. Methane
10.18.6.2.9. Algae based biofuels
10.18.6.2.10. CO2-fuels from solar
10.18.6.3. Challenges
10.18.6.4. SWOT analysis
10.18.6.5. Companies
10.19. Bio-oils (pyrolysis oils)
10.19.1. Description
10.19.1.1. Advantages of bio-oils
10.19.2. Production
10.19.2.1. Fast Pyrolysis
10.19.2.2. Costs of production
10.19.2.3. Upgrading
10.19.3. SWOT analysis
10.19.4. Applications
10.19.5. Bio-oil producers
10.19.6. Prices
10.20. Refuse Derived Fuels (RDF)
10.20.1. Overview
10.20.2. Production
10.20.2.1. Production process
10.20.2.2. Mechanical biological treatment
10.20.3. Markets
10.21. Company profiles (211 company profiles)
11. SUSTAINABLE ELECTRONICS
11.1. Overview
11.1.1. Green electronics manufacturing
11.1.2. Drivers for sustainable electronics
11.1.3. Environmental Impacts of Electronics Manufacturing
11.1.3.1. E-Waste Generation
11.1.3.2. Carbon Emissions
11.1.3.3. Resource Utilization
11.1.3.4. Waste Minimization
11.1.3.5. Supply Chain Impacts
11.1.4. New opportunities from sustainable electronics
11.1.5. Regulations
11.1.6. Powering sustainable electronics (Bio-based batteries)
11.1.7. Bioplastics in injection moulded electronics parts
11.2. Green electronics manufacturing
11.2.1. Conventional electronics manufacturing
11.2.2. Benefits of Green Electronics manufacturing
11.2.3. Challenges in adopting Green Electronics manufacturing
11.2.4. Approaches
11.2.4.1. Closed-Loop Manufacturing
11.2.4.2. Digital Manufacturing
11.2.4.2.1. Advanced robotics & automation
11.2.4.2.2. AI & machine learning analytics
11.2.4.2.3. Internet of Things (IoT)
11.2.4.2.4. Additive manufacturing
11.2.4.2.5. Virtual prototyping
11.2.4.2.6. Blockchain-enabled supply chain traceability
11.2.4.3. Renewable Energy Usage
11.2.4.4. Energy Efficiency
11.2.4.5. Materials Efficiency
11.2.4.6. Sustainable Chemistry
11.2.4.7. Recycled Materials
11.2.4.7.1. Advanced chemical recycling
11.2.4.8. Bio-Based Materials
11.2.5. Greening the Supply Chain
11.2.5.1. Key focus areas
11.2.5.2. Sustainability activities from major electronics brands
11.2.5.3. Key challenges
11.2.5.4. Use of digital technologies
11.2.6. Sustainable Printed Circuit Board (PCB) manufacturing
11.2.6.1. Conventional PCB manufacturing
11.2.6.2. Trends in PCBs
11.2.6.2.1. High-Speed PCBs
11.2.6.2.2. Flexible PCBs
11.2.6.2.3. 3D Printed PCBs
11.2.6.2.4. Sustainable PCBs
11.2.6.3. Reconciling sustainability with performance
11.2.6.4. Sustainable supply chains
11.2.6.5. Sustainability in PCB manufacturing
11.2.6.5.1. Sustainable cleaning of PCBs
11.2.6.6. Design of PCBs for sustainability
11.2.6.6.1. Rigid
11.2.6.6.2. Flexible
11.2.6.6.3. Additive manufacturing
11.2.6.6.4. In-mold elctronics (IME)
11.2.6.7. Materials
11.2.6.7.1. Metal cores
11.2.6.7.2. Recycled laminates
11.2.6.7.3. Conductive inks
11.2.6.7.4. Green and lead-free solder
11.2.6.7.5. Biodegradable substrates
11.2.6.7.5.1. Bacterial Cellulose
11.2.6.7.5.2. Mycelium
11.2.6.7.5.3. Lignin
11.2.6.7.5.4. Cellulose Nanofibers
11.2.6.7.5.5. Soy Protein
11.2.6.7.5.6. Algae
11.2.6.7.5.7. PHAs
11.2.6.7.6. Biobased inks
11.2.6.8. Substrates
11.2.6.8.1. Halogen-free FR4
11.2.6.8.1.1. FR4 limitations
11.2.6.8.1.2. FR4 alternatives
11.2.6.8.1.3. Bio-Polyimide
11.2.6.8.2. Metal-core PCBs
11.2.6.8.3. Biobased PCBs
11.2.6.8.3.1. Flexible (bio) polyimide PCBs
11.2.6.8.3.2. Recent commercial activity
11.2.6.8.4. Paper-based PCBs
11.2.6.8.5. PCBs without solder mask
11.2.6.8.6. Thinner dielectrics
11.2.6.8.7. Recycled plastic substrates
11.2.6.8.8. Flexible substrates
11.2.6.9. Sustainable patterning and metallization in electronics manufacturing
11.2.6.9.1. Introduction
11.2.6.9.2. Issues with sustainability
11.2.6.9.3. Regeneration and reuse of etching chemicals
11.2.6.9.4. Transition from Wet to Dry phase patterning
11.2.6.9.5. Print-and-plate
11.2.6.9.6. Approaches
11.2.6.9.6.1. Direct Printed Electronics
11.2.6.9.6.2. Photonic Sintering
11.2.6.9.6.3. Biometallization
11.2.6.9.6.4. Plating Resist Alternatives
11.2.6.9.6.5. Laser-Induced Forward Transfer
11.2.6.9.6.6. Electrohydrodynamic Printing
11.2.6.9.6.7. Electrically conductive adhesives (ECAs
11.2.6.9.6.8. Green electroless plating
11.2.6.9.6.9. Smart Masking
11.2.6.9.6.10. Component Integration
11.2.6.9.6.11. Bio-inspired material deposition
11.2.6.9.6.12. Multi-material jetting
11.2.6.9.6.13. Vacuumless deposition
11.2.6.9.6.14. Upcycling waste streams
11.2.6.10. Sustainable attachment and integration of components
11.2.6.10.1. Conventional component attachment materials
11.2.6.10.2. Materials
11.2.6.10.2.1. Conductive adhesives
11.2.6.10.2.2. Biodegradable adhesives
11.2.6.10.2.3. Magnets
11.2.6.10.2.4. Bio-based solders
11.2.6.10.2.5. Bio-derived solders
11.2.6.10.2.6. Recycled plastics
11.2.6.10.2.7. Nano adhesives
11.2.6.10.2.8. Shape memory polymers
11.2.6.10.2.9. Photo-reversible polymers
11.2.6.10.2.10. Conductive biopolymers
11.2.6.10.3. Processes
11.2.6.10.3.1. Traditional thermal processing methods
11.2.6.10.3.2. Low temperature solder
11.2.6.10.3.3. Reflow soldering
11.2.6.10.3.4. Induction soldering
11.2.6.10.3.5. UV curing
11.2.6.10.3.6. Near-infrared (NIR) radiation curing
11.2.6.10.3.7. Photonic sintering/curing
11.2.6.10.3.8. Hybrid integration
11.2.7. Sustainable integrated circuits
11.2.7.1. IC manufacturing
11.2.7.2. Sustainable IC manufacturing
11.2.7.3. Wafer production
11.2.7.3.1. Silicon
11.2.7.3.2. Gallium nitride ICs
11.2.7.3.3. Flexible ICs
11.2.7.3.4. Fully printed organic ICs
11.2.7.4. Oxidation methods
11.2.7.4.1. Sustainable oxidation
11.2.7.4.2. Metal oxides
11.2.7.4.3. Recycling
11.2.7.4.4. Thin gate oxide layers
11.2.7.5. Patterning and doping
11.2.7.5.1. Processes
11.2.7.5.1.1. Wet etching
11.2.7.5.1.2. Dry plasma etching
11.2.7.5.1.3. Lift-off patterning
11.2.7.5.1.4. Surface doping
11.2.7.6. Metallization
11.2.7.6.1. Evaporation
11.2.7.6.2. Plating
11.2.7.6.3. Printing
11.2.7.6.3.1. Printed metal gates for organic thin film transistors
11.2.7.6.4. Physical vapour deposition (PVD)
11.2.8. End of life
11.2.8.1. Hazardous waste
11.2.8.2. Emissions
11.2.8.3. Water Usage
11.2.8.4. Recycling
11.2.8.4.1. Mechanical recycling
11.2.8.4.2. Electro-Mechanical Separation
11.2.8.4.3. Chemical Recycling
11.2.8.5. Electrochemical Processes
11.2.8.5.1. Thermal Recycling
11.2.8.6. Green Certification
11.3. Global market
11.3.1. Global PCB manufacturing industry
11.3.2. Sustainable PCBs
11.3.3. Sustainable ICs
11.4. Company profiles (45 company profiles)
12. BIOBASED ADHESIVES AND SEALANTS
12.1. Overview
12.1.1. Biobased Epoxy Adhesives
12.1.2. Bioobased Polyurethane Adhesives
12.1.3. Other Biobased Adhesives and Sealants
12.2. Types
12.2.1. Cellulose-Based
12.2.2. Starch-Based
12.2.3. Lignin-Based
12.2.4. Vegetable Oils
12.2.5. Protein-Based
12.2.6. Tannin-Based
12.2.7. Algae-based
12.2.8. Chitosan-based
12.2.9. Natural Rubber-based
12.2.10. Silkworm Silk-based
12.2.11. Mussel Protein-based
12.2.12. Soy-based Foam
12.3. Global revenues
12.3.1. By types
12.3.2. By market
12.4. Company profiles. (15 company profiles)
13. REFERENCES