Toshiba Infrastructure Systems & Solutions Corporation
Midea Group
Xylem Inc.
Severn Trent Services
Teledyne API
NORAM Electrolysis Systems Inc.
Trojan Technologies
Metawater Co., Ltd.
LSH
¿µ¹® ¸ñÂ÷
¿µ¹®¸ñÂ÷
The Global Ozone Generation Market is valued at approximately USD 1.32 billion in 2024 and is projected to grow at a robust CAGR of over 6.20% during the forecast period 2025-2035. Ozone generation systems have emerged as indispensable assets in sectors ranging from industrial water treatment to atmospheric sterilization. These systems generate ozone-an oxidant known for its ability to neutralize pathogens, break down organic contaminants, and deodorize air and water-by harnessing advanced technologies such as corona discharge and ultraviolet radiation. The market's dynamic trajectory is being driven by escalating concerns over environmental safety, increased emphasis on non-chemical disinfection methods, and the burgeoning demand for sustainable purification solutions in water-scarce economies. Governments worldwide are enforcing stricter environmental compliance mandates and industrial discharge norms, thereby further intensifying the demand for ozone-based technologies in both developed and emerging economies.
Industries across the spectrum are leaning toward ozone-based technologies to replace traditional chlorine-based purification methods, largely due to the former's minimal residual toxicity and eco-friendly profile. In water treatment, ozone serves not only as a powerful disinfectant but also as an agent that reduces chemical oxygen demand (COD) and removes trace micro-pollutants. Likewise, in air purification, the ability of ozone to oxidize volatile organic compounds (VOCs) and destroy airborne pathogens has elevated its appeal among both industrial and residential end-users. In the food and beverage sector, ozone generation is being increasingly deployed to sanitize equipment, prolong shelf-life, and enhance overall hygiene without compromising food integrity. The pharmaceutical industry is also leveraging ozone's sterilizing properties to maintain aseptic environments and comply with GMP standards. Nonetheless, the market must contend with constraints such as high operational costs, the potential hazards of ozone overexposure, and the need for precise control systems, especially in indoor air applications.
Regionally, North America captured a significant share of the ozone generation market in 2025, owing to stringent environmental regulations by agencies like the EPA, widespread adoption of advanced wastewater treatment technologies, and robust industrial infrastructure across the U.S. and Canada. Europe follows closely, benefiting from its well-established environmental policy framework, especially in countries such as Germany and the Netherlands that have pioneered ozone usage in municipal and industrial sectors. The Asia Pacific region is poised to witness the fastest growth throughout the forecast timeline, with China, India, and Southeast Asian countries accelerating investments in urban water sanitation, food processing, and healthcare infrastructure. Rapid urbanization, rising disposable incomes, and heightened public health awareness are transforming ozone generation into a mainstream necessity across this region. Additionally, supportive government incentives and technology transfer from global players are catalyzing regional market maturity.
Major market players included in this report are:
EBARA Technologies Inc.
Mitsubishi Electric Corporation
Ozonetech Systems OTS AB
Del Ozone
ESCO International
Primozone Production AB
Industrie De Nora S.p.A.
Toshiba Infrastructure Systems & Solutions Corporation
Midea Group
Xylem Inc.
Severn Trent Services
Teledyne API
NORAM Electrolysis Systems Inc.
Trojan Technologies
Metawater Co., Ltd.
Global Ozone Generation Market Report Scope:
Historical Data - 2023, 2024
Base Year for Estimation - 2024
Forecast period - 2025-2035
Report Coverage - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
Regional Scope - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
Customization Scope - Free report customization (equivalent up to 8 analysts' working hours) with purchase. Addition or alteration to country, regional & segment scope*
The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values for the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within the countries involved in the study. The report also provides detailed information about crucial aspects, such as driving factors and challenges, which will define the future growth of the market. Additionally, it incorporates potential opportunities in micro-markets for stakeholders to invest, along with a detailed analysis of the competitive landscape and product offerings of key players. The detailed segments and sub-segments of the market are explained below:
By Technology:
Corona Discharge
Ultraviolet Radiation
By Application:
Water Purification
Air Purification
By End-use Industry:
Food & Beverages
Pharmaceutical
By Region:
North America
U.S.
Canada
Europe
UK
Germany
France
Spain
Italy
ROE
Asia Pacific
China
India
Japan
Australia
South Korea
RoAPAC
Latin America
Brazil
Mexico
Middle East & Africa
UAE
Saudi Arabia
South Africa
Rest of Middle East & Africa
Key Takeaways:
Market Estimates & Forecast for 10 years from 2025 to 2035.
Annualized revenues and regional level analysis for each market segment.
Detailed analysis of geographical landscape with Country level analysis of major regions.
Competitive landscape with information on major players in the market.
Analysis of key business strategies and recommendations on future market approach.
Analysis of competitive structure of the market.
Demand side and supply side analysis of the market.
Table of Contents
Chapter 1. Global Ozone Generation Market Report Scope & Methodology
1.1. Research Objective
1.2. Research Methodology
1.2.1. Forecast Model
1.2.2. Desk Research
1.2.3. Top-Down and Bottom-Up Approach
1.3. Research Attributes
1.4. Scope of the Study
1.4.1. Market Definition
1.4.2. Market Segmentation
1.5. Research Assumption
1.5.1. Inclusion & Exclusion
1.5.2. Limitations
1.5.3. Years Considered for the Study
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4. Key Findings
Chapter 3. Global Ozone Generation Market Forces Analysis
3.1. Market Forces Shaping The Global Ozone Generation Market 2024-2035
3.2. Drivers
3.2.1. Rising Demand for Sustainable Disinfection Solutions
3.2.2. Stringent Environmental and Discharge Regulations
3.3. Restraints
3.3.1. High Operational and Maintenance Costs
3.3.2. Safety Concerns Over Ozone Exposure
3.4. Opportunities
3.4.1. Expansion in Emerging Markets' Water Infrastructure Projects
3.4.2. Technological Advancements in Ozone Generation Efficiency
Chapter 4. Global Ozone Generation Industry Analysis
4.1. Porter's 5 Forces Model
4.1.1. Bargaining Power of Buyer
4.1.2. Bargaining Power of Supplier
4.1.3. Threat of New Entrants
4.1.4. Threat of Substitutes
4.1.5. Competitive Rivalry
4.2. Porter's 5 Forces Forecast Model 2024-2035
4.3. PESTEL Analysis
4.3.1. Political
4.3.2. Economic
4.3.3. Social
4.3.4. Technological
4.3.5. Environmental
4.3.6. Legal
4.4. Top Investment Opportunities
4.5. Top Winning Strategies 2025
4.6. Market Share Analysis 2024-2025
4.7. Global Pricing Analysis and Trends 2025
4.8. Analyst Recommendation & Conclusion
Chapter 5. Global Ozone Generation Market Size & Forecasts by Technology 2025-2035
5.1. Market Overview
5.2. Corona Discharge
5.2.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
5.2.2. Market Size Analysis, by Region, 2025-2035
5.3. Ultraviolet Radiation
5.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
5.3.2. Market Size Analysis, by Region, 2025-2035
Chapter 6. Global Ozone Generation Market Size & Forecasts by Application 2025-2035
6.1. Market Overview
6.2. Water Purification
6.2.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
6.2.2. Market Size Analysis, by Region, 2025-2035
6.3. Air Purification
6.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
6.3.2. Market Size Analysis, by Region, 2025-2035
Chapter 7. Global Ozone Generation Market Size & Forecasts by End-use Industry 2025-2035
7.1. Market Overview
7.2. Food & Beverages
7.2.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
7.2.2. Market Size Analysis, by Region, 2025-2035
7.3. Pharmaceutical
7.3.1. Top Countries Breakdown Estimates & Forecasts, 2024-2035
7.3.2. Market Size Analysis, by Region, 2025-2035
Chapter 8. Global Ozone Generation Market Size & Forecasts by Region 2025-2035