Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº °ü»óµ¿¸Æ Áúȯ, ½ÉÀåÀÇ ±¸Á¶Àû °áÇÔ, ÆÇ¸·Áõ µîÀÇ º¹ÀâÇÑ ½ÉÇ÷°ü°è ÁúȯÀ» Ä¡·áÇϱâ À§ÇØ °íµµ·Î Á¤¹ÐÇÑ °¡À̵带 ÀÌ¿ëÇÑ Àúħ½À ±â¼úÀ» Àû¿ëÇÕ´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ ºÐ¾ß´Â ½ÉÀå Ä¡·áÀÇ ÆÐ·¯´ÙÀÓ À̵¿À» »ó¡ÇÏ´Â °ÍÀ¸·Î, ±âÁ¸ÀÇ °³½É¼úÀ» ³Ñ¾î º¸´Ù ¾ÈÀüÇϰí Ç¥ÀûÈµÈ È¯ÀÚ °íÀ¯ÀÇ Ä«Å×Å͸¦ ÀÌ¿ëÇÑ ÀÎÅͺ¥¼ÇÀ¸·Î ÀÌÇàÇϰí ÀÖ½À´Ï´Ù. ·Îº¿ ¿£Áö´Ï¾î¸µ, ÀΰøÁö´ÉÀ» ÀÌ¿ëÇÑ À̹ÌÁö ÇÁ·Î¼¼½Ì, ÃÖ÷´Ü Àåºñ ±â¼úÀ» °áÇÕÇÏ¿© Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº ÀÓ»óÀǰ¡ º¸´Ù ³ôÀº Á¤È®µµ, È¿À²¼º ¹× ¾ÈÀü¼ºÀ» ÅëÇØ ¸ÂÃãÇü Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ÀÓ»ó °á°ú¸¦ °³¼±Çϰí, ÇÕº´Áõ°ú ȸº¹ ½Ã°£À» ´ÜÃàÇϰí, ÇコÄɾî ÀÚ¿øÀ» ÃÖÀûÈÇÕ´Ï´Ù.
ÁÖ¿ä ½ÃÀå Åë°è | |
---|---|
¿¹Ãø ±â°£ | 2025-2035³â |
Æò°¡(2025³â) | 228¾ï 8,630¸¸ ´Þ·¯ |
¿¹Ãø(2035³â) | 468¾ï 2,100¸¸ ´Þ·¯ |
CAGR | 7.21% |
½ÃÀå ¼¹®
¼¼°èÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú½ÃÀåÀº °ü»óµ¿¸ÆÁúȯ, ±¸Á¶Àû ½ÉÀå°áÇÔ, ÆÇ¸·Áõ µî ½ÉÇ÷°ü°è ÁúȯÀÇ ºÎ´ãÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, °³½É¼úÀ» ´ëüÇÏ´Â º¸´Ù ¾ÈÀüÇϰí Á¤¹ÐÇÑ Ä¡·á°¡ ¿ä±¸µÇ°í Àֱ⠶§¹®¿¡ 2035³â¿¡´Â 468¾ï 2,100¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¾î Å« ÆøÀÇ È®´ë°¡ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº, °íµµÀÇ ·Îº¿ °øÇаú AI °¡À̵å ÷ºÎ È»ó Áø´ÜÀ» ÅëÇÕÇÑ Àúħ½À Ä«Å×ÅÍ ±â¹ÝÀÇ ¼Ö·ç¼Ç¿¡ ÀÇÁöÇϰí ÀÖ¾î, ¶Ù¾î³ ¼ö±â Á¤¹Ðµµ, ½Å¼ÓÇÑ È¸º¹, ȯÀÚ ¾×¼¼½ºÀÇ È®´ë¸¦ ½ÇÇöÇÕ´Ï´Ù.
Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº ÀÚµ¿È, µ¥ÀÌÅÍ ÁÖµµÀÇ Á¤È®¼º, ¿ÀÆÛ·¹ÀÌÅÍÀÇ ÀÎü°øÇÐÀ» °áÇÕÇÏ¿© ³ëµ¿ÀçÇØ¸¦ °æ°¨ÇÏ¸é¼ °á°ú¸¦ °³¼±ÇÏ´Â ÆÐ·¯´ÙÀÓ ½ÃÇÁÆ®¸¦ »ó¡ÇÕ´Ï´Ù. Robocath»çÀÇ R-One(ÇöÀç ½ÃÆÇµÇ°í ÀÖ´Â À¯ÀÏÇÑ R-PCI Ç÷§Æû)°ú °°Àº ·Îº¿ Áö¿ø PCI ½Ã½ºÅÛÀÇ »ó¾÷Àû Ãâ½Ã ¹× ä¿ë µî Áß¿äÇÑ ÀÌÁ¤Ç¥´Â ÀÌ·¯ÇÑ ÆÄ±«Àû Á¢±ÙÀ» °ËÁõÇϰí, °æ Ä«Å×ÅÍ ½Â¸ðÆÇ ġȯ¼ú(TMVR) Ç÷§ÆûÀÇ CE ¸¶Å©´Â Ä«Å×ÅÍ ±â¹Ý Ä¡·áÀÇ Ç¥ÁØÈ¿Í È®À强À¸·ÎÀÇ ½ÃÇÁÆ®¸¦ °Á¶Çß½À´Ï´Ù.
½ÃÀå È®´ë´Â ¹Ì±¹, À¯·´ ¿¬ÇÕ(EU), ÀϺ»ÀÇ Áö¿ø »óȯ ¹× ±ÔÁ¦ °æ·Î ¿Ü¿¡µµ Ä«Å×ÅÍ ½ÇÇè½ÇÀÇ Çö´ëÈ, ¿î¿µÀÚ ±³À° ¹× µðÁöÅÐ ÅëÇÕ¿¡ ´ëÇÑ °ü¹Î ºÎ¹®ÀÇ ÅõÀÚ·Î ´õ¿í °ÈµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡µéÀº ÀÎÇÁ¶ó¸¦ È®´ëÇϰí Çõ½Å Çãºê¸¦ À°¼ºÇϰí ÀÖÀ¸¸ç, Àεµ¿Í ºê¶óÁú°ú °°Àº ½ÅÈï±¹µéÀº Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀå¿¡¼ ¹Ì°³Ã´ÀÇ Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
AI¸¦ Ȱ¿ëÇÑ OCT/IVUS À̹Ì¡, ¿ø°Ý ·Îº¿ PCI Ç÷§Æû, »ýü Èí¼ö¼º ¹ßÆÇ µîÀÇ ±â¼ú Çõ½Å¿¡ ÀÇÇØ ¼ö±âÀÇ Áú°ú Àå±âÀûÀÎ °á°úÀÇ ¾çÂÊ ¸ðµÎ°¡ Çâ»óÇØ, ±â¼ú ¼ö·ÅÀÌ ¼ºÀåÀ» °¡¼Ó½Ã۰í ÀÖ½À´Ï´Ù. ·Îº¿Áö¿ø PCI¿Í Ç÷°ü³» ¿µ»ó Áø´ÜÀÌ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀÇ Áö¹èÀûÀÎ ºÐ¾ßÀÎ °Í¿¡ º¯ÇÔÀº ¾øÁö¸¸, ±¸Á¶Àû ÀÎÅͺ¥¼Ç, ¸»ÃÊ µ¿¸Æ Áúȯ, ¼±Ãµ¼º ½ÉÀå ÁúȯÀÇ ¼öº¹¿¡¼ »õ·Î¿î ¿ëµµ¿¡ ÀÇÇØ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀÇ ¹üÀ§´Â °üµ¿¸Æ Áúȯ À̿ܿ¡µµ È®´ëÇϰí ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ±â¼¼¿¡µµ ºÒ±¸Çϰí, ³ôÀº ÀÚº» ºñ¿ë, ÈÆ·Ã ±âÁØÀÇ ºÐ´Ü, ±â¼ú¿¡ ´ëÇÑ ¾×¼¼½ºÀÇ ºÒ±Õµî µîÀÇ °úÁ¦´Â ¼¼°è Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀÇ Àü¸Á¿¡ »Ñ¸®±í°Ô ³²¾Æ ÀÖ½À´Ï´Ù. ±×·¯³ª, ÆäÀ̾ ÀÇÇÑ Áö¿ø È®´ë ¹× »êÇÐ Á¦ÈÞ¿¡ ÀÇÇØ ÀÌ·¯ÇÑ À庮Àº ²ÙÁØÈ÷ ÇØ°áµÇ°í ÀÖÀ¸¸ç, Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ¼Ö·ç¼ÇÀÇ Æø³ÐÀº µµÀÔÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.
Abbott, Abbott., Medtronic plc, Boston Scientific Corporation ¹× Terumo Corporation°ú °°Àº °æÀï ±¸µµ¸¦ Çü¼ºÇÏ´Â ¼±µµ ±â¾÷Àº ÆÛ½ºÆ® ÀΠŬ·¡½º Àåºñ¸¦ °³¹ßÇÏ°í Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÓ»ó °ËÁõ ¹× »ó¿ëÈ¿¡ ÅõÀÚÇÏ¿© Â÷¼¼´ë ÀÎÅͺ¥¼Ç ½ÉÀå Ä¡·áÀÇ ¹ßÆÇÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
ÇコÄɾ¼ Á¤¹ÐÀÇ·á, ȯÀÚ Áß½ÉÀÇ Äɾî, Àúħ½À ¼Ö·ç¼ÇÀÇ ¿ì¼±¼øÀ§°¡ ³ô¾ÆÁö´Â °¡¿îµ¥ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº ½ÉÇ÷°ü Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ¼¼ ÄÉ¾î ÆÐ·¯´ÙÀÓÀ» ÀçÁ¤ÀÇÇÏ°í ¼¼°èÀÇ ´Ù¾çÇÑ È¯ÀÚ Áý´ÜÀÇ °á°ú¸¦ °³¼±Çϴ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.
»ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ
Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº Æø³ÐÀº ½ÉÀåÁúȯ¿¡¼ °á°ú¸¦ °³¼±Çϰí ȸº¹½Ã°£À» ´ÜÃàÇÏ´Â Àúħ½ÀÀ¸·Î Á¤¹ÐÇÑ À¯µµÄ¡·á¸¦ Á¦°øÇÔÀ¸·Î½á ½ÉÇ÷°üÄ¡·á¿¡ º¯È¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, CorPath GRX¿Í °°Àº ·Îº¿ Áö¿ø °æÇÇÀû °ü»óµ¿¸Æ ÀÎÅͺ¥¼Ç(R-PCI) Ç÷§ÆûÀº °ü»óµ¿¸Æ Áúȯ °ü¸®¿¡¼ ÀýÂ÷ÀÇ Á¤È®¼º°ú ¿î¿µÀÚÀÇ ¾ÈÀü¼ºÀ» ÀçÁ¤ÀÇÇÏ¿© ±âÁ¸ PCI¿¡ ºñÇØ ½ºÅÙÆ® À¯Ä¡¸¦ °ÈÇÏ°í ¹æ»ç¼± ³ëÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú Áß½ÉÀÇ È¯ÀÚ Á᫐ Á¢±Ù¹ýÀº ¼ö¼úÀÇ À§Çè ¹× ÀÔ¿ø ±â°£À» ÃÖ¼ÒÈÇÏ¸é¼ Àå±âÀûÀÎ ½ÉÇ÷°ü°èÀÇ °Ç°À» °³¼±ÇÕ´Ï´Ù.
°³º° ÀÎÅͺ¥¼Ç¿¡ ±×Ä¡Áö ¾Ê°í Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀº ÀýÂ÷ »ýŰè¿Í ÀÓ»ó ¿öÅ©Ç÷ÎÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. AI À¯µµ À̹ÌÁö, ¿ø°Ý ÀÎÅͺ¥¼Ç Ç÷§Æû, ÷´Ü »ýü Èí¼ö¼º ÀåÄ¡ÀÇ ÅëÇÕÀº Áø´ÜÀ» °£¼ÒÈÇϰí, ½Ç½Ã°£ ÀýÂ÷ ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô Çϸç, ¼ºñ½º°¡ Àß µÇÁö ¾Ê´Â Áö¿ª¿¡¼ ÃÖ÷´Ü Ä¡·á¿¡ ´ëÇÑ ¾×¼¼½º¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀεµÀÇ SS À̳뺣À̼ÇÁî¿Í °°Àº ±â¾÷°ú ¾Öº¿°ú ¸ÞµåÆ®·Î´Ð°ú °°Àº ¼¼°èÀûÀÎ ´ë±â¾÷Àº ·Îº¿°ú AI Áö¿ø ±â¼ú¿¡ ´ëÇÑ »óȯ°ú ±ÔÁ¦ ´ç±¹ÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ±¸Á¶Àû ½ÉÀ庴 ¹× ÆÇ¸·ÁõÀÇ ÀÎÅͺ¥¼Ç¿¡¼ Èı⠴ܰèÀÇ ÇÁ·Î±×·¥À» ÁøÇàÇϰí ÀÖ½À´Ï´Ù.
µ¿½Ã¿¡ ¹Î°£ÀÎÀÇ Çù·Â ¹× µðÁöÅÐ °Ç° ÀÎÇÁ¶ó ÅõÀÚ´Â ÇコÄɾî Á¦°ø ³×Æ®¿öÅ©¸¦ °ÈÇÏ°í ¿ø°ÝÁö¿¡¼ÀÇ Àü¹® Áö½Ä¿¡ ´ëÇÑ ´É·ÂÀ» ±¸ÃàÇÏ°í ½ÉÇ÷°ü Áúȯ ºÎ´ã¿¡ ´ëÇÑ ½Ã½ºÅÛ ÀüüÀÇ Åº·Â¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸´Â °³º° ȯÀÚÀÇ Äɾ Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀýÂ÷ÀÇ ÆíÂ÷¸¦ ÁÙÀ̰í, ÀÚ¿ø ÀÌ¿ëÀ» °³¼±Çϸç, °í±Þ ½ÉÇ÷°ü Ä¡·á¿¡ ´ëÇÑ °øÁ¤ÇÑ Á¢±ÙÀ» ÃËÁøÇÕ´Ï´Ù.
¼¼°èÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀå : ¼¼ºÐÈ
¼¼ºÐÈ 1 : Á¦Ç° À¯Çüº°
¼¼°èÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀå¿¡¼ ºñ ·Îº¸Æ½½º´Â Á¦Ç° À¯Çüº°·Î ÁÖ¿ä ºÎ¹®À̸ç, 2024³â ½ÃÀå Á¡À¯À²Àº 84.41%, ¿¹Ãø ±â°£ 2025-2035³â CAGR 6.98%·Î ¼ºÀåÀÌ ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÁÖµÈ ÇÏÀ§ ºÎ¹®¿¡¼´Â IVUS, OCT, ½ºÅÙÆ®, Ä«Å×ÅÍ, °¡À̵å¿ÍÀ̾î, PTCA dz¼± µîÀÌ ³Î¸® ÀÓ»ó¿¡ Ã¤¿ëµÇ°í ÀÖ´Â °Í, À¯È¿¼ºÀÌ ÀÔÁõµÇ°í ÀÖ´Â °Í, ·Îº¿ Ç÷§Æû¿¡ ºñÇØ ÀýÂ÷ÀÇ º¹À⼺ÀÌ ³·´Ù´Â °Í µîÀ¸·ÎºÎÅÍ ÃÖ´ëÀÇ °øÇåÀ» Çϰí ÀÖ½À´Ï´Ù. ºñ·Îº¿Çü ¼Ö·ç¼ÇÀº ºñ¿ë È¿À²¼º, ±âÁ¸ÀÇ Ä«Å×½Ç ³»Àå ÆíÀǼº, ´ë±â ¹× ±ä±Þ ÀýÂ÷ ¸ðµÎ¿¡¼ ±¤¹üÀ§ÇÑ »ç¿ëÀ¸·Î ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù.
¼¼ºÐÈ 2 : ÀûÀÀÁõ À¯Çüº°
ÀûÀÀÁõº°·Î º¸¸é, ¼¼°èÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀåÀº ±¸Á¶Àû ½ÉÀåÁúȯ ºÐ¾ß°¡ °ßÀÎÇØ, 2024³â ½ÃÀå Á¡À¯À²Àº 45.67%¸¦ Â÷ÁöÇß½À´Ï´Ù. ±¸Á¶Àû ½ÉÀå Áúȯ¿¡ ´ëÇÑ ÀÎÅͺ¥¼ÇÀº ƯÈ÷ °í·ÉÈ »çȸ¿¡¼ ´ëµ¿¸Æ ÆÇ¸· ÇùÂøÁõ, ½Â¸ðÆÇ Æó¼â ºÎÀü, ÁÂ½É¹æ ºÎ¼Ó±â °ü·Ã ³úÁ¹Áß À§ÇèÀÇ ¼¼°è ºÎ´ã Áõ°¡·Î ¿ìÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. TAVRÀ̳ª LAA Æó»ö¼ú°ú °°Àº °³½É¼ú¿¡ ºñÇØ Ä«Å×Å͸¦ ÀÌ¿ëÇÑ °£ÆíÇϰí Àúħ½ÀÀûÀÎ ½ÉÀ屸Á¶ ¼ö¼úÀº ÀÓ»óÀÇ¿Í È¯ÀÚ¸¦ ºÒ¹®ÇÏ°í ³Î¸® ä¿ëµÇ°í ÀÖ½À´Ï´Ù. È®¸³µÈ È¿´É, ¾çÈ£ÇÑ ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏ ¹× ÀÓ»óÀû ÀûÀÀÀÇ È®´ë°¡ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ Áö¿øÇϰí ÀÖ´Â ¹Ý¸é, Àåºñ ¼³°è ¹× Àå±âÀûÀÎ Ä¡·á °á°úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ´Ù¾çÇÑ È¯ÀÚ ±×·ì¿¡¼ÀÇ Ä¡·á °¡´É¼ºÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
¼¼ºÐÈ 3 : ÃÖÁ¾ »ç¿ëÀÚº°
ÃÖÁ¾ »ç¿ëÀÚº°·Î º¸¸é, ¼¼°èÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀåÀº º´¿ø ¹× Áø·á¼Ò°¡ °ßÀÎÇØ, 2024³âÀÇ Á¡À¯À²Àº 70.47%¿´½À´Ï´Ù. º´¿ø ¹× Ŭ¸®´ÐÀº °íµµ·Î Àúħ½ÀÀûÀÎ ½ÉÀåÇ÷°ü Ä¡·á¸¦ ½ÃÇàÇϱâ À§ÇÑ ÁÖ¿ä ±âÁö·Î ³²¾Æ Àֱ⠶§¹®¿¡ ¿ìÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ä«Å×ÅÍ ½ÇÇè½Ç, ¼÷·ÃµÈ ÀÎÅͺ¥¼Å³Î Ä«µð¿Ã·ÎÁö½ºÆ®, ÃÖ÷´Ü ¿µ»ó Áø´Ü ¹× ·Îº¿ Ç÷§Æû¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ¾×¼¼½º´Â ·Îº¿ PCI, RA-CABG, ·Îº¿ ½Â¸ðÆÇ ¼ö¸® µîÀÇ º¹ÀâÇÑ ÀÎÅͺ¥¼Ç¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ´ë·®ÀÇ ÀýÂ÷¸¦ °ü¸®Çϰí, ȯÀÚ¸¦ È®½ÇÇÏ°Ô ¸ð´ÏÅ͸µÇϰí, ÁýÇÐÀû Ä¡·á¸¦ Á¦°øÇÏ´Â ´É·ÂÀº ÀÌ·¯ÇÑ È¯°æ¿¡¼ Â÷¼¼´ë ÀÎÅͺ¥¼Ç ±â¼úÀÇ °·ÂÇÑ Ã¤ÅÃÀ» Áö¿øÇÕ´Ï´Ù.
¼¼ºÐÈ 4 : Áö¿ªº°
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀåÀº ¼º¼÷µµ¿Í Á¢±ÙÀº ¿©ÀüÈ÷ ºÒ±ÕÀÏÇÏÁö¸¸, ½ÉÇ÷°ü Áúȯ À¯º´·ü Áõ°¡, ÇコÄɾî ÀÎÇÁ¶óÀÇ °³Ã´, Áö¿ø Á¤Ã¥¿¡ °ßÀÎµÇ¾î ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. Áß±¹Àº Áö¿ª °ÝÂ÷¿Í »óȯ °ÝÂ÷°¡ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ³ôÀº Áúº´ ºÎ´ã, ±¹³» ±â¼ú Çõ½Å, Ä«Å×½Ç È®´ë·Î ÃßÁøµÇ¾î ±Ô¸ð¿Í ¼ºÀåÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀϺ»°ú Çѱ¹Àº ¼º¼÷ÇÑ Çõ½Å ÁÖµµ ½ÃÀåÀ¸·Î, °·ÂÇÑ º¸Çè Áö¿ø°ú Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡¼ÀÇ ¼±ÁøÀû Ä¡·á¹ýÀÇ ³ôÀº µµÀÔ·üÀ» ÀÚ¶ûÇÏÁö¸¸, ºñ¿ë ¾Ð·Â°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á´Â ²ÙÁØÇÕ´Ï´Ù. ÀεµÀÇ ´ë±Ô¸ð ¹ÌħÅõ ½ÃÀåÀº Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡¼ ÁÖ¸ñÇÒ ¸¸ÇÑ ÅäÂøÀÇ Çõ½Å°ú ÇÔ²² ¼ö¿ä Áõ°¡¸¦ ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ SS Innovations´Â Àεµ ÃÖÃÊÀÇ ±¹»ê ¼ö¼ú ·Îº¿ÀÎ SSi Mantra ¼ö¼ú ·Îº¿ ½Ã½ºÅÛÀ» °³¹ßÇß½À´Ï´Ù. È£ÁÖ´Â Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ±â¼úÀÇ °·ÂÇÑ »óȯ°ú ¹Î°£ ä¿ëÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ½Ì°¡Æ÷¸£, È«Äá, ¸»·¹ÀÌ½Ã¾Æ µî ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò±Ô¸ð ½ÃÀåÀº µµ½Ã¿¡ Æ¯ÈµÈ ÇÁ¸®¹Ì¾ö ±âȸ¸¦ Á¦°øÇÏÁö¸¸ Àεµ³×½Ã¾Æ, º£Æ®³², Çʸ®ÇÉÀº ÀÎÇÁ¶ó¿Í ÀÚ±Ý Á¶´Þ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ºÀå °¡´É¼ºÀº ±â¼ú Çõ½Å, Àú·ÅÇÑ °¡°Ý, °øÁ¤ÇÑ Á¢±ÙÀÇ ±ÕÇüÀ» ¸ÂÃß°í ÀÖÀ¸¸ç, ±¹°¡º° Àü·«°ú °íÀ¯ÇÑ Çõ½ÅÀÌ Áö¼Ó °¡´ÉÇÑ ¹ßÀüÀÇ ¿¼è¸¦ Àâ´Â Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇϰí ÀÖ½À´Ï´Ù.
Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀåÀÇ ÃÖ±Ù µ¿Çâ
¼ö¿ä-ÃËÁø¿äÀÎ, °úÁ¦, ±âȸ
½ÃÀå ¼ö¿ä ÃËÁø¿äÀÎ
Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ½ÉÇ÷°ü ÁúȯÀÇ À§ÇèÀÌ ÇöÀúÇÏ°Ô ³ôÀº ¼¼°èÀÇ ³ëÈ Àα¸ÀÇ ±ÞÁõÀÔ´Ï´Ù. ƯÈ÷ 65¼¼ ÀÌ»óÀÇ ³ëÀεéÀº ´ëµ¿¸ÆÆÇ ÇùÂøÁõ, °ü»óµ¿¸Æ Áúȯ, ½ÉºÎÀü, ½É¹æ¼¼µ¿ µîÀÇ ÁúȯÀ» ¾ÎÀ» °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ÀÌ ¿¬·É´ë°¡ °è¼Ó È®´ëµÊ¿¡ µû¶ó °íÀ§Çè ȯÀÚ¿¡ ¸Â°Ô ħ½À¼ºÀÌ ³·°í ¾ÈÀüÇÏ°í ¿À·¡ Áö¼ÓµÇ´Â Ä¡·á¹ýÀ» Á¦°øÇÏ´Â °í±Þ ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ëµ¿¸ÆÆÇ ÇùÂøÁõ(AS), ½Â¸ðÆÇ Æó¼âºÎÀüÁõ(MR), ½É¹æ¼¼µ¿(AF)°ú °°Àº º´Å´ Á¡Á¡ ´õ È®»êµÇ°í ÀÖÀ¸¸ç, ³ëÀεéÀº Á¾Á¾ º´Á¸Çϰí Àֱ⠶§¹®¿¡ °íµµÀÇ Ä§½À¼º ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡ ´ëÇÑ ÀÓ»óÀû ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
³ëÀÎÀÇ ½ÉÇ÷°ü Áúȯ ºÎÇÏ
¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é(2024³â), WHO À¯·´¿¡¼´Â ¸ÅÀÏ 10,000¸í ÀÌ»óÀÌ ½ÉÇ÷°ü ÁúȯÀ¸·Î »ç¸ÁÇϰí ÀÖÀ¸¸ç, CVD´Â À¯·´ ÀüüÀÇ ÁÖ¿ä »çÀÎÀÌ µÇ°í ÀÖÀ¸¸ç, ¿¬°£ 400¸¸ ¸í °¡±îÀÌ »ç¸ÁÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼´Â CDC º¸°í¼¿¡ µû¸£¸é ¸Å³â 695,000¸íÀÌ ½ÉÀ庴À¸·Î »ç¸ÁÇϰí ÀÖÀ¸¸ç, ÀÌ´Â »ç¸ÁÀÚ Áß 5¸í Áß 1¸í¿¡ ÇØ´çÇϸç, 33ÃÊ¿¡ 1¸íÀÌ ½ÉÇ÷°ü°è·Î ÀÎÇØ »ç¸ÁÇÕ´Ï´Ù. ±× À§ÇèÀº ƯÈ÷ 65¼¼ À̻󿡼 ³ô°í, ÀÌ·¯ÇÑ °æ¿ìÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÕ´Ï´Ù. ´ëµ¿¸ÆÆÇ ÇùÂøÁõÀº 65¼¼ ÀÌ»ó ¾à 2%°¡ °É¸®¸ç 80¼¼ À̻󿡼´Â 7%·Î »ó½ÂÇÕ´Ï´Ù. ½Â¸ðÆÇ Æó¼â ºÎÀüÁõÀº ÀÏ¹Ý Àα¸ÀÇ 2% ÀÌ»óÀÌ ¿µÇâÀ» ¹ÞÀ¸¸ç À¯º´·üÀº ³ªÀ̰¡ µé¼ö·Ï Áõ°¡ÇÕ´Ï´Ù. ÇÑÆí ½É¹æ¼¼µ¿Àº ¼±Áø±¹ ¼ºÀÎÀÇ ¾à 3.5%¿¡ ¿µÇâÀ» ÁÖ°í 80¼¼ À̻󿡼´Â 14%·Î »ó½ÂÇϸç ÁßÁõ ASȯÀÚÀÇ 15%¿¡ ³ªÅ¸³³´Ï´Ù. ÀÌ ¼öÄ¡´Â °í·ÉÈ »çȸ¸¦ Áß¿äÇÑ ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î ºÎ°¢½Ã۰í ÀÖÀ¸¸ç, °í·É ȯÀÚ¿¡°Ô ¸¸¿¬ÇÏ´Â º¹ÀâÇÑ ½ÉÇ÷°ü Áúȯ¿¡ È¿°úÀûÀ¸·Î ´ëóÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀ̰í ħ½ÀÀûÀÎ ½ÉÇ÷°ü ÁßÀç½Ã¼úÀÇ Çʿ伺À» °ÈÇϰí, º¸´Ù ¾ÈÀüÇÏ°í ³»±¸¼ºÀÌ ÀÖÀ¸¸ç ȯÀÚ Áß½É Ä¡·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ, °æ Ä«Å×ÅÍ ´ëµ¿¸Æ ÆÇ¸· ġȯ¼ú(TAVR), ÁÂ½É¹æ ºÎ¼Ó±â Æó¼â¼ú(LAAC), ½Â¸ðÆÇ Ŭ¸³ µîÀÇ ÀÎÅͺ¥¼ÇÀº ±âÁ¸ÀÇ °³½É¼ú¿¡ ÀÌ»óÀûÀÎ Èĺ¸ÀÚ°¡ ¾Æ´Ñ ³ëÀÎ Áý´Ü¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àúħ½À ÀýÂ÷´Â ÀûÀº ¼ö¼ú À§Çè°ú ºü¸¥ ȸº¹À¸·Î »ýÁ¸ ¼ºÀû ¹× »îÀÇ ÁúÀ» Çâ»ó½Ãŵ´Ï´Ù.
½ÃÀåÀÇ °úÁ¦
ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)Àº Á¤¹Ð ½ÉÀ庴ÇÐÀÇ Áøº¸¸¦ °ßÀÎÇØ ¿ÔÁö¸¸, µ¥ÀÌÅÍÀÇ ÁúÀÇ Àϰü¼ºÀÇ ºÎÁ·, Ç¥ÁØÈÀÇ ºÎÁ·, ÇÑÁ¤µÈ ¿ÜºÎ °ËÁõ¿¡ ÀÇÇØ ±× ÀÓ»ó µµÀÔÀº Å« °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº AI ¸ðµ¨Àº »çÀÏ·ÎÈµÈ ´ÜÀÏ ½Ã¼³ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ç¿ëÇÏ¿© °³¹ßµÇ¾úÀ¸¸ç ½ÇÁ¦ ÀÓ»ó¿¡¼ ¹ß»ýÇÏ´Â ´Ù¾çÇÑ È¯ÀÚ ¼Ó¼º, º´Á¸ Áúȯ ¹× º¹ÀâÇÑ ÀýÂ÷¸¦ Æ÷ÂøÇÒ ¼ö ¾ø½À´Ï´Ù. À̴ ƯÈ÷ ÃæºÐÇÑ ¼ºñ½º¸¦ ¹ÞÁö ¸øÇÑ Áý´ÜÀ̳ª ¹ÎÁ·ÀûÀ¸·Î ´Ù¾çÇÑ Áý´Ü¿¡ Àû¿ëÇÒ °æ¿ì ¾Ë°í¸®ÁòÀÇ ÆíÇâ¿¡ ´ëÇÑ ¿ì·Á¸¦ ¾ß±âÇÕ´Ï´Ù. °Ô´Ù°¡, ¾ö°ÝÇÑ ´Ù½Ã¼³ ÀÓ»ó½ÃÇèÀÌ ¼öÇàµÇ´Â Á¾·¡ÀÇ ÀÇ·á±â±â¿Í´Â ´Þ¸®, ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡¼ AI µµ±¸¸¦ °ËÁõÇϱâ À§ÇÑ º¸ÆíÀûÀ¸·Î ¹Þ¾Æµé¿©Áø ƲÀº Á¸ÀçÇÏÁö ¾Ê½À´Ï´Ù.
¿¹¸¦ µé¾î, 2023³â ½ÉÀ庴Çп¡¼ AIÀÇ Á¶»ç ¹üÀ§ °ËÅä¿¡¼´Â ¹«ÀÛÀ§È ÀÓ»ó½ÃÇèÀº ÀüüÀÇ 17.2%¿¡ ºÒ°úÇϰí, ÀüÇâ RCT ¼öÁØÀÇ Àΰ£¿¡ ÀÇÇÑ °ËÁõÀ» ½ÇÁõÇÑ ¿¬±¸´Â 64°Ç Áß 11°Ç¿¡ ºÒ°úÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ½ÉÇ÷°ü ÁúȯÀÇ AI À§Çè ¸ðµ¨ÀÇ »çÀü Àμ⠰ËÅä¿¡¼ ¿ÜºÎ °ËÁõÀ» ¹ÞÀº ¸ðµ¨Àº ¾à 20%¿¡ ºÒ°úÇϸç, ½Ç¼¼°è ¿öÅ©Ç÷ο쿡 ´ëÇÑ ÀÓ»óÀû ¿µÇâÀ» Æò°¡ÇÑ °ÍÀº ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ °¸Àº ±¤¹üÀ§ÇÏ°Ô ÀÓ»ó¿¡ Ã¤ÅõDZâ Àü¿¡ º¸´Ù °ß°íÇϰí Ç¥ÁØÈµÈ °ËÁõ ÇÁ·Î¼¼½º°¡ ÇÊ¿äÇÏ´Ù´Â °ÍÀ» ºÎ°¢½Ã۰í ÀÖ½À´Ï´Ù.
½ÃÀå ¼ºÀåÀ» ¸·´Â ´Ù¸¥ °úÁ¦´Â ´ÙÀ½°ú °°½À´Ï´Ù.
½ÃÀå ±âȸ
½ºÅÙÆ®¿Í dz¼±Àº °ü»ó µ¿¸Æ Áúȯ(CAD)°ú ¸»ÃÊ µ¿¸Æ Áúȯ(PAD)ÀÇ Ä¡·á¿¡¼ ¿À·§µ¿¾È ±âº»ÀûÀÎ ¿ªÇÒÀ» ´ã´çÇØ ¿Ô½À´Ï´Ù. Àç·á, ¾à¹° ÄÚÆÃ ¹× ±¸Á¶ ¼³°èÀÇ ÃÖ±Ù ¹ßÀüÀº ÀÓ»ó ¿ëµµ¸¦ È®´ëÇϰí, ȯÀÚ °á°ú¸¦ °³¼±Çϸç, Â÷¼¼´ë ÀÎÅͺ¥¼Ç ½ÉÀå º´ÇÐÀÇ ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù.
¾à¹° ÄÚÆÃ Ç³¼± ±â¼úÀÇ ¹ßÀü
ÁÖ¸ñÇÒ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ½ºÅÙÆ® ³» ÀçÇùÂø(ISR)ÀÇ Ä¡·á¿¡ ¾à¹° ÄÚÆÃ Ç³¼±(DCB)ÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. Ç×Áõ½Ä ÀÛ¿ëÁ¦¸¦ Ç÷°üº®¿¡ Á÷Á¢ ÁÖÀÔÇÏ¸é ¿µ±¸ÀûÀÎ À¯Ä¡¹°À» ³²±âÁö ¾Ê°í ÇâÈÄ Ä¡·á ¿É¼ÇÀ» À¯ÁöÇϰí Ãß°¡ ½ºÅÙÆ® À¯Ä¡¿Í °ü·ÃµÈ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. 2024³â 3¿ù, FDA´Â Boston ScientificÀÇ AGENT ÆÄŬ¸®Å¹¼¿ ÄÚÆÃ Ç³¼±À» ISR¿¡ ´ëÇØ ¹Ì±¹¿¡¼ ½ÂÀÎÇÑ ÃÖÃÊÀÇ °ü»ó µ¿¸Æ DCB·Î ½ÂÀÎÇß½À´Ï´Ù. AGENT IDE ½ÃÇèÀÇ µ¥ÀÌÅʹ ǥÁØ Ç³¼± Ç÷°ü ¼ºÇü¼ú¿¡ ºñÇØ ÇùÂøÀÇ Àç¹ß·üÀÌ °¨¼ÒÇϰí ÁÖ¿ä ½ÉÀå ºÎÀÛ¿ë Áõ°¡°¡ ¾øÀ½À» ³ªÅ¸³Â½À´Ï´Ù.
½ÃÀå ¼ºÀå ±âȸ¸¦ âÃâÇÏ´Â ´Ù¸¥ ¿äÀÎÀº ´ÙÀ½°ú °°½À´Ï´Ù.
½ÃÀå µ¿Çâ :
½ÉÀå Ä¡·á ºÐ¾ß´Â ȸº¹ ½Ã°£ ´ÜÃà, ¼ö¼ú À§Çè °¨¼Ò, ÀÇ·á ºñ¿ë Àý°¨À» ½ÇÇöÇÏ´Â Àúħ½À¼º Ä«Å×ÅÍ ±â¹Ý ÀýÂ÷·Î Á¡Á¡ ´õ º¯ÈÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ³ëÀÎ ¹× °íÀ§Çè ȯÀÚ¿¡°Ô À¯¿ëÇÕ´Ï´Ù. °æ Ä«Å×ÅÍ ´ëµ¿¸Æ ÆÇ¸· ġȯ¼ú(TAVR), ÁÂ½É¹æ ºÎ¼Ó±â Æó¼â¼ú(LAAC), MitraClip, ·Îº¿ °æÇÇÀû °ü»óµ¿¸Æ ÀÎÅͺ¥¼Ç(PCI) µîÀÇ Ä¡·á¹ýÀº Á¾·¡ÀÇ °³½É¼úÀ» ´ëüÇϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ ½ÉÀå Áúȯ¿¡ ´ëÇÑ Ç¥ÁØ Ä¡·á·Î¼ÀÇ ÁöÀ§¸¦ È®¸³Çϰí ÀÖ½À´Ï´Ù. MitraClipÀÇ »ç¿ëÀº º¸´Ù ±¤¹üÀ§ÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú »óȯ Á¤Ã¥¿¡ ÀÇÇØ Áö¿øµÇ¸ç ÃÖ±Ù ¸î ³â°£ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ ºÐ¾ß¸¦ °ßÀÎÇÏ´Â ÇöÀç µ¿Çâ
Á¦Ç° ¹× Çõ½Å Àü·« : ÀÌ º¸°í¼´Â Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼úÀÇ Ãֽбâ¼ú Áøº¸¿¡ ´ëÇÑ ±íÀº ÀλçÀÌÆ®¸¦ Á¦°øÇÏ¿© ±â¾÷ÀÌ Çõ½ÅÀ» ÃßÁøÇÏ°í ½ÃÀåÀÇ ¿ä±¸¿¡ ¸Â´Â ÃÖ÷´Ü Á¦Ç°À» °³¹ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
¼ºÀå ¹× ¸¶ÄÉÆÃ Àü·« : Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇϰí ÁÖ¿ä ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº ¸ñÇ¥¸¦ ´Þ¼ºÇÑ ¸¶ÄÉÆÃ Àü·«À» ¼ö¸³ÇÏ°í ½ÃÀå¿¡¼ÀÇ Á¸À縦 È¿°úÀûÀ¸·Î È®´ëÇÒ ¼ö ÀÖ´Â Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
°æÀï Àü·« : ÀÌ º¸°í¼¿¡´Â öÀúÇÑ °æÀï ±¸µµ ºÐ¼®ÀÌ Æ÷ÇԵǾî Â÷¼¼´ë ÀÎÅͺ¥¼Ç ½ÉÀå Ä¡·á¿¡¼ °æÀï»çÀÇ °Á¡°ú ¾àÁ¡À» ÀÌÇØÇÏ°í ½ÃÀå¿¡¼ °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ´Â È¿°úÀûÀÎ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠Àü·« : Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡ Æ¯ÈµÈ ÁøÈÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ½ÂÀÎ, ¾÷°è °¡À̵å¶óÀο¡ ´ëÇÑ ÃֽŠÁ¤º¸¸¦ Á¦°øÇÏ¿© ±â¾÷ÀÌ ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇÏ°í »õ·Î¿î Â÷¼¼´ë ½ÉÇ÷°ü ÁßÀç½Ã¼ú¿¡ ´ëÇÑ ½ÃÀå ÁøÀÔÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÅõÀÚ ¹× »ç¾÷ È®Àå Àü·« : ½ÃÀå µ¿Çâ, ÀÚ±Ý Á¶´Þ ÆÐÅÏ ¹× Á¦ÈÞ ±âȸ¸¦ ºÐ¼®ÇÏ¿© ±â¾÷ÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ °áÁ¤À» ³»¸®°í ºñÁî´Ï½º ¼ºÀåÀ» À§ÇÑ ÀáÀçÀûÀÎ M&A ±âȸ¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
±â¾÷ ÇÁ·ÎÆÄÀÏÀº 1Â÷ Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÀÔ·Â ¹× ±â¾÷ Ä¿¹ö¸®Áö, Á¦Ç° Æ÷Æ®Æú¸®¿À, ½ÃÀå ħÅõµµ ºÐ¼®À» ±â¹ÝÀ¸·Î ¼±Á¤µË´Ï´Ù.
ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷¿¡´Â ·Îº¿ Áö¿ø PCI ½Ã½ºÅÛ, Ç÷°ü ³» À̹Ì¡ Ç÷§Æû, Â÷¼¼´ë ½ºÅÙÆ® ¹× ½ºÄ³Æúµå µî Á¾ÇÕÀûÀÎ °í±Þ ÀÎÅͺ¥¼Å³Î ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ¼¼°è ÁÖ¿ä ÀÇ·á±â±â ±â¾÷ÀÌ Æ÷ÇԵ˴ϴÙ. Abbott, Medtronic, Boston Scientific°ú °°Àº ÀüÅëÀûÀÎ ±â¾÷Àº °ü»ó µ¿¸Æ, ±¸Á¶ ¹× ¸»ÃÊ ÀÎÅͺ¥¼ÇÀ» Æ÷°ýÇÏ´Â ±¤¹üÀ§ÇÑ Æ÷Æ®Æú¸®¿À¸¦ °¡Áö°í ÀÖÀ¸¸ç ¾ÐµµÀûÀÎ Á¸À縦 º¸¿©ÁÝ´Ï´Ù.
À̳뺣ÀÌÅʹ ÷´Ü OCT ¹× IVUS ½Ã½ºÅÛ µî AI¸¦ Ȱ¿ëÇÑ À̹ÌÁö ¸ð´Þ¸®Æ¼¸¦ °³¹ßÇÏ¿© ¼ö¼ú °èȹ°ú Ä¡·á ¼ºÀûÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. »ý¸í°øÇп¡¼ ¿µ°¨À» ¾òÀº ÀÇ·á±â¼ú ±â¾÷Àº Ç÷°ü Ä¡À¯¸¦ ÃËÁøÇϰí ÀçÇùÂøÀ» ÁÙÀÌ´Â »ýüÈí¼ö ½ºÄ³Æúµå, ¾à¹° ÄÚÆÃ Ç³¼± ¹× ½Å±Ô Ç÷°ü ÀÓÇöõÆ®¸¦ °³Ã´Çϰí ÀÖ½À´Ï´Ù. ½ÅÈï±â¾÷°ú Áö¿ª ÁøÃâ ±â¾÷Àº ÃæºÐÇÑ ¼ºñ½º¸¦ ¹ÞÁö ¾ÊÀº ½ÅÈï ½ÃÀåÀ» ´ë»óÀ¸·Î ºñ¿ë È¿À²ÀûÀÎ ·Îº¿ ½Ã½ºÅÛ, ÈÞ´ë¿ë À̹Ì¡ Åø, ¿ø°Ý ÀÎÅͺ¥¼Ç Ç÷§Æû µî ÆÄ±«ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÁøÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀÌ ÀÏü°¡ µÇ¾î ±â¼úÀû Áøº¸¸¦ ÃßÁøÇϰí, ¼±Áø ÀÇ·á¿¡ ´ëÇÑ Á¢±ÙÀ» È®´ëÇϰí, Á¤¹Ð À¯µµ Àúħ½À ½ÉÀåÇ÷°ü ÀÎÅͺ¥¼Ç¿¡ ÀÖ¾î¼ ÃæÁ·µÇÁö ¾ÊÀº ¿ä±¸¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.
ÀÌ ½ÃÀå¿¡¼ È®¸³µÈ À¯¸íÇÑ ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù.
This report can be delivered within 1 working day.
Introduction of Next-generation Intervention Cardiology
Next-generation intervention cardiology applies advanced, precision-guided, minimally invasive techniques to treat complex cardiovascular conditions, including coronary artery disease, structural heart defects, and valvular disorders. This innovative field represents a paradigm shift in cardiac care, moving beyond traditional open-heart surgeries toward safer, more targeted, and patient-specific catheter-based interventions. By combining robotics, AI-driven imaging, and cutting-edge device technologies, next-generation intervention cardiology enables clinicians to deliver tailored therapies with enhanced accuracy, efficiency, and safety. This approach improves clinical outcomes, reduces complications and recovery time, and optimizes healthcare resources.
KEY MARKET STATISTICS | |
---|---|
Forecast Period | 2025 - 2035 |
2025 Evaluation | $22,886.3 Million |
2035 Forecast | $46,821.0 Million |
CAGR | 7.21% |
Market Introduction
The global next-generation intervention cardiology market is expected to witness significant expansion, projected to reach $46,821.0 million by 2035, driven by the escalating burden of cardiovascular diseases- including coronary artery disease, structural heart defects, and valvular disorders-that demand safer, more precise alternatives to open-heart surgery. This market is anchored in minimally invasive, catheter-based solutions that integrate advanced robotics, and AI-guided imaging to deliver superior procedural accuracy, faster recovery, and expanded patient access.
Next-generation intervention cardiology represents a paradigm shift, combining automation, data-driven precision, and operator ergonomics to improve outcomes while reducing occupational hazards. Key milestones, such as the commercial launch and adoption of robotic-assisted PCI systems like Robocath's R-One-currently the only commercially available R-PCI platform-have validated these disruptive approaches and and the CE Mark for transcatheter mitral valve replacement (TMVR) platforms, underscored the shift toward standardization and scalability of catheter-based therapies.
Market expansion is further bolstered by supportive reimbursement and regulatory pathways in the U.S., EU, and Japan, alongside investments by public and private sectors in cath lab modernization, operator training, and digital integration. Countries across North America, Europe, and Asia-Pacific are scaling infrastructure and fostering innovation hubs, with emerging economies such as India and Brazil offering significant untapped potential for next-generation intervention cardiology market.
Technological convergence is accelerating growth, with innovations such as AI-enabled OCT/IVUS imaging, remote robotic PCI platforms, and bioresorbable scaffolds enhancing both procedural quality and long-term outcomes. While robotic-assisted PCI and intravascular imaging remain dominant segments of next-generation intervention cardiology, newer applications in structural interventions, peripheral artery disease, and congenital heart repairs are expanding the scope of next-generation intervention cardiology beyond coronary disease.
Despite this momentum, challenges such as high capital costs, fragmented training standards, and uneven access to technology persist in the global next-generation intervention cardiology landscape. However, growing payer support, and industry-academic collaborations are steadily addressing these barriers, enabling wider adoption of of next-generation intervention cardiology solutions.
Leading players such as Abbott., Medtronic plc, Boston Scientific Corporation, and Terumo Corporation are shaping the competitive landscape, advancing first-in-class devices, expanding portfolios, and investing in clinical validation and commercialization to strengthen their foothold in next-generation intervention cardiology.
As healthcare increasingly prioritizes precision medicine, patient-centric care, and minimally invasive solutions, next-generation intervention cardiology stands at the forefront of cardiovascular innovation, poised to redefine care paradigms and improve outcomes for diverse patient populations worldwide.
Industrial Impact
Next-generation intervention cardiology is transforming cardiovascular care by delivering minimally invasive, precision-guided treatments that improve outcomes and reduce recovery times across a wide spectrum of heart diseases. For example, robotic-assisted percutaneous coronary intervention (R-PCI) platforms, such as CorPath GRX, have redefined procedural accuracy and operator safety in coronary artery disease management, enabling enhanced stent placement and reduced radiation exposure compared to conventional PCI. This technology-driven, patient-centric approach is improving long-term cardiovascular health while minimizing procedural risks and hospital stays.
Beyond individual interventions, next-generation intervention cardiology is fostering innovation in procedural ecosystems and clinical workflows. The integration of AI-guided imaging, remote tele-intervention platforms, and advanced bioresorbable devices is streamlining diagnostics, enabling real-time procedural optimization, and expanding access to cutting-edge therapies in underserved regions. Companies like SS Innovations in India and global leaders such as Abbott and Medtronic are advancing late-stage programs in structural and valvular heart disease interventions, supported by growing reimbursement and regulatory recognition of robotic and AI-assisted technologies.
Simultaneously, public-private collaborations and investments in digital health infrastructure are strengthening healthcare delivery networks, building capacity for remote expertise, and improving system-wide resilience against cardiovascular disease burdens. These advancements are not only elevating individual patient care but also reducing procedural variability, improving resource utilization, and driving equitable access to advanced cardiovascular therapies.
Global Next-Generation Intervention Cardiology Market (Segmentation)
Segmentation 1: By Product Type
Non-robotics remains the leading segment by product type in the global next-generation intervention cardiology market, holding an 84.41% market share in 2024, with a projected CAGR of 6.98% during the forecast period 2025-2035. Among its key subsegments-IVUS, OCT, stents, catheters, guidewires, PTCA balloons, and others drive the largest contributions, owing to their widespread clinical adoption, proven efficacy, and lower procedural complexity compared to robotic platforms. Non-robotic solutions dominated the market due to their cost-effectiveness, ease of integration into existing cath labs, and extensive use in both elective and emergency procedures.
Segmentation 2: By Indication Type
Based on indication type, the global next-generation intervention cardiology market was led by the structural heart disease segment, which accounted for a 45.67% market share in 2024. Structural heart disease interventions are projected to maintain dominance due to the growing global burden of aortic stenosis, mitral regurgitation, and left atrial appendage-related stroke risk, particularly among aging populations. The simpler, catheter-based, and minimally invasive nature of structural heart procedures compared to open-heart surgery-such as TAVR and LAA occlusion-has driven widespread adoption by clinicians and patients alike. Their established efficacy, favorable safety profiles, and expanding clinical indications continue to support consistent demand, while ongoing advancements in device design and long-term outcomes are further enhancing their therapeutic potential across diverse patient groups.
Segmentation 3: By End User
Based on end user, the global next-generation intervention cardiology market was led by the Hospitals and Clinics segment, which held a 70.47% share in 2024. Hospitals and clinics are expected to maintain their dominance as they remain the primary hubs for performing advanced, minimally invasive cardiovascular procedures. Their comprehensive access to catheterization labs, skilled interventional cardiologists, and state-of-the-art imaging and robotic platforms makes them best suited for complex interventions such as, robotic PCI, RA-CABG and Robotic mitral valve repair. The ability to manage high procedural volumes, ensure patient monitoring, and deliver multidisciplinary care supports the strong adoption of next-generation interventional technologies in these settings.
Segmentation 4: By Region
The next-generation intervention cardiology market in the Asia-Pacific region is expanding rapidly, driven by rising cardiovascular disease prevalence, healthcare infrastructure development, and supportive policies, though the region remains heterogeneous in maturity and access. China leads in scale and growth, propelled by high disease burden, domestic innovation, and cath lab expansion despite regional and reimbursement disparities. Japan and South Korea are mature, innovation-led markets with strong insurance support and high uptake of advanced therapies in the next-generation intervention cardiology, though cost pressures and sustainability concerns persist. India's large, underpenetrated market is witnessing increasing demand alongside notable indigenous innovations in the next-generation intervention cardiology. Notably, SS Innovations has developed the SSi Mantra surgical robotic system, India's first homegrown surgical robot. Australia benefits from strong reimbursement and private adoption of next-generation intervention cardiology technologies. Smaller APAC markets, including Singapore, Hong Kong, and Malaysia, offer premium, urban-focused opportunities. whereas Indonesia, Vietnam, and the Philippines face infrastructure and funding challenges. Overall, APAC's growth potential hinges on balancing innovation, affordability, and equitable access, with country-specific strategies and indigenous innovation playing a key role in unlocking sustainable development.
Recent Developments in the Next-Generation Intervention Cardiology Market
Demand -Drivers, Challenges, and Opportunities
Market Demand Drivers:
A major driver of the next-generation intervention cardiology market is the rapid growth of the global aging population, which faces a significantly higher risk of cardiovascular diseases. Older adults, particularly those aged 65 and above, are more likely to suffer from conditions like aortic stenosis, coronary artery disease, heart failure, and atrial fibrillation. As this age group continues to expand, there is a growing demand for advanced cardiac interventions that offer less invasive, safer, and longer-lasting treatment options tailored to high-risk patients. Conditions such as aortic stenosis (AS), mitral regurgitation (MR), and atrial fibrillation (AF) are increasingly prevalent and often coexist in aging individuals, elevating the clinical need for advanced, minimally invasive cardiac interventions.
Cardiovascular Disease Burden in the Elderly
According to the World Health Organization (2024), cardiovascular diseases kill over 10,000 people daily in the WHO European Region, making CVD the leading cause of death across Europe, accounting for nearly 4 million deaths annually. In the U.S., the CDC reports that heart disease causes over 695,000 deaths each year, equal to 1 in every five deaths, with one person dying every 33 seconds due to cardiovascular causes. The risk is especially high in individuals aged 65 and older, who account for the majority of these cases. Aortic stenosis affects approximately 2% of people aged 65 years and older, rising to 7% among individuals above 80, making it one of the most common and deadly forms of valvular heart disease in the elderly. Mitral regurgitation, another highly prevalent valve disorder, affects over 2% of the general population and has a prevalence that increases with age. Meanwhile, atrial fibrillation impacts approximately 3.5% of adults in developed countries, rising to 14% in people over 80 years old, and is present in 15% of patients with severe AS. These figures highlight the aging population as a critical market driver, reinforcing the need for innovative, minimally invasive cardiac interventions that can effectively address the complex cardiovascular conditions prevalent in elderly patients and support the growing demand for safer, durable, and patient-centric treatment solutions.
Furthermore, interventions such as Transcatheter Aortic Valve Replacement (TAVR), Left Atrial Appendage Closure (LAAC), and Mitral Clip are increasingly used in elderly populations who are not ideal candidates for traditional open-heart surgery. These minimally invasive techniques improve survival outcomes and quality of life with fewer procedural risks and faster recovery.Some of the other driving factors include:
Market Challenges:
While artificial intelligence (AI) and machine learning (ML) have been driving advances in precision cardiology, their clinical implementation faces significant challenges due to inconsistent data quality, lack of standardization, and limited external validation. Many AI models are developed using siloed, single-center datasets that fail to capture the diversity of patient demographics, comorbidities, and procedural complexities encountered in real-world practice. This raises concerns about algorithmic bias, particularly when applied to underserved or ethnically diverse populations. Furthermore, unlike traditional medical devices that undergo rigorous multicenter clinical trials, there is no universally accepted framework for validating AI tools in intervention cardiology.
For example, a 2023 scoping review of AI in cardiology reported that only 17.2% of studies were randomized clinical trials, with just 11 of 64 demonstrating prospective, RCT-level human validation. Similarly, a preprint review of AI risk models for cardiovascular disease found that only about 20% of models had been externally validated, with none having assessed their clinical impact in real-world workflows. These gaps highlight the need for more robust, standardized validation processes before widespread clinical adoption.
Some of the other factors challenging the market growth include:
Market Opportunities:
Stents and balloons have long been foundational in treating coronary artery disease (CAD) and peripheral arterial disease (PAD). Recent advancements in materials, drug coatings, and structural designs have been expanding their clinical applications, improving patient outcomes, and driving growth in next-generation intervention cardiology.
Advancements in Drug-Coated Balloon Technologies
One notable innovation is the growing use of drug-coated balloons (DCBs) for treating in-stent restenosis (ISR). By delivering antiproliferative drugs directly to the vessel wall without leaving a permanent implant, DCBs preserve future treatment options and reduce risks associated with additional stenting. In March 2024, the FDA approved Boston Scientific's AGENT paclitaxel-coated balloon, the first coronary DCB approved in the U.S. for ISR. Data from the AGENT IDE trial demonstrated reduced rates of repeat narrowing and no increase in major adverse cardiac events compared to standard balloon angioplasty.
Some of the other factors creating an opportunity for market growth include:
Market Trends:
The field of cardiac care is increasingly shifting toward minimally invasive, catheter-based interventions that offer shorter recovery times, reduced procedural risks, and lower healthcare costs-particularly beneficial for elderly and high-risk patients. Techniques such as Transcatheter Aortic Valve Replacement (TAVR), Left Atrial Appendage Closure (LAAC), MitraClip, and robotic Percutaneous Coronary Intervention (PCI) are progressively replacing traditional open-heart surgeries, establishing themselves as standard-of-care treatments for various cardiac conditions. The use of MitraClip has expanded significantly in recent years, supported by broader regulatory approvals and reimbursement policies.
Current Trends Driving the Field:
How can this report add value to an organization?
Product/Innovation Strategy: The report offers in-depth insights into the latest technological advancements in next-generation intervention cardiology, enabling organizations to drive innovation and develop cutting-edge products tailored to market needs.
Growth/Marketing Strategy: By providing comprehensive market analysis and identifying key growth opportunities, the report equips organizations with the knowledge to craft targeted marketing strategies and expand their market presence effectively.
Competitive Strategy: The report includes a thorough competitive landscape analysis, helping organizations understand their competitors' strengths and weaknesses in next-generation intervention cardiology and allowing them to strategize effectively to gain a competitive edge in the market.
Regulatory and Compliance Strategy: It provides updates on evolving regulatory frameworks, approvals, and industry guidelines specific to next-generation intervention cardiology, ensuring organizations stay compliant and accelerate market entry for new next-generation intervention cardiology
Investment and Business Expansion Strategy: By analyzing market trends, funding patterns, and partnership opportunities, the report assists organizations in making informed investment decisions and identifying potential M&A opportunities for business growth.
Methodology
Key Considerations and Assumptions in Market Engineering and Validation
Primary Research:
The primary sources involve industry experts in next-generation intervention cardiology, including the market players offering products and services. Resources such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.
The key data points taken from the primary sources include:
Secondary Research
Open Sources
The key data points taken from the secondary sources include:
Key Market Players and Competition Synopsis
Profiled companies have been selected based on inputs gathered from primary experts, as well as analyzing company coverage, product portfolio, and market penetration.
Key players in this market include leading global medical device companies offering a comprehensive range of advanced interventional solutions, such as robotic-assisted PCI systems, intravascular imaging platforms, and next-generation stents and scaffolds. Established firms like Abbott, Medtronic, and Boston Scientific dominate with extensive portfolios spanning coronary, structural, and peripheral interventions.
Innovators are also developing AI-driven imaging modalities, such as advanced OCT and IVUS systems, to improve procedural planning and outcomes. Biotech-inspired medtech firms are pioneering bioresorbable scaffolds, drug-coated balloons, and novel vascular implants that enhance vessel healing and reduce restenosis. Start-ups and regional players are entering with disruptive solutions, such as cost-effective robotic systems, portable imaging tools, and tele-interventional platforms targeting underserved and emerging markets. Together, these companies are driving technological progress, expanding access to advanced care, and addressing unmet needs in precision-guided, minimally invasive cardiovascular interventions.
Some prominent names established in this market are:
Scope and Definition