¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : º¤ÅÍ À¯Çüº°, ¿öÅ©Ç÷ο캰, ÃÖÁ¾ ¿ëµµº°, Ä¡·á ºÐ¾ßº°, ±¹°¡º°, Áö¿ªº° - »ê¾÷ ºÐ¼®, ½ÃÀå ±Ô¸ð, ½ÃÀå Á¡À¯À² ¹× ¿¹Ãø(2024-2032³â)
Viral Vector and Plasmid DNA Manufacturing Market, By Vector Type, By Workflow, By Application, By End-use, By Therapeutic Area, By Country, and By Region - Industry Analysis, Market Size, Market Share & Forecast from 2024-2032
»óǰÄÚµå : 1464691
¸®¼­Ä¡»ç : AnalystView Market Insights
¹ßÇàÀÏ : 2024³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 345 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,250 £Ü 4,574,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠺Ұ¡´ÉÇϸç, ÅØ½ºÆ®ÀÇ Copy&Pasteµµ ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 4,650 £Ü 6,544,000
PDF (5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,650 £Ü 7,952,000
PDF & Excel (Enterprise User License) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» ¸ðµç »ç¿ëÀÚ°¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy&Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

º¸°í¼­ ÇÏÀ̶óÀÌÆ®

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå ±Ô¸ð´Â 2023³â 54¾ï 500¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç 2024³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 19.7%·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ½ÃÀå - ½ÃÀå ¿ªÇÐ

¼¼Æ÷ ±â¹Ý ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡·Î ½ÃÀå ¼ö¿ä Áõ°¡

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶¸¦ À§ÇÑ »õ·Î¿î ±â¼ú ¹× ½Ã¼³ ¼³¸³¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿øÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àü¹ÝÀûÀÎ ¿¬±¸ Ȱµ¿ÀÌ È°¹ßÇØÁö°í ¼¼Æ÷ ±â¹Ý ¿¬±¸°¡ Áö¿øµÊ¿¡ µû¶ó ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¾Ï ¹× ½ÉÀå ÀÌ»óÀ» Æ÷ÇÔÇÑ Áúº´ÀÇ À¯º´·ü Áõ°¡, ¼¼Æ÷ Ä¡·á ¿¬±¸ÀÇ È°¿ë, ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ij³ª´Ù Á¤ºÎ´Â ±¹¹Î °Ç°­ ÁõÁøÀ» À§ÇØ À¯ÀüüÇÐ ¹× Àç»ýÀÇ·á¿¡ ÅõÀÚÇß½À´Ï´Ù. Áٱ⼼Æ÷ ³×Æ®¿öÅ©ÀÇ °æÀïÀû ¿¬±¸ ÀÚ±Ý ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ¹ÌÈ­ 430¸¸ ´Þ·¯¸¦ Áö¿øÇß½À´Ï´Ù. ´Ù¹ß¼º °æÈ­Áõ, ±ÙÀÌ¿µ¾çÁõ, ¾Ï, Ç÷¾× Áúȯ, 1Çü ´ç´¢º´, ½ÉÀ庴, ³¶Æ÷¼º ¼¶À¯Áõ µî °Ç°­ ¹®Á¦¸¦ Ä¡·áÇϱâ À§ÇÑ Ä³³ª´Ù Àü¿ªÀÇ 16°³ ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÌ Á÷Á¢ ÀÚ±ÝÀ¸·Î Áö¿ø¹Þ½À´Ï´Ù. Àç»ýÀÇ·á¿¡ ÁßÁ¡À» µÐ Áٱ⼼Æ÷ ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ½ÃÀÛÇÏ·Á´Â º¸°Ç, »ý¸í°øÇÐ, »çȸ°úÇÐ ºÐ¾ßÀÇ ÀþÀº ¿¬±¸ÀÚµéÀ» Áö¿øÇÏ´Â »õ·Î¿î ÇÁ·Î±×·¥µµ À̹ø °ø¸ð¿¡ ¼±Á¤µÈ ÀÚ±Ý Áö¿ø ±âȸ Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, °Ô³ð ij³ª´Ù¸¦ ÅëÇØ 10°³ÀÇ »õ·Î¿î °Ô³ð ¿¬±¸¿¡ ¹ÌÈ­ 1,600¸¸ ´Þ·¯°¡ Áö¿øµÇ¸ç, 2035³â±îÁö ÀÌ ÅõÀÚ´Â »ýÀÇÇÐ ¹× ÀǾàǰ °³¹ßÀÇ Çõ½Å¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ³ó¾÷, °Ç°­, ȯ°æ ºÐ¾ßÀÇ Çö½ÇÀûÀÎ ¹®Á¦¿Í ÀáÀç·ÂÀ» ÇØ°áÇϰí Á÷Á¢ÀûÀ¸·Î ÀÀ¿ëÇÒ ¼ö ÀÖ´Â »ç¸í°¨ ÀÖ´Â ¿¬±¸µµ Áö¿øµË´Ï´Ù.

Á¦Ç° Ãâ½Ã Áõ°¡´Â ½ÃÀå ¸ÅÃâ ¼ºÀåÀÇ ÀáÀçÀû ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

Á¦Ç° Ãâ½Ã Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀÇ ÀáÀçÀû ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 3¿ù Charles River Laboratories International, Inc.ÀÇ ±â¼ºÇ° pHelper ¼­ºñ½º µµÀÔÀ¸·Î ¾Æµ¥³ëºÎ¼öü ¹ÙÀÌ·¯½º(AAV) ±â¹Ý À¯ÀüÀÚ Ä¡·á ÀÌ´Ï¼ÅÆ¼ºê´Â Ãʱ⠹߰ߺÎÅÍ »ó¾÷Àû »ý»ê±îÁö º¸´Ù È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿¬±¸¿ë(RG), °íǰÁú(HQ), ¿ì¼öÀǾàǰÁ¦Á¶°ü¸®±âÁØ(GMP) µî±ÞÀ» ¸ðµÎ Áï½Ã ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ÁÖ¿ä ÀλçÀÌÆ®

¸®¼­Ä¡ ¾Ö³Î¸®½ºÆ®ÀÇ ºÐ¼®¿¡ µû¸£¸é, ¼¼°è ½ÃÀåÀº ¿¹Ãø ±â°£(2024-2032³â) µ¿¾È ¾à 19.7%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

º¤ÅÍ À¯Çüº°·Î´Â ¾Æµ¥³ë µ¿¹Ý ¹ÙÀÌ·¯½º(AAV) ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿öÅ©Ç÷ο캰·Î´Â ´Ù¿î½ºÆ®¸² Á¦Á¶°¡ ¿¹Ãø ±â°£ µ¿¾È Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Ä¡·á ºÐ¾ßº°·Î º¸¸é, ¿¹Ãø ±â°£ µ¿¾È Á¾¾ç Áúȯ ºÐ¾ß°¡ µÎµå·¯Áø ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áö¿ªº°·Î´Â ºÏ¹Ì°¡ 2023³â ÁÖ¿ä ¼öÀÍ¿øÀÌ µÉ °ÍÀÔ´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ¼¼ºÐÈ­ ºÐ¼® :

¼¼°è ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº º¤ÅÍ À¯Çü, ¿öÅ©Ç÷οì, ¿ëµµ, ÃÖÁ¾ ¿ëµµ, Ä¡·á ¿µ¿ª ¹× Áö¿ª¿¡ µû¶ó ¼¼ºÐÈ­µË´Ï´Ù.

º¤ÅÍ À¯Çü¿¡ µû¶ó ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ¾Æµ¥³ë¹ÙÀÌ·¯½º, ·»Æ¼¹ÙÀÌ·¯½º, ¾Æµ¥³ëºÎ¼öü¹ÙÀÌ·¯½º(AAV), ·¹Æ®·Î¹ÙÀÌ·¯½º, Çö󽺹̵å, ¹ÚÅ׸®¿À¹ÙÀÌ·¯½º, ¼¾´ÙÀ̹ÙÀÌ·¯½º, ±âŸ(´Ü¼øÆ÷Áø¹ÙÀÌ·¯½º(HSV) µî)·Î ¼¼ºÐÈ­µË´Ï´Ù. µîÀ¸·Î ¼¼ºÐÈ­µË´Ï´Ù. ¾Æµ¥³ëºÎ¼öü ¹ÙÀÌ·¯½º(AAV) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AAV´Â À¯ÀüÀÚ¸¦ ¿øÇÏ´Â À§Ä¡·Î Àü´ÞÇÏ´Â Á¤È®µµ°¡ ¸Å¿ì ³ô±â ¶§¹®¿¡ ¸Å¿ì ÀαⰡ ³ô°í ÀÓ»ó½ÃÇè¿¡¼­ ºü¸£°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¤Çü¿Ü°ú ¹× ¾È°ú¿ë À¯ÀüÀÚ Ä¡·áÁ¦ °³¹ß¿¡ ´ëÇÑ ÀÓ»ó ¿¬±¸¿¡¼­ È¿´É°ú È¿À²¼ºÀÌ °³¼±µÈ °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ÀÌ´Â AAVÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ´Â ÀÌÀ¯ÀÔ´Ï´Ù.

¿öÅ©Ç÷ο쿡 µû¶ó ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ »ê¾÷Àº ¾÷½ºÆ®¸² Á¦Á¶¿Í ´Ù¿î½ºÆ®¸² Á¦Á¶·Î ³ª´¹´Ï´Ù. ´Ù¿î½ºÆ®¸² Á¦Á¶ ºÎ¹®Àº Ä¡·á¿ë ÃÖÁ¾ Á¦Ç°À» ¿¬¸¶Çϰí Á¤Á¦ÇÏ´Â µ¥ »ç¿ëµÇ´Â ¸Å¿ì º¹ÀâÇÑ °øÁ¤À¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿ëµµ¿¡ µû¶ó ½ÃÀåÀº ¾ÈƼ¼¾½º ¹× RNAi Ä¡·á, ¹é½Å Ä¡·á, À¯ÀüÀÚ Ä¡·á, Á¶Á÷°øÇÐ, ¼¼Æ÷Ä¡·á, ¿¬±¸¿ë, ±âŸ(¹ÙÀÌ¿À¼¾¼­ µî)·Î ³ª´¹´Ï´Ù.

ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ¾÷°è´Â Á¦¾à ¹× ¹ÙÀÌ¿À Á¦¾à»ç, À§Å¹»ý»ê±â°ü(CMO), ¿¬±¸±â°ü, ±âŸ(Á¤ºÎ±â°ü µî)·Î ³ª´¹´Ï´Ù.

Ä¡·á ºÐ¾ß¿¡ µû¶ó ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ½ÃÀåÀº ½Å°æÁúȯ, °¨°¢±â°üÁúȯ, ±Ù°ñ°Ý°èÁúȯ, ´ë»çÁúȯ, Á¾¾çÁúȯ, Èñ±ÍÁúȯ, Ç÷¾×Áúȯ, ¸é¿ªÁúȯ, ±âŸ(»ý½ÄÀÇÇÐ µî)·Î ³ª´¹´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È Á¾¾ç Áúȯ ºÐ¾ß°¡ µÎµå·¯Áø ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº Àü ¼¼°èÀûÀ¸·Î ¾ÏÀÇ À¯º´·üÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ±¹Á¦¾Ï¿¬±¸¼Ò(IARC)ÀÇ ÃֽŠÃßÁ¤¿¡ µû¸£¸é, 2022³â¿¡´Â 2,000¸¸ ¸íÀÌ »õ·Ó°Ô ¾Ï¿¡ °É¸®°í 970¸¸ ¸íÀÌ ¾ÏÀ¸·Î »ç¸ÁÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Ï Áø´ÜÀ» ¹ÞÀº ÈÄ 5³â ÈÄ¿¡µµ »ýÁ¸ÇØ ÀÖ´Â »ç¶÷Àº 5,350¸¸ ¸íÀ¸·Î ¿¹»óµÇ¸ç, 5¸í Áß 1¸íÀº Æò»ý ¾îµò°¡¿¡¼­ ¾Ï¿¡ °É¸®°í, ³²¼º 9¸í Áß 1¸í, ¿©¼º 12¸í Áß 1¸íÀº ¾ÏÀ¸·Î ¼¼»óÀ» ¶°³¯ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌó·³ ¾Õ¼­ ¾ð±ÞÇÑ Åë°è°¡ ÀÌ ºÐ¾ßÀÇ È®ÀåÀ» ºÎÃß±â°í ÀÖ½À´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - Áö¸®Àû ÅëÂû·Â

Áö¸®ÀûÀ¸·Î ÀÌ ½ÃÀåÀº ºÏ¹Ì, ¶óƾ¾Æ¸Þ¸®Ä«, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡ ºÐÆ÷µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ºñÁî´Ï½º¸¦ °¡Á® ¿À´Â ±¹°¡¿¡ µû¶ó ´õ ¼¼ºÐÈ­µË´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÇ °³¹ß ¼öŹ ±â°ü Áõ°¡¿Í À¯ÀüÀÚ ¹× ¼¼Æ÷ Ä¡·á ¿¬±¸ ¹× Á¦Ç° °³¹ß¿¡ ´ëÇÑ ±â¾÷ÀÇ Âü¿© Áõ°¡·Î ¼³¸íÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¿ª ±â¾÷µéÀº ÀÌ Áö¿ª¿¡ »ý»ê °øÀåÀ» ´Ã¸®°í ÀÖÀ¸¸ç, GMP Á¦Á¶ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â CDMO¿Í °°Àº Áß¿äÇÑ ½ÃÀå ÁøÃâ±â¾÷µéÀÌ Á¸ÀçÇϰí, Á¦Á¶¿¡ µ¶Ã¢ÀûÀÎ Á¦Á¶ ¹æ¹ýÀÌ »ç¿ëµÊ¿¡ µû¶ó ¹Ì±¹Àº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ºÐ¾ß¿¡¼­ ºÏ¹Ì ½ÃÀå¿¡¼­ °¡Àå Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ½ÃÀå - °æÀï ±¸µµ:

ÀϺΠ´ë±â¾÷µéÀº ½ÃÀå ÁöÀ§¸¦ Çâ»ó½ÃŰ°í °í°´¿¡°Ô ´Ù¾çÇÑ ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ Àü·«Àû ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ½ÃÀå ÀÔÁö¿Í ¼öÀÍÀ» ³ôÀÌ°í °æÀï·ÂÀ» È®º¸Çϱâ À§ÇØ ±â¾÷Àº ÆÄÆ®³Ê½Ê, °è¾à, ÇÕÀÛ ÅõÀÚ, »ç¾÷ È®Àå, ¼­ºñ½º Ãâ½Ã, Á¦Ç° Çõ½Å ¹× ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ±âŸ Àü¼ú¿¡ ÀÚÁÖ Âü¿©Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸î ³âµ¿¾È Çö󽺹̵å DNA ¹× ¹ÙÀÌ·¯½º º¤ÅÍ ½ÃÀå¿¡¼­´Â ÁÖ¸ñÇÒ ¸¸ÇÑ ¼öÁØÀÇ ±â¼ú Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Çö󽺹̵å DNA ¹× ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê¾÷üµéÀº À¯ÀüÀÚ Ä¡·á ¹× ¹é½Å °³¹ß °­È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ²÷ÀÓ¾øÀÌ »õ·Ó°í È¿°úÀûÀÎ ¼Ö·ç¼ÇÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍÀÇ ´ë±Ô¸ð »ý»ê¿¡ ÀϽÃÀû Àü´Þ ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀº ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ¹ßÀü Áß ÇϳªÀÔ´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê¿¡ ÇöŹ ¼¼Æ÷ ¹è¾ç ±â¼úÀ» »ç¿ëÇÏ´Â °Íµµ Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ´ëÇü »ý¸í°øÇÐ ¹× Á¦¾àȸ»çµéÀº ƯÇã ±â¼ú, Áö½Ä ¹× Á¦Á¶ ´É·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ Áß¼ÒÇü º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ±â¾÷À» ÀÚÁÖ ÀμöÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀå ÅëÇÕÀÌ ÁøÇàµÇ°í °¡°Ý Ã¥Á¤ ¹× ½ÃÀå Á¡À¯À²¿¡ ´ëÇÑ ±âÁ¸ ±â¾÷ÀÇ ¿µÇâ·ÂÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. ´ë±â¾÷ÀÇ ÀÎÇÁ¶ó¿Í ÀÚ¿øÀ» Ȱ¿ëÇϸé Áß¼Ò±â¾÷Àº »ç¾÷À» È®ÀåÇÏ°í »õ·Î¿î ½ÃÀå¿¡ ÁøÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2022³â 2¿ù Exelid´Â ¸ÓÅ© KGaA¿¡ ¾à 7¾ï 8,000¸¸ ´Þ·¯¿¡ ÀμöµÆ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô mRNAÀÇ ¹ë·ùüÀÎÀ» µû¶ó ¿ÏÀüÇÑ ¿£µå Åõ ¿£µå CDMO ¼­ºñ½º¸¦ Á¦°øÇÔÀ¸·Î½á ¸ÓÅ©ÀÇ »ý¸í°úÇÐ ºÐ¾ß ¼­ºñ½º¸¦ ´õ¿í Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå °³¿ä

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ÁÖ¿ä ½ÃÀå µ¿Çâ

Á¦4Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ »ê¾÷ ¿¬±¸

Á¦5Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : COVID-19ÀÇ ¿µÇ⠺м®

Á¦6Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå ±¸µµ

Á¦7Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - º¤ÅÍ À¯Çüº°

Á¦8Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ¿öÅ©Ç÷ο캰

Á¦9Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ¿ëµµº°

Á¦10Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - ÃÖÁ¾ ¿ëµµº°

Á¦11Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - Ä¡·á ¿µ¿ªº°

Á¦12Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå - Áö¿ªº°

Á¦13Àå ÁÖ¿ä º¥´õ ºÐ¼® - ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶¾÷°è

Á¦14Àå ¾Ö³Î¸®½ºÆ®ÀÇ Àü¹æÀ§ Àü¸Á

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

REPORT HIGHLIGHT

Viral Vector and Plasmid DNA Manufacturing Market size was valued at USD 5,405 Million in 2023, expanding at a CAGR of 19.7% from 2024 to 2032.

Viral vectors and plasmid DNA can be employed in gene therapy to treat a wide range of diseases, such as cancer, metabolic issues, cardiac problems, and neurological disorders. As viral vectors are based on baculovirus, herpes simplex viruses, adenoviruses, and other viruses, they are being employed increasingly frequently in vaccine research and the development of novel medications.

Viral Vector and Plasmid DNA Manufacturing Market- Market Dynamics

Increasing government support for cell-based research to propel market demand

The market for Viral Vector and Plasmid DNA Manufacturing is expected to grow as a result of increased government funding for the creation of new technologies and facilities for producing viral vectors, which has increased overall research activity and supported cell-based research. In addition, the main drivers propelling market expansion are the growing prevalence of diseases including cancer and heart abnormalities, the use of cell therapies research, and technological advancements in the field of viral vector & plasmid DNA manufacture. For instance, the Canadian government made investments in genomics and regenerative medicine to promote the health of its citizens. Through the competitive research funding initiative of the Stem Cell Network, $4.3 million was awarded. 16 initiatives from around Canada that aim to treat health issues like multiple sclerosis, muscular dystrophy, cancer, blood diseases, diabetes type 1, heart disease, and cystic fibrosis will be supported by this direct funding. A new program to assist early career researchers in the health, bioengineering, and social sciences who are creating stem cell research initiatives with an emphasis on regenerative medicine was one of the funding opportunities featured in this competition. In addition, $16 million will be provided to ten new genomics studies through Genome Canada. By 2035, this investment will have contributed to the transformation of biomedicine and drug development. It will also support mission-driven research with direct application potential that tackles real-world problems and possibilities in the fields of agriculture, health, and the environment.

Rising product launches offer a potential opportunity for market revenue growth

The increasing product launch is expected to offer a potential opportunity for market growth during the forecast period. For instance, in March 2023, Adeno-associated virus (AAV)-based gene therapy initiatives can now be more efficiently managed from early discovery to commercial manufacture with the introduction of Charles River Laboratories International, Inc.'s off-the-shelf pHelper service. Research Grade (RG), High Quality (HQ), and Good Manufacturing Practice (GMP) grades are all instantly available.

Viral Vector and Plasmid DNA Manufacturing Market- Key Insights

As per the analysis shared by our research analyst, the global market is estimated to grow annually at a CAGR of around 19.7% over the forecast period (2024-2032)

Based on vector type segmentation, the Adeno-Associated Virus (AAV) segment is expected to hold the largest market share over the forecast period

Based on workflow segmentation, the Downstream Manufacturing segment is expected to hold a significant market share over the projected period

Based on the therapeutic area, the oncological disorder segment is expected to hold a prominent market share over the forecast period

Based on region, North America was the leading revenue generator in 2023

Viral Vector and Plasmid DNA Manufacturing Market- Segmentation Analysis:

The Global Viral Vector and Plasmid DNA Manufacturing Market is segmented based on Vector Type, Workflow, Application, End-use, Therapeutic Area, and Region.

Based on the vector type, the Viral Vector and Plasmid DNA Manufacturing market is segmented into Adenovirus, Lentivirus, Adeno-Associated Virus (AAV), Retrovirus, Plasmids, Baculovirus, Sendai Virus and Others (Herpes Simplex Virus (HSV), etc.). The Adeno-Associated Virus (AAV) segment is expected to hold the largest market share over the forecast period. Due to their exceptional precision in delivering the gene to the desired location, AAVs are extremely sought after and are being used in clinical trials at a rapid pace. Clinical investigations about the development of orthopedic and ophthalmic gene therapy medicines are showing enhanced efficacy and efficiency, which is the reason for the increasing adoption.

Based on the workflow, the Viral Vector and Plasmid DNA Manufacturing industry is bifurcated into Upstream Manufacturing and Downstream Manufacturing. The Downstream Manufacturing segment is expected to hold a significant market share over the projected period due to the extremely intricate processes used to polish and purify final products of therapeutic grade.

Based on the application, the market is bifurcated into Antisense & RNAi Therapy, Vaccinology, Gene Therapy, Tissue Engineering, Cell Therapy, Research Applications and Others (Biosensors, etc.).

Based on the end-use, the industry is bifurcated into Pharmaceutical and Biopharmaceutical Companies, Contract Manufacturing Organizations (CMOs, Research Institutes and Others (Government Agencies, etc.).

Based on the therapeutic area, the Viral Vector and Plasmid DNA Manufacturing market is bifurcated into Neurological Disorders, Sensory Disorders, Musculoskeletal Disorders, Metabolic Disorders, Oncological Disorders, Rare Diseases, Blood Disorders, Immunological Disorders and Others (Reproductive Health, etc.). The oncological disorder segment is expected to hold a prominent market share over the forecast period. The segment growth is attributed to the rising prevalence of cancer across the globe. For instance, according to the latest estimates by the International Agency for Research on Cancer (IARC), 20 million new instances of cancer and 9.7 million deaths from the disease are anticipated for 2022. 53.5 million people were predicted to still be alive five years after receiving a cancer diagnosis. One in five people will have cancer at some point in their lives; one in nine men and one in twelve women will pass away from the disease. Thus, the aforementioned statistics propel the segment expansion.

Viral Vector and Plasmid DNA Manufacturing Market- Geographical Insights

Geographically, this market is widespread in the regions of North America, Latin America, Europe, Asia Pacific, and the Middle East and Africa. These regions are further divided as per the nations bringing business. North America is expected to hold the largest market share over the forecast period. This is explained by the increasing number of contract development organizations in the area as well as the increasing involvement of businesses in gene and cell therapy research and product development. Furthermore, regional companies are growing their production plants in the area. Due to the existence of significant market participants, such as CDMOs providing GMP manufacturing services, and the use of highly creative manufacturing methods for production, the United States held the largest revenue share in the North American market for viral vectors and plasmid DNA manufacturing.

Viral Vector and Plasmid DNA Manufacturing Market- Competitive Landscape:

Several major businesses are implementing some strategic efforts to improve their market position and provide a wide range of services to customers. To boost market presence and revenue and obtain a competitive edge, organizations frequently engage in partnerships and agreements, joint ventures, expansion, service launches, product innovation and other tactics that fuel market growth. Recent years have seen a notable level of innovation in the market for plasmid DNA and viral vectors. Producers of plasmid DNA and viral vectors are continuously looking for new and effective solutions to meet the growing demand for enhanced gene therapy and vaccine development. The use of transient transfection technology for the large-scale manufacturing of viral vectors is one of the major developments in this market. Utilizing suspension cell culture techniques to produce viral vectors is another innovative approach. Big biotech and pharmaceutical corporations are buying up smaller vector and plasmid DNA producers more frequently to gain access to their patented technologies, knowledge, and manufacturing capabilities. As a result, there is market consolidation, which increases the power of established players over pricing and market share. By utilizing the infrastructure and resources of larger acquirers, smaller businesses can expand their operations and reach new markets. For instance, in February 2022, Exelead was purchased by Merck KGaA for around USD 780 million. Providing end users with full end-to-end CDMO services along the mRNA value chain would further improve Merck's Life Science offering.

Recent Developments:

In October 2023, AGC Biologics announced the expansion of their German pDNA manufacturing facility. It is anticipated that this will assist the business in shortening the manufacturing lead time.

SCOPE OF THE REPORT

The scope of this report covers the market by its major segments, which include as follows:

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET KEY PLAYERS- DETAILED COMPETITIVE INSIGHTS

CEVEC Pharmaceuticals

Catalent Biologics

Cobra Biologics

Altruist Biotechnology

NorthX Biologics

Novartis

BioReliance (a subsidiary of Merck KGaA)

Centre for Process Innovation

Wuxi AppTech

Charles River Laboratories

CoJourney

Esco Aster

Jiangsu Puxin Biopharmaceutical

Lonza

Advanced BioScience Laboratories

AGC Biologics

Aldevron

Biovian

Celonic

BioNTech Innovative Manufacturing Service (a subsidiary of BioNTech)

Oxford BioMedica

Sanofi

Thermo Fisher Scientific

VectorBuilder

Matica Biotechnology

Resilience

Nikon CeLL innovation

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY VECTOR TYPE- MARKET ANALYSIS, 2019 - 2032

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY WORKFLOW- MARKET ANALYSIS, 2019 - 2032

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY APPLICATION- MARKET ANALYSIS, 2019 - 2032

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY END-USE- MARKET ANALYSIS, 2019 - 2032

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY THERAPEUTIC AREA- MARKET ANALYSIS, 2019 - 2032

GLOBAL VIRAL VECTOR AND PLASMID DNA MANUFACTURING MARKET, BY REGION- MARKET ANALYSIS, 2019 - 2032

Table of Contents

1. Viral Vector and Plasmid DNA Manufacturing Market Overview

2. Executive Summary

3. Viral Vector and Plasmid DNA Manufacturing Key Market Trends

4. Viral Vector and Plasmid DNA Manufacturing Industry Study

5. Viral Vector and Plasmid DNA Manufacturing Market: COVID-19 Impact Analysis

6. Viral Vector and Plasmid DNA Manufacturing Market Landscape

7. Viral Vector and Plasmid DNA Manufacturing Market - By Vector Type

8. Viral Vector and Plasmid DNA Manufacturing Market - By Workflow

9. Viral Vector and Plasmid DNA Manufacturing Market - By Application

10. Viral Vector and Plasmid DNA Manufacturing Market - By End-use

11. Viral Vector and Plasmid DNA Manufacturing Market - By Therapeutic Area

12. Viral Vector and Plasmid DNA Manufacturing Market- By Geography

13. Key Vendor Analysis- Viral Vector and Plasmid DNA Manufacturing Industry

14. 360 Degree Analyst View

15. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â