ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç ½ÃÀå : ¼¶À¯ À¯Çüº°, ÅØ½ºÅ¸ÀÏ À¯Çüº°, ¿ëµµº° - ¼¼°è ±âȸ ºÐ¼®°ú »ê¾÷ ¿¹Ãø(2023-2032³â)
Textile Composites Market By Fiber Type (Carbon Fiber, Glass Fiber, Aramid Fiber, Polyethylene Fiber, Basalt Fiber, Others), By Textile Type, By Application : Global Opportunity Analysis and Industry Forecast, 2023-2032
»óǰÄÚµå : 1446433
¸®¼­Ä¡»ç : Allied Market Research
¹ßÇàÀÏ : 2024³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 405 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,730 £Ü 8,290,000
PDF (Business License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù. 2¸í ÀÌ»óÀÌ ÀÌ¿ëÇÒ °æ¿ì, Ãß°¡ ¿ä±ÝÀ» ÁöºÒÇÏ¿© ¶óÀ̼±½º ¾÷±×·¹À̵å·Î ÃÖ´ë 5¸í±îÁö ÀÌ¿ë °¡´ÉÇÕ´Ï´Ù.
US $ 9,600 £Ü 13,890,000
PDF (Enterprise User License) & Excel (Data Pack) & Free Update help
PDF º¸°í¼­ ¹× Excel µ¥ÀÌÅ͸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù. º¸°í¼­ ¾÷µ¥ÀÌÆ® ¼­ºñ½º°¡ ¹«·á·Î Á¦°øµË´Ï´Ù.


Çѱ۸ñÂ÷

Textile Composites Market-IMG1

ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç´Â ¼¶À¯¿Í ´Ù¸¥ Àç·á(ÀϹÝÀûÀ¸·Î Æú¸®¸Ó ¸ÅÆ®¸¯½º)¸¦ Àü·«ÀûÀ¸·Î °áÇÕÇÏ¿© Çü¼ºµÇ´Â Çõ½ÅÀûÀÎ Àç·áÀÔ´Ï´Ù.

ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ °³º° ÄÄÆ÷³ÍÆ®º¸´Ù ´õ ¿ì¼öÇÑ Æ¯¼ºÀ» °¡Áø ÇÏÀ̺긮µå ¼ÒÀç°¡ ź»ýÇÏ¿© °¡º±°í °­µµ°¡ ³ôÀ¸¸ç ´ÙÀç´Ù´ÉÇÑ ¼ÒÀç°¡ µË´Ï´Ù. ¼¶À¯¿Í ºñ¼¶À¯ ¿ä¼ÒÀÇ ÅëÇÕÀ» ÅëÇØ ¹°¸®Àû ¹× ±â°èÀû Ư¼ºÀ» Á¶Á¤ÇÒ ¼ö ÀÖÀ¸¸ç, ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç´Â »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ±¤¹üÀ§ÇÑ ¿ëµµ¿¡ °íµµ·Î ÀûÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç·áÀÇ µÎµå·¯Áø ¹üÁÖ Áß Çϳª´Â ¼¶À¯ °­È­ º¹ÇÕÀç·á·Î, °í°­µµ ¼¶À¯°¡ ¸ÅÆ®¸¯½º Àç·á(ÁÖ·Î °íºÐÀÚ ¼öÁö)¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¶À¯ÀÇ ¹èÇâ°ú ¹è¿­Àº º¹ÇÕÀç·áÀÇ ±â°èÀû Ư¼ºÀ» °áÁ¤ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ¶Ù¾î³­ °­µµ¿Í °¡º­¿òÀ¸·Î À¯¸íÇÑ Åº¼Ò¼¶À¯´Â Ç×°ø±â ³¯°³, µ¿Ã¼ ±¸Á¶, ³»ºÎ ¿ä¼Ò¿Í °°Àº ºÎǰÀ» º¸°­Çϱâ À§ÇØ Ç×°ø¿ìÁÖ ¿ëµµ¿¡¼­ ÀÚÁÖ »ç¿ëµË´Ï´Ù.

¼ÒºñÀç »ê¾÷°ú ½ºÆ÷Ã÷ ¿ëǰ »ê¾÷¿¡¼­ °í¼º´É°ú ¹ÌÀû °¨°¢À» °®Ãá Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. °­µµ, À¯¿¬¼º, µðÀÚÀÎ ´Ù¾ç¼ºÀ» °âºñÇÑ ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç·á´Â ¼öÇϹ°, ¹è³¶, °¡±¸ µî ¼ÒºñÀç Á¦Á¶¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ºÆ÷Ã÷ ¹× ·¹Àú ºÐ¾ß¿¡¼­ º¹ÇÕ¼ÒÀç´Â Å״Ͻº ¶óÄÏ, °ñÇÁ Ŭ·´, ÀÚÀü°Å¿Í °°Àº Àåºñ Á¦Á¶¿¡ ÇʼöÀûÀ̸ç, ÃÖÀûÀÇ ¼º´ÉÀ» ¹ßÈÖÇϱâ À§Çؼ­´Â °¡º±°í °ß°íÇÑ ¼ÒÀç°¡ ÇʼöÀûÀÔ´Ï´Ù.

¶ÇÇÑ ¼¶À¯ º¹ÇÕ¼ÒÀç´Â ±¹¹æ ¹× º¸¾È ºÐ¾ß, ƯÈ÷ źµµ º¸È£ Àåºñ °³¹ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Äɺí¶ó(Kevlar)¿Í °°Àº °í°­µµ ¼¶À¯¸¦ Á÷¹°¿¡ Á÷Á¶ÇÏ°í ¼öÁö¿Í °áÇÕÇϸé źµµ Ãæ°Ý¿¡ ´ëÇÑ ÀúÇ×·ÂÀÌ ¶Ù¾î³­ ¼ÒÀç°¡ ¸¸µé¾îÁý´Ï´Ù. Àü ¼¼°è¿¡¼­ ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á°¡ °è¼ÓµÇ´Â °¡¿îµ¥, ±º°ú ¹ý ÁýÇà ±â°ü ¿ä¿øµé¿¡°Ô ½Å·ÚÇÒ ¼ö ÀÖ´Â º¸È£ ±â´ÉÀ» Á¦°øÇϴ ÷´Ü ¼ÒÀç°¡ Áö¼ÓÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ±¹¹æ ¹× º¸¾È ºÐ¾ß¿¡¼­ ¼¶À¯ º¹ÇÕ¼ÒÀçÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

±×·¯³ª ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç·á´Â ¿ì¼öÇÑ °­µµ ´ë Áß·®ºñ¸¦ Á¦°øÇÏ´Â ¹Ý¸é, ±Ý¼Ó°ú °°Àº ÀüÅëÀûÀÎ Àç·á¿¡ ºñÇØ ¼³°è À¯¿¬¼º¿¡ ÇѰ谡 ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. Á÷Á¶ ¹× ¼ºÇü°ú °°Àº Á¦Á¶ °øÁ¤Àº º¹ÀâÇÑ ¼³°è¿¡ Á¦¾àÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿Í °°ÀÌ º¹ÀâÇÏ°í °íµµ·Î ¸ÂÃãÈ­µÈ ¼³°è°¡ ÇʼöÀûÀÎ »ê¾÷¿¡¼­´Â ¼³°èÀÇ ÀÚÀ¯µµ°¡ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¼¶À¯º¹ÇÕ¼ÒÀçÀÇ ¼³°è ÀÚÀ¯µµ°¡ Á¦ÇѵǸé Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß ¼ö¿ä°¡ °¨¼ÒÇÏ¿© ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯È÷ °¡È¤ÇÑ È¯°æ Á¶°Ç¿¡¼­ ¼¶À¯º¹ÇÕ¼ÒÀçÀÇ Àå±âÀûÀÎ ³»±¸¼º°ú ¼º´É¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. Àڿܼ±, ½À±â, ¿Âµµ º¯È­ µîÀÇ ¿äÀο¡ ³ëÃâµÇ¸é Àå±âÀûÀ¸·Î º¹ÇÕÀç·áÀÇ ¹«°á¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÅØ½ºÅ¸ÀÏ º¹ÇÕÀçÀÇ Àå±âÀûÀÎ °Åµ¿À» ÀÌÇØÇÏ°í ¿¹ÃøÇÏ´Â °ÍÀº Áö¼ÓÀûÀÎ ¿¬±¸¿Í Å×½ºÆ®°¡ ÇÊ¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ³»±¸¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ º¸È£ ÄÚÆÃ ¹× ÷°¡Á¦ °³¹ßÀº ÀÌ·¯ÇÑ Á¦¾àÀ» ÇØ°áÇϰí ÅØ½ºÅ¸ÀÏ º¹ÇÕÀçÀÇ ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÇöÀç ÁøÇà ÁßÀÎ ¿¬±¸ ºÐ¾ßÀÔ´Ï´Ù.

±×·¯³ª Àü ¼¼°è ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ®°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç´Â °Ç¼³ ºÎ¹®¿¡ ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¼¶À¯ °­È­ ÄÜÅ©¸®Æ®´Â ±¸Á¶¹°ÀÇ ÀÎÀå °­µµ¸¦ ³ôÀÌ°í ³»±¸¼º°ú À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç·áÀÇ ´Ù¿ëµµ¼ºÀº °Ç¼³ »ê¾÷¿¡¼­ Çõ½ÅÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ±â¿©ÇÏ¿© ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç·á ½ÃÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¶À¯º¹ÇÕÀç ¼¼°è ½ÃÀåÀº ¼¶À¯ À¯Çü, ¼¶À¯ À¯Çü, ¿ëµµ, Áö¿ªº°·Î ±¸ºÐµË´Ï´Ù. ¼¶À¯ À¯Çü¿¡ µû¶ó ź¼Ò¼¶À¯, À¯¸®¼¶À¯, ¾Æ¶ó¹Ìµå ¼¶À¯, Æú¸®¿¡Æ¿·» ¼¶À¯(UHMWPE), Çö¹«¾Ï ¼¶À¯, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ¼¶À¯ À¯Çü¿¡ µû¶ó ½ÃÀåÀº Á÷¹°°ú ºÎÁ÷Æ÷·Î ³ª´¹´Ï´Ù. ¿ëµµº°·Î´Â ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, °Ç¼³, ÇØ¾ç, ½ºÆ÷Ã÷ ¿ëǰ, »ê¾÷¿ë ´Ü¿­Àç, ±âŸ·Î ³ª´¹´Ï´Ù. Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× LAMEA·Î ½ÃÀåÀ» Á¶»çÇß½À´Ï´Ù.

ÀÌÇØ°ü°èÀÚ ÁÖ¿ä ÀÌÁ¡

ÀÌ º¸°í¼­¿¡¼­ °¡´ÉÇÑ Ä¿½ºÅ͸¶ÀÌ¡

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç ½ÃÀå : ¼¶À¯ À¯Çüº°

Á¦5Àå ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç ½ÃÀå : ¼¶À¯ À¯Çüº°

Á¦6Àå ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç ½ÃÀå : ¿ëµµº°

Á¦7Àå ÅØ½ºÅ¸ÀÏ º¹ÇÕÀç ½ÃÀå : Áö¿ªº°

Á¦8Àå °æÀï »óȲ

Á¦9Àå ±â¾÷ °³¿ä

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Textile Composites Market - IMG1

Textile composites are innovative materials that are formed from the strategic combination of textile fibers with other materials, typically a polymer matrix. This synergy creates a hybrid material with properties superior to those of its individual components, resulting in materials that are lightweight, strong, and versatile. The integration between textiles and non-textile elements allows for the tailoring of physical and mechanical attributes, making textile composites highly adaptable for a wide range of applications across industries.

One prominent category of textile composites is fiber-reinforced composites, in which, high-strength fibers are embedded within a matrix material, often a polymer resin. The orientation and alignment of these fibers play a pivotal role in determining the composite's mechanical properties. For instance, carbon fibers, known for their exceptional strength and low weight, are frequently employed in aerospace applications to reinforce components such as wings, fuselage structures, and interior elements of aircraft.

The consumer goods and sports equipment industries are witnessing surge in demand for high-performance and aesthetically appealing products. Textile composites, with their ability to combine strength, flexibility, and design versatility, are increasingly used in the manufacturing of consumer goods such as luggage, backpacks, and furniture. In the sports and leisure sector, composite materials are integral to the production of equipment such as tennis rackets, golf clubs, and bicycles, where lightweight yet robust materials are essential for optimal performance.

Moreover, textile composites play a crucial role in defense and security applications, particularly in the development of ballistic protection gear. High-strength fibers such as Kevlar are woven into textiles and combined with resins to create materials that offer exceptional resistance to ballistic impact. As security concerns persist globally, there is a continuous need for advanced materials that can provide reliable protection to military and law enforcement personnel. This drives the adoption of textile composites in the defense and security sectors.

However, while textile composites offer excellent strength-to-weight ratios, they may have limitations in design flexibility as compared to traditional materials such as metals. Production processes, such as weaving or molding, may impose restrictions on intricate designs. In industries where complex and highly customized designs are essential, such as in some aerospace and automotive applications. Thus, limitation in design flexibility of textile composites may reduce its demand across aerospace and automobile sectors, thus restraining the market growth. Also, the long-term durability and performance of textile composites can be a concern, particularly in harsh environmental conditions. Exposure to factors like UV radiation, moisture, and temperature variations can affect the integrity of the composite materials over time. Understanding and predicting the long-term behavior of textile composites is a challenge that requires continuous research and testing. The development of protective coatings and additives to enhance durability is an area of ongoing exploration to address this restraint and improve the reliability of textile composites.

However, as global infrastructure development projects continue to rise, textile composites present opportunities in the construction sector. For instance, textile-reinforced concrete enhances the tensile strength of structures, providing durability and flexibility. This versatility of textile composites can contribute to innovative and cost-effective solutions in the construction industry which in turn may create lucrative opportunities for the textile composites market.

The global textile composites market is segmented on the basis of fiber type, textile type, application, and region. On the basis of fiber type, the market is categorized into carbon fiber, glass fiber, aramid fiber, polyethylene fiber (UHMWPE), basalt fiber, and others. By textile type, the market is classified into woven and non-woven. On the basis of application, it is divided into automotive, aerospace, construction, marine, sports equipment, industrial insulation, and others. Region-wise, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

The global textile composites market profiles leading players that include Chomarat, SAERTEX Group, BGF Industries, Sigmatex, TORAY INDUSTRIES, INC., HYOSUNG TNC, TEIJIN LIMITED, Owens Corning, Hexcel Corporation, and Composite Fabrics of America. The global textile composites market report provides in-depth competitive analysis as well as profiles of these major players.

Key Benefits For Stakeholders

Additional benefits you will get with this purchase are:

Possible Customization with this report (with additional cost and timeline, please talk to the sales executive to know more)

Key Market Segments

By Application

By Fiber Type

By Textile Type

By Region

Key Market Players:

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: EXECUTIVE SUMMARY

CHAPTER 3: MARKET OVERVIEW

CHAPTER 4: TEXTILE COMPOSITES MARKET, BY FIBER TYPE

CHAPTER 5: TEXTILE COMPOSITES MARKET, BY TEXTILE TYPE

CHAPTER 6: TEXTILE COMPOSITES MARKET, BY APPLICATION

CHAPTER 7: TEXTILE COMPOSITES MARKET, BY REGION

CHAPTER 8: COMPETITIVE LANDSCAPE

CHAPTER 9: COMPANY PROFILES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â