¼¼°èÀÇ ¼ö¼Ò ÀúÀå ½ÃÀå - À¯Çüº°, ÀúÀ庰, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° : ±âȸ ºÐ¼® ¹× »ê¾÷ ¿¹Ãø(2023-2032³â)
Hydrogen Storage Market By Type, By Storage, By End-use Industry : Global Opportunity Analysis and Industry Forecast, 2023-2032
»óǰÄÚµå : 1414847
¸®¼­Ä¡»ç : Allied Market Research
¹ßÇàÀÏ : 2023³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 270 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,730 £Ü 8,030,000
PDF (Business License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù. 2¸í ÀÌ»óÀÌ ÀÌ¿ëÇÒ °æ¿ì, Ãß°¡ ¿ä±ÝÀ» ÁöºÒÇÏ¿© ¶óÀ̼±½º ¾÷±×·¹À̵å·Î ÃÖ´ë 5¸í±îÁö ÀÌ¿ë °¡´ÉÇÕ´Ï´Ù.
US $ 9,600 £Ü 13,453,000
PDF (Enterprise User License) & Excel (Data Pack) & Free Update help
PDF º¸°í¼­ ¹× Excel µ¥ÀÌÅ͸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù. º¸°í¼­ ¾÷µ¥ÀÌÆ® ¼­ºñ½º°¡ ¹«·á·Î Á¦°øµË´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¼ö¼Ò ÀúÀå ½ÃÀå ±Ô¸ð´Â 2022³â¿¡ 28¾ï ´Þ·¯¿¡ À̸£·¶°í, 2023³âºÎÅÍ 2032³â±îÁö CAGR 12.7%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 86¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Hydrogen Storage Market-IMG1

¼ö¼Ò ÀúÀå ½Ã½ºÅÛÀº ¼ö¼Ò¸¦ ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÀúÀåÇÏ´Â µ¥ ÇÊ¿äÇÑ ±â¼ú°ú ÀÎÇÁ¶óÀÇ °³¹ß, Á¦Á¶ ¹× À¯Åë°ú °ü·ÃµÈ »ê¾÷À» ÀǹÌÇÕ´Ï´Ù. ¼ö¼Ò ÀúÀå ½Ã½ºÅÛÀº ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ¼ö¼Ò¸¦ ¿¡³ÊÁö ij¸®¾î·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ö¼Ò ¿¡³ÊÁö ÀúÀå¿¡´Â ´ÙÀ½°ú °°Àº ±¤¹üÀ§ÇÑ ÀúÀå ±â¼ú°ú ¼Ö·ç¼ÇÀÌ Æ÷ÇԵ˴ϴÙ.

1. ¾ÐÃà °¡½º ÀúÀå, ¾×ü ÀúÀå, ±Ý¼Ó ¹× È­ÇÐ ¼ö¼ÒÈ­¹° ÀúÀå, °íü ÀúÀå.

±×¸°¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½É Áõ°¡´Â º¸´Ù Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¹Ì·¡·ÎÀÇ Àüȯ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò¶ó°í »ý°¢ÇÏ´Â ½Ç¸°´õÇü ¼ö¼Ò ÀúÀå¿¡ ´ëÇÑ ¼ö¿äÀÇ ±ÞÁõÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¼¼°è°¡ È­¼®¿¬·á·ÎºÎÅÍÀÇ Å»°¢À» Àû±ØÀûÀ¸·Î ÃßÁøÇÏ´Â °¡¿îµ¥ ¹Ì·¡ÀÇ ¿¬·á·Î ºÒ¸®´Â ¼ö¼Ò´Â ±× ³ôÀº ¿¡³ÊÁö ÇÔ·®°ú ±ú²ýÇÑ ¿¬¼Ò Ư¼º¿¡ ÀÇÇØ Á¦Ç°º°·Î ¹°¹Û¿¡ »ý¼ºµÇÁö ¾Ê±â ¶§¹®¿¡ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ¼ö¼ÒÀÇ È¿°úÀûÀÎ ÀúÀå ¹× ¿î¼Û ¸ÞÄ¿´ÏÁòÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖÀ¸¸ç ¾ÐÃà ¼ö¼Ò ½Ç¸°´õ°¡ ¿©·¯ °¡Áö ÀÌÀ¯·Î ÀϹÝÀûÀÎ ¼±ÅÃÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.

ù°, ¼ö¼Ò ½Ç¸°´õ´Â ´Ù¸¥ ¸¹Àº ÀúÀå ¹æ¹ý°ú ºñ±³ÇÒ ¼ö ¾øÀ» Á¤µµ·Î È޴뼺ÀÌ ³ô°í ¿î¼Û ¹× ±³È¯ÀÌ ¿ëÀÌÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ ºÐ¾ß¿Í Àå¼Ò¿¡¼­ÀÇ À¯ÅëÀÌ ¿ëÀÌÇØÁý´Ï´Ù. °Ô´Ù°¡ ÀÌ ÀúÀ广½ÄÀ» µÞ¹ÞħÇÏ´Â ±â¼úÀº ¼º¼÷ÇØÁ® ¿À·£ ¼¼¿ù¿¡ °ÉÃÄ ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¾î ¿Â ½ÇÀûÀÌ Àֱ⠶§¹®¿¡ »õ·Î¿î ±â¼ú¿¡´Â ¾ø´Â ½Å·Ú¼º ¹× Ä£¼÷ÇÔÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Â÷·®ÀÇ ¿¬·á º¸±ÞºÎÅÍ ¹é¾÷ Àü¿ø±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ½Ç¸°´õ ÀúÀåÀÇ ¹ü¿ë¼ºÀº ±â¾÷°ú Á¤ºÎ ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ½Ç¸°´õ »ç¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾ÈÀüÇÑ Ãë±Þ, º¸°ü ¹× ¿î¼Û¿¡ ´ëÇÑ ³ë·ÂÀÌ º¸ÀåµÇµµ·Ï ¾ÈÀü ÇÁ·ÎÅäÄÝ ±ÔĢȭ°¡ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

±×·¯³ª °¡Àå ÀϹÝÀûÀÎ ÀúÀå ¹æ¹ýÀº ¼ö¼Ò¸¦ ¾ÐÃàÇϰí ÀϹÝÀûÀ¸·Î 350-700 bar(5,000-10,000 psi)ÀÇ °í¾ÐÇÏ¿¡ ÀúÀåÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¾Ð·ÂÀ» °ßµð±â À§Çؼ­´Â ÅÊÅ©°¡ ¸Å¿ì °ß°íÇØ¾ß Çϱ⠶§¹®¿¡ ÀϹÝÀûÀ¸·Î ´ÙÀ½°ú °°Àº °í°­µµ º¹ÇÕÀç·á¸¦ »ç¿ëÇÏ¿© ¸¸µé¾îÁý´Ï´Ù.

1. ºñ½Ñ ź¼Ò¼¶À¯. ÀÌ °í¾Ð ÅÊÅ©ÀÇ Á¦Á¶´Â °£´ÜÇÏÁö ¾Ê½À´Ï´Ù. Ư¼ö Á¦Á¶ °øÁ¤, Á¤¹Ð ¿£Áö´Ï¾î¸µ, ǰÁú °ü¸®°¡ ÇÊ¿äÇϸç, ¸ðµÎ ºñ¿ë »ó½ÂÀÇ ¿øÀÎÀÌ µË´Ï´Ù. º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀÇ ¹ß°ßÀ» À§ÇØ ´ÙÀ½°ú °°Àº ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

1) ±Ý¼Ó ¼ö¼Ò È­¹° ¶Ç´Â È­ÇÐ ÀúÀå. ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ´Â ¹Ì·¡ÀÇ Çõ½ÅÀ» À§ÇØ ÇʼöÀûÀÌÁö¸¸, ÇöÀçÀÇ ÀúÀå ¼Ö·ç¼Ç¿¡ Á¾Á¾ ¹Ý¿µµÇ´Â Ãʱ⠺ñ¿ëÀÌ Ãß°¡µË´Ï´Ù.

¼ö¼Ò ÀúÀå ÅÊÅ©ÀÇ ³ôÀº ºñ¿ëÀ» ´Ù·ç´Â °ÍÀº ƯÈ÷ ´ÙÀ½°ú °°Àº ¿ëµµ¿¡¼­ ¼ö¼Ò ±â¼úÀ» ³Î¸® ¹Þ¾ÆµéÀ̰í Àü°³ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

1. Â÷³» ÀúÀå °ø°£°ú ºñ¿ëÀÌ Áß¿äÇÑ °í·Á »çÇ×ÀÎ ¿î¼Û. ¼ö¼Ò °ø±Þ ÀÎÇÁ¶óÀÇ °¡¿ë¼ºÀÌ Á¦ÇѵǾî ÀÖ´Â °ÍÀº ûÁ¤ ¿¡³ÊÁö ij¸®¾î·Î¼­ ¼ö¼ÒÀÇ ´ë·® µµÀÔ, ƯÈ÷ ¿î¼Û ºÎ¹®¿¡¼­ Å« °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

ƯÈ÷, ¾îµð¿¡³ª ÀÖ´Â ÁÖÀ¯¼Ò³ª Àü±âÂ÷ ÃæÀüÆ÷ÀÎÆ® Áõ°¡¿¡ ºñÇÏ¸é ¼ö¼Ò´Â ¹èÃâ°¡½º³ª ¿¡³ÊÁö ¹Ðµµ¸é¿¡¼­ Å« ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ¿¬·áº¸±Þ ½ºÅ×ÀÌ¼Ç ºÎÁ·Àº ÀáÀçÀûÀÎ »ç¿ëÀÚ¿¡ À־ Æí¸®¼ºÀ» ÀúÇϽÃŵ´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁö Â÷·®(FCV)ÀÇ ÀáÀçÀûÀÎ ±¸¸ÅÀÚ´Â Àå½Ã°£ À̵¿ ÁßÀ̰ųª ¿ø°ÝÁö¿¡¼­ ¿¬·á¸¦ °ø±ÞÇÒ ¼ö ÀÖ´ÂÁö °ÆÁ¤ÇÒ ¼ö ÀÖÀ¸¸ç ±¸¸Å¸¦ ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù.

±×¿Í´Â ¹Ý´ë·Î, ¼ö¼Ò ÀúÀå ÅÊÅ©ÀÇ °æ·®È­´Â ƯÈ÷ ¿î¼Û ºÎ¹®¿¡¼­ ½ÇÇà °¡´ÉÇÑ ¿¡³ÊÁö ij¸®¾î·Î¼­ ¼ö¼ÒÀÇ Áøº¸¿¡ Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÀúÀå ¼Ö·ç¼ÇÀÇ ¹«°Ô´Â ÀÚµ¿Â÷ È¿À², Ç×¼Ó °Å¸®, Á¾ÇÕ ¼º´É¿¡ Á÷Á¢ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Á¾·¡ÀÇ °í¾Ð ¼ö¼Ò ÀúÀå ÅÊÅ©´Â ±× °­µµ ´ë Áß·®ºñ·ÎºÎÅÍ ÁַΠź¼Ò¼¶À¯ º¹ÇÕÀç·á¸¦ ÀÌ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀç·áÀÇ Æ¯¼ºÀ» Çâ»ó½Ã۰í, ¾ÈÀü¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ÅÊÅ©º®ÀÇ ¹ÚÀ°È­ ¹× °æ·®È­¸¦ °¡´ÉÇÏ°Ô Çϱâ À§ÇÑ ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ È­ÇÐ È­ÇÕ¹°Àº ¼ö¼Ò¸¦ Èí¼öÇÏ°í ¹æÃâÇÏ°í ³·Àº ¾Ð·Â¿¡¼­ ¼ö¼Ò¸¦ ÀúÀåÇÏ´Â ¹æ¹ýÀ» Á¦°øÇϹǷΠÅÊÅ©ÀÇ ¹«°Ô¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °úÇÐÀÚµéÀº ³ôÀº ÀúÀå ¿ë·®À» °¡Áø °æ·®ÀÇ ±Ý¼Ó ¼ö¼ÒÈ­¹°¿¡ ´ëÇÑ ¿¬±¸¸¦ Àû±ØÀûÀ¸·Î ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ È­ÇÐ È­ÇÕ¹°Àº ¼ö¼Ò¸¦ Èí¼öÇÏ°í ¹æÃâÇÒ ¼ö ÀÖÀ¸¸ç ¼ö¼Ò¸¦ ´õ ³·Àº ¾Ð·ÂÀ¸·Î ÀúÀåÇÏ´Â ¹æ¹ýÀ» Á¦°øÇϹǷΠÅÊÅ©ÀÇ ¹«°Ô¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ´ÙÀ½°ú °°Àº Àç·á°¡ ÀÖ½À´Ï´Ù.

1) À¯±â±Ý¼Ó°ñ°Ý(MOF)°ú °øÀ¯°áÇÕ À¯±â°ñ°Ý(COF)ÀÌ À¯¸Á½ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶´Â ¼ö¼Ò¸¦ °í¾ÐÀ¸·Î ¸¸µéÁö ¾Ê°í ¼ö¼Ò ºÐÀÚ¸¦ °í¹Ðµµ·Î Æ÷ȹÇÒ ¼ö Àֱ⠶§¹®¿¡ ÅÊÅ©ÀÇ ¹«°Ô¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷Àº È¿À²°ú Á¾ÇÕ¼º´ÉÀ» ³ôÀ̱â À§ÇØ Â÷·®ÀÇ °æ·®È­¿¡ ÁÖ·ÂÇϰí Àֱ⠶§¹®¿¡ ÀúÁß·®ÀÇ ¼ö¼Ò ÀúÀå ÅÊÅ©ÀÇ °³¹ßÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼ö¼Ò ÀúÀå ÅÊÅ©¿¡ À¯¸®ÇÑ ±âȸ¸¦ °¡Á®¿Ã °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå ¼ö¼Ò ÀúÀå ½ÃÀå : À¯Çüº°

Á¦5Àå ¼ö¼Ò ÀúÀå ½ÃÀå : ÀúÀ庰

Á¦6Àå ¼ö¼Ò ÀúÀå ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

Á¦7Àå ¼ö¼Ò ÀúÀå ½ÃÀå : Áö¿ªº°

Á¦8Àå °æÀï ±¸µµ

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to a new report published by Allied Market Research, titled, "Hydrogen Storage Market," The hydrogen storage market was valued at $2.8 billion in 2022, and is estimated to reach $8.6 billion by 2032, growing at a CAGR of 12.7% from 2023 to 2032.

Hydrogen Storage Market - IMG1

Hydrogen storage system refers to the industry involved in the development, manufacture, and distribution of technologies and infrastructure required for the safe and efficient storage of hydrogen. Hydrogen storage systems play a critical role in enabling the utilization of hydrogen as an energy carrier for various applications. Hydrogen energy storage encompasses a range of storage technologies and solutions such as

1) compresses gas storage, liquid storage, metal and chemical hydride storage, and solid-state storage.

The growth in interest in green energy solutions has led to a surge in demand for cylinder hydrogen storage, a method viewed by many as a vital component in the transition to a more sustainable energy future. With the world aggressively moving away from fossil fuels, hydrogen, often hailed as the fuel of the future, finds itself in the spotlight due to its high energy content and clean-burning properties, producing only water as a byproduct. Consequently, effective storage and transport mechanisms for hydrogen have become increasingly crucial, with compressed hydrogen cylinders emerging as a prevalent choice for several reasons.

First, they offer a degree of portability unparalleled by many other storage methods, allowing for easy transport and exchange, facilitating its distribution across diverse sectors and locations. Furthermore, the technology underpinning this form of storage is mature and proven, having been employed in various capacities over the years, thus offering reliability and a degree of familiarity that new technologies may lack. Moreover, the versatility of cylinder storage, adaptable to a multitude of applications ranging from vehicular fueling to backup power sources, makes it an attractive choice for businesses and governments alike. Concurrently, there is an industry-wide push for regularizing safety protocols, ensuring that as cylinder usage grows, so does the commitment to safe handling, storage, and transportation.

However, the most common storage method involves compressing hydrogen to store it under high pressure, usually around 350-700 bar (5,000-10,000 psi). The tanks must be incredibly robust to withstand such pressures, so they are typically constructed using high-strength composite materials such as

1) carbon fibers, which are expensive. The production of these high-pressure tanks is not straightforward. They require specialized manufacturing processes, precision engineering, and quality control, all contributing to higher costs. There is ongoing research into finding more efficient and cost-effective hydrogen storage solutions, such as

1) metal hydrides or chemical storage. Investment in R&D, while essential for future breakthroughs, adds an initial cost that is often reflected in current storage solutions.

Addressing the high costs of hydrogen storage tanks is critical for the broader acceptance and deployment of hydrogen technologies, especially in applications such as

1) transportation where onboard storage space and costs are vital considerations. The limited availability of hydrogen refueling infrastructure poses a significant challenge to the mass adoption of hydrogen as a clean energy carrier, especially in the transportation sector.

The scarcity of refueling stations renders it less convenient for potential users, especially when compared to the ubiquitous gasoline stations or growth in number of electric vehicles charging points while hydrogen offers substantial benefits in terms of emissions and energy density. This lack of infrastructure, in turn, impacts consumer confidence, as potential buyers of hydrogen fuel cell vehicles (FCVs) may be deterred by concerns about refueling availability during longer trips or in remote areas.

On the contrary, the development of low weight hydrogen storage tanks is a critical area of focus for the advancement of hydrogen as a viable energy carrier, especially in the transportation sector. The weight of storage solutions directly impacts vehicle efficiency, range, and overall performance. Traditional high-pressure hydrogen storage tanks primarily utilize carbon fiber composites due to their strength-to-weight ratio. Research is ongoing to enhance the properties of these composites, allowing for thinner, lighter tank walls without compromising safety.

These chemical compounds absorb and release hydrogen, providing a way to store hydrogen at much lower pressures, hence potentially reducing tank weight. Scientists are actively researching lightweight metal hydrides with high storage capacities. These chemical compounds can absorb and release hydrogen, providing a way to store hydrogen at much lower pressures, hence potentially reducing tank weight. Materials such as

1) metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have shown promise. These structures can trap hydrogen molecules at high densities without requiring the hydrogen to be at high pressures, potentially reducing tank weight. Hence, the development of low weight hydrogen storage tanks will provide lucrative opportunity for the hydrogen storage tanks in automobile industry as the automobile industry is focusing on reducing weight of vehicle to increase the efficiency and overall performance.

The hydrogen storage market is segmented into type, storage form, end-use industry, and region. On the basis of type, the market is categorized into cylinder, merchant, on-site, and on-board. On the basis of storage form, the market is bifurcated into material-based hydrogen storage and physical hydrogen storage. On the basis of end-use industry, the market is classified into chemical, oil refineries, automotive & transportation, metalworking, and others. On the basis of region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits For Stakeholders

Additional benefits you will get with this purchase are:

Possible Customization with this report (with additional cost and timeline, please talk to the sales executive to know more)

Key Market Segments

By Type

By Storage

By End-use Industry

By Region

Key Market Players:

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: EXECUTIVE SUMMARY

CHAPTER 3: MARKET OVERVIEW

CHAPTER 4: HYDROGEN STORAGE MARKET, BY TYPE

CHAPTER 5: HYDROGEN STORAGE MARKET, BY STORAGE

CHAPTER 6: HYDROGEN STORAGE MARKET, BY END-USE INDUSTRY

CHAPTER 7: HYDROGEN STORAGE MARKET, BY REGION

CHAPTER 8: COMPETITIVE LANDSCAPE

CHAPTER 9: COMPANY PROFILES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â